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Abstract: Chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actino-
mycete, Streptomyces griseorubens, resulted in the discovery of five new labdane-type diterpenoids:
chlorolabdans A-C (1–3), epoxylabdans A and B (4 and 5), along with one known analog (6). The
structures of the new compounds were determined by spectroscopic analysis (HR-ESIMS, 1D, and 2D
NMR) and by comparing their experimental data with those in the literature. The new compounds
were evaluated for their antimicrobial activity, and 2 displayed significant activity against Gram-
positive bacteria, with minimum inhibitory concentration (MIC) values ranging from 4 to 8 µg/mL.
Additionally, 1, 2, and 4 were tested for their cytotoxicity against seven blood cancer cell lines by
CellTiter-Glo (CTG) assay and six solid cancer cell lines by sulforhodamine B (SRB) assay; 1, 2, and
4 exhibited cytotoxic activities against some blood cancer cell lines, with concentration causing 50%
cell growth inhibition (IC50) values ranging from 1.2 to 22.5 µM.

Keywords: Streptomyces griseorubens; labdane; diterpenoids; antimicrobial; cytotoxicity;
chlorolabdan; epoxylabdan

1. Introduction

Labdane-type diterpenoids are one of the most abundant categories of secondary
metabolites, which are discovered in plants [1,2], fungi [3,4], and marine organisms [5,6].
The labdane derivatives were isolated mainly from plant materials in families such as the
gymnospers, as well as the Asteraceae, Lamiaceae, and Zingiberaceae [7,8], and sometimes
they were discovered in actinomycetes [9]. Terpenoids commonly function as growth or de-
fense materials for organisms that produce them [8]. For these reasons, some terpenoids are
known to be toxic or allergenic and smell like anthelmintics [8]. Sclareol is a representative
example of labdane-type diterpenoids (Labd-14-ene-8,13-diol). It is found in Salvia sclarea
and used as an additive in the flavor and fragrance industries [10]. The naturally occurring
labdane comprises four isoprene units, and its structural scaffolds typically consist of a de-
calin system fused with two rings and an attached side chain composed of six carbons [11].
They have trans-stereochemistry mainly at C-5 and C-10 carbon junctions of the ring, and
lapdanes with cis-ring junctions are rarely found in nature [12]. Up to now, various lab-
dane derivatives have been reported [5,13–15] which possess additional carbons on the
decalin system. Labdanes have been acknowledged as an important source for exploring
new therapeutic agents [16] with a wide range of bioactivities, such as antibacterial [2],
anticancer [17], anti-inflammatory [12], antioxidant [3], and antiviral [18] properties, and
they are still regarded as good subjects for research.
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The use of microorganisms as a source of secondary metabolites has advantages, such
as no climatic and spatial limit, in contrast with plant cultures [19]. The genus Streptomyces
is especially recognized as the most significant producer of secondary metabolites, and
up to 50% of the total population originated from the soil, including sediments [20]. As
part of our continuous search for new secondary metabolites from marine microorganisms,
an actinobacterial strain was isolated from a sediment sample collected at Jeju Island,
Republic of Korea. The strain was identified as Streptomyces griseorubens 2210JJ-087 by
16S gene sequence analysis. The crude extract from the culture broth of the strain exhibited
antibacterial activity against Gram-positive bacteria. Therefore, an additional study was
carried out to identify bioactive secondary metabolites produced by the strain. As a
result, six labdane diterpenoids, including five new (1–5) and one known (6) derivative
(Figure 1 and Figure S1), were isolated from the strain. This report describes the isolation,
purification, structure determination, and evaluation of the antimicrobial and cytotoxic
activities of the compounds (Figure 2).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 13 
 

 

as antibacterial [2], anticancer [17], anti-inflammatory [12], antioxidant [3], and antiviral 
[18] properties, and they are still regarded as good subjects for research. 

The use of microorganisms as a source of secondary metabolites has advantages, such 
as no climatic and spatial limit, in contrast with plant cultures [19]. The genus Streptomyces 
is especially recognized as the most significant producer of secondary metabolites, and up 
to 50% of the total population originated from the soil, including sediments [20]. As part 
of our continuous search for new secondary metabolites from marine microorganisms, an 
actinobacterial strain was isolated from a sediment sample collected at Jeju Island, Repub-
lic of Korea. The strain was identified as Streptomyces griseorubens 2210JJ-087 by 16S gene 
sequence analysis. The crude extract from the culture broth of the strain exhibited anti-
bacterial activity against Gram-positive bacteria. Therefore, an additional study was car-
ried out to identify bioactive secondary metabolites produced by the strain. As a result, 
six labdane diterpenoids, including five new (1–5) and one known (6) derivative (Figures 
1 and S1), were isolated from the strain. This report describes the isolation, purification, 
structure determination, and evaluation of the antimicrobial and cytotoxic activities of the 
compounds (Figure 2). 

OH

HO
OH

Cl

H

20
1

3

19 18

5
7

13

15

16

9

11

17

OH

OH
Cl

H

Cl
OH

H

O

H

20
1

3

19 18

5
7

13

15

16

9

11

17

OH

HO
O

H
OH

O

H

Chlorolabdan A (1)               Chlorolabdan B (2)                 Chlorolabdan C (3)

Epoxylabdan A (4)                  Epoxylabdan B (5)                             6  
Figure 1. Structures of 1–6 isolated from S. griseorubens 2210JJ-087. 

 
Figure 2. Schematic diagram of experimental procedures. 

  

Figure 1. Structures of 1–6 isolated from S. griseorubens 2210JJ-087.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 13 
 

 

as antibacterial [2], anticancer [17], anti-inflammatory [12], antioxidant [3], and antiviral 
[18] properties, and they are still regarded as good subjects for research. 

The use of microorganisms as a source of secondary metabolites has advantages, such 
as no climatic and spatial limit, in contrast with plant cultures [19]. The genus Streptomyces 
is especially recognized as the most significant producer of secondary metabolites, and up 
to 50% of the total population originated from the soil, including sediments [20]. As part 
of our continuous search for new secondary metabolites from marine microorganisms, an 
actinobacterial strain was isolated from a sediment sample collected at Jeju Island, Repub-
lic of Korea. The strain was identified as Streptomyces griseorubens 2210JJ-087 by 16S gene 
sequence analysis. The crude extract from the culture broth of the strain exhibited anti-
bacterial activity against Gram-positive bacteria. Therefore, an additional study was car-
ried out to identify bioactive secondary metabolites produced by the strain. As a result, 
six labdane diterpenoids, including five new (1–5) and one known (6) derivative (Figures 
1 and S1), were isolated from the strain. This report describes the isolation, purification, 
structure determination, and evaluation of the antimicrobial and cytotoxic activities of the 
compounds (Figure 2). 

OH

HO
OH

Cl

H

20
1

3

19 18

5
7

13

15

16

9

11

17

OH

OH
Cl

H

Cl
OH

H

O

H

20
1

3

19 18

5
7

13

15

16

9

11

17

OH

HO
O

H
OH

O

H

Chlorolabdan A (1)               Chlorolabdan B (2)                 Chlorolabdan C (3)

Epoxylabdan A (4)                  Epoxylabdan B (5)                             6  
Figure 1. Structures of 1–6 isolated from S. griseorubens 2210JJ-087. 

 
Figure 2. Schematic diagram of experimental procedures. 

  

Figure 2. Schematic diagram of experimental procedures.

2. Results and Discussion

Compound 1 was isolated as a light green powder. Its molecular formula was deter-
mined as C20H33ClO3 based on a high-resolution electrospray ionization mass spectrometry
(HRESIMS) peak at m/z 379.2012 [M+Na]+ (calcd for C20H33ClO3Na, 379.2010). The iso-
topic pattern at m/z 381.1996 [M+Na]+, with a ratio of 3:1, suggested the presence of a
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chlorine atom in the molecule (Figure S2). The 1H NMR data (Table 1 and Figure S3) showed
the signals of four olefinic protons at δH 6.33 (1H, dd, J = 17.4, 10.8 Hz, H-14), 5.58 (1H, t,
J = 6.9 Hz, H-12), 5.06 (1H, dd, H-15b), and 4.87 (1H, overlapped, H-15a); two oxymethines
at δH 3.82 (1H, m, H-2) and 3.81 (1H, overlapped, H-7); ten methylenes at δH 0.81–3.60;
two methines at δH 0.88 (1H, dd, J = 12.4, 1.8 Hz, H-5) and 1.50 (1H, dd, J = 6.3, 2.5 Hz,
H-9); and four methyl groups at δH 0.93–1.79. The 13C NMR data (Table 1 and Figure S4)
and heteronuclear single quantum coherence (HSQC) NMR data revealed the presence
of four olefinic carbons at δC 142.9 (C-14), 136.5 (C-12), 133.8 (C-13), and 110.4 (C-15); one
oxygenated quaternary carbon at δC 77.9 (C-8); two oxymethines at δC 71.0 (C-7) and 65.1
(C-2); two methines at δC 53.1 (C-5) and 53.0 (C-9); two quaternary carbons at δC 41.2 (C-10)
and 35.5 (C-4); five methylenes at δC 24.2–51.6; and four methyls at δC 12.0–34.1 (Figure S5).

Table 1. 1H (600 MHz) and 13C NMR (150 MHz) data for 1–3 in CD3OD.

No
1 2 3

δH, Mult (J in Hz) δC, Type δH, Mult (J in Hz) δC, Type δH, Mult (J in Hz) δC, Type

1a 0.81, dd (12.0, 2.0) 49.9, CH2 0.90, ol 41.1, CH2 0.91, ol 41.0, CH2
1b 2.03, m 1.72, ol 1.73, ol
2a 3.82, m 65.1, CH 1.42, ol 19.4, CH2 1.41, ol 19.4, CH2
2b 1.64, m 1.63, m
3a 1.12, m 51.6, CH2 1.21, m 43.0, CH2 1.19, m 43.1, CH2
3b 1.75, ol 1.42, ol 1.40, ol
4 35.5, C 34.1, C 34.2, C
5 0.88, dd (12.4, 1.8) 53.1, CH 0.90, ol 53.6, CH 0.89, ol 57.0, CH
6a 1.61, dd (12.4, 11.9) 27.4, CH2 1.61, m 27.6, CH2 1.56, m 18.9, CH2
6b 1.75, ol 1.73, ol 1.61, m
7a 3.81, ol 71.0, CH 3.79, dd (11.6, 5.1) 71.1, CH 1.71, ol 37.9, CH2
7b 1.80, m
8 77.9, C 78.0, C 75.7, C
9 1.50, dd (6.3, 2.5) 53.0, CH 1.46, dd (6.4, 2.5) 53.1, CH 1.33, dd (6.1, 2.6) 56.1, CH
10 41.2, C 39.7, C 40.1, C

11a 2.19, dd (16.7, 4.8) 24.2, CH2 2.14, dd (17.6, 4.3) 24.2, CH2 2.13, dd (18.0, 4.4) 24.4, CH2
11b 2.52, m 2.47, m 2.38, m
12 5.58, t (6.9) 136.5, CH 5.56, t (6.8) 136.9, CH 5.48, t (6.8) 137.1, CH
13 133.8, C 133.5, C 133.6, C
14 6.33, dd (17.4, 10.8) 142.9, CH 6.33, dd (17.4, 10.8) 142.9, CH 6.33, dd (17.4, 10.7) 142.9, CH

15a 4.87, ol 110.4, CH2 4.87, d (10.7) 110.3, CH2 4.87, ol 110.4, CH2
15b 5.06, d (17.4) 5.05, d (17.4) 5.05, d (17.4)
16 1.79, s 12.0, CH3 1.76, s 12.0, CH3 1.76, s 12.0, CH3

17a 3.28, d (10.8) 45.6, CH2 3.27, d (10.7) 45.7, CH2 3.23, d (10.9) 53.4, CH2
17b 3.60, d (10.8) 3.59, d (10.7) 3.38, d (10.9)
18 0.93, s 23.1, CH3 0.89, s 22.3, CH3 0.87, s 22.2, CH3
19 0.99, s 34.1, CH3 0.93, s 33.9, CH3 0.90, s 34.0, CH3
20 1.06, s 16.8, CH3 1.01, s 15.8, CH3 1.03, s 15.8, CH3

‘’ol” means overlapped.

The planar structure of 1 was elucidated by analyses of 1H-1H correlation spectroscopy
(COSY) and heteronuclear multiple bond correlation (HMBC) NMR data (Figure 3,
Figures S6 and S7). The 1H-1H COSY spectrum exhibited four spin systems: H2-1/H-2/H2-3,
H-5/H2-6/H-7, H-9/H2-11/H-12, and H-14/H2-15. The HMBC correlations, from H2-3 to C-4
and C-5, and from H3-20 to C-1, C-5, and C-10, confirmed the connectivity of ring A. In addition,
the HMBC correlations of H2-6/C-8, H2-11b/C-8, and H3-20/C-9 elucidated a decalin system
of ring B, fused with ring A at C-5 and C-10. The HMBC correlations, from H-14 to C-12 and
C-16, and from H3-16 to C-12 and C-14, identified a partial structure of the chain from C-12
to C-16 with olefins and the connection of ring B. Further, the HMBC correlations from H3-17
to C-8, with downfield-shifted carbon at C-17 (δC 45.6), confirmed the location of the chlorine
atom. Thus, the gross structure of 1 was established, as shown in Figure 3.
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The relative configuration of 1 was elucidated by the analysis of nuclear Overhauser
effect spectroscopy (NOESY) data (Figure 3 and Figure S8). The strong NOESY correlation
of H-12 with H-14 confirmed the E-configuration of ∆12. The NOESY correlations of H-9
with H-5 and H-7, and between H-5 and H-7, indicated these protons have an α-orientation,
while the NOESY correlations of H-20 with H-2, H-11a, and H-18, and between H-2 and
H-18 suggested the β-orientation of these protons. The NOESY correlation of H-17a with
H-9 and H-11b and the lack of NOESY cross-peaks between H-17 and H-20 indicated
that H-17 has an α-orientation. Additionally, these assignments were verified by previous
research on the total synthesis of cyslabdan [21]. Therefore, the relative configuration of
the chiral centers at C-2, C-5, C-7, C-8, C-9, and C-10 were determined as 2S*, 5S*, 7S*, 8R*,
9R*, and 10S*. The absolute configuration of 1 was established by the modified Mosher’s
method. Comparing 1H NMR data of (S)- and (R)-di-MTPA esters of 1 (1a and 1b, Figure 4
and Figures S9–S15), the absolute configuration of the chiral centers at C-2 and C-7 was
determined as 2S, 7S. Consequently, the absolute configuration of 1 was confirmed as 2S,
5S, 7S, 8R, 9R, and 10S, and 1 was named chlorolabdan A.

Compound 2 was isolated as a light green powder. Its molecular formula of C20H33ClO2
was determined based on an HRESIMS peak at m/z 363.2057 [M+Na]+ (calcd for C20H33ClO2Na,
363.2061), and its isotopic peak at m/z 365.2044 [M+Na]+, with a ratio of 3:1, revealed the
presence of a chlorine atom (Figure S16). The 1H and 13C NMR spectra of 2 (Figures S17 and
S18) were almost consistent with those of 1, though the chemical shifts of 2 at C-2 (δH 1.42/δC
19.4 for 2 and δH 3.82/δC 65.1 for 1) were significantly different from those of 1. Accordingly,
a methylene was assigned at C-2 in 2 instead of the oxymethine in 1. By detailed analysis of
the HSQC, COSY, and HMBC data of 2 (Figures S19–S21), the planar structure of 2 was also
elucidated, as shown in Figure 3. The interpretation of NOESY data (Figure S22) indicated
that the relative configuration of 2 was similar to that of 1. The absolute configuration of 2
was elucidated by the modified Mosher’s method. By comparing 1H NMR data of (S)- and
(R)-MTPA esters of 2 (2a and 2b, Figure 4 and Figures S23–S29), the absolute configuration of 2
was determined as 5S, 7S, 8R, 9R, and 10S, and 2 was given the name of chlorolabdan B.
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Compound 3 was isolated as a colorless solid. Its molecular formula of C20H33ClO
was determined based on an HRESIMS peak at m/z 325.2277 [M+H]+ (calcd for C20H34ClO,
325.2293), requiring four degrees of unsaturation. The isotopic pattern at m/z 327.2480
[M+H]+, with a ratio of 3:1, suggested the presence of a chlorine atom (Figure S30). The 1H
and 13C NMR data of 3 (Figures S31 and S32) were almost identical to those of 2, except for
the chemical shifts at C-7 (δH 1.71, 1.80/δC 37.9 for 3 and δH 3.79/δC 71.1 for 2) indicating
the oxymethine at C-7 of 2 was changed to a methylene in 3. The planar structure of 3 was
established by detailed analysis of the HSQC, COSY, and HMBC data (Figures S33–S35),
and the relative structure of 3 was determined by the analysis of NOESY data (Figures S36
and S37). The absolute configuration of 3 was proposed by comparing the optical rotation
value of 3 with those of 1 and 2 and those of the literature. The optical rotation value of 3
was [a]25

D +19.9 (c 0.1, MeOH), which was consistent with those of 1, 2 ([a]25
D +19.9 for 1 and

+29.9 for 2), and those of other analogs in the literature [21–24]. Consequently, the absolute
configuration of 3 was determined as 5S, 8R, 9R, and 10S, and 3 was named chlorolabdan C.

Compound 4 was isolated as a colorless solid with a molecular formula of C20H32O
by an HRESIMS peak at m/z 289.2533 [M+H]+ (calcd for C20H33O, 289.2526, Figure S38).
An unsaturation number of five degrees was calculated for 4, which is one more than 3,
suggesting the presence of one more ring in 4 compared to 3. The 1H and 13C NMR data of
4 (Figures S39 and S40) were similar to those of 3, except for the proton signals at C-17 (δH
2.26/2.56 for 4 and δH 3.23/3.38 for 3). It was suggested that the chloromethylene at C-17
of 3 was replaced by an epoxy carbon in 4, which was also supported by the HRESIMS
data and unsaturation number. By the analysis of HSQC, COSY, HMBC, and NOESY data
of 4 (Figures S41–S44), the planar and relative structures were established as shown in
Figure 5. The absolute configuration of 4 was proposed as 5S, 7S, 8R, 9R, and 10S based on
comparing the optical rotation value of 4 ([a]25

D +16.6) with those of 1–3 ([a]25
D +19.9 for 1,

+29.9 for 2, and +19.9 for 3). This assignment agreed with a previously reported derivative
(6) in the literature [25], and 4 was named epoxylabdan A (Table 2).
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Table 2. 1H (600 MHz) and 13C NMR (150 MHz) data for 4 and 5 in CD3OD.

No
4 5

δH, Mult (J in Hz) δC, Type δH, Mult (J in Hz) δC, Type

1a 1.02, td (13.0, 3.4) 40.3, CH2 0.90, ol 49.6, CH2
1b 1.84, ol 2.09, ol
2a 1.46, m 19.7, CH2 3.85, m 65.2, CH
2b 1.64, m
3a 1.23, td (13.3, 3.8) 43.1, CH2 1.16, d (13.2) 51.6, CH2
3b 1.43, m 1.77, m
4 34.4, C 35.7, C
5 1.10, dd (12.4, 2.6) 56.2, CH 1.13, dd (12.2, 2.0) 53.3, CH
6a 1.61, m 21.2, CH2 1.53, m, CH2 30.5, CH2
6b 1.71, m 1.97, m
7a 1.31, m 37.1, CH2 3.72, dd (11.7, 5.0) 70.3, CH
7b 1.97, td (13.7, 5.0)
8 59.3, C 60.9, C
9 1.58, m 54.4, CH 1.58, m 53.2, CH
10 40.9, C 42.2, C

11a 1.73, m 21.6, CH2 1.86, m 21.7, CH2
11b 2.04, dd (16.7, 5.4) 2.12, m
12 5.34, t (6.8) 136.2, CH 5.36, t (6.8) 135.5, CH
13 134.7, C 135.1, C
14 6.32, dd (17.4, 10.8) 142.5, CH 6.34, dd (17.4, 10.7) 142.4, CH

15a 4.88, ol 110.7, CH2 4.89, ol 110.9, CH2
15b 5.05, d (17.4) 5.08, d (17.4)
16 1.70, s 12.1, CH3 1.73, s 12.2, CH3

17a 2.26, d (4.3) 50.0, CH2 2.41, d (4.8) 45.0, CH2
17b 2.56, d (4.3) 2.81, d (4.8)
18 0.89, s 22.2, CH3 0.94, s 23.0, CH3
19 0.92, s 34.0, CH3 1.00, s 34.0, CH3
20 0.93, s 15.2, CH3 0.96, s 16.3, CH3

Compound 5 was isolated as a colorless solid. Its molecular formula of C20H32O3 was
determined based on an HRESIMS peak at m/z 343.2238 [M+Na]+ (calcd for C20H32O3Na,
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343.2244, Figure S45). The interpretation of 1D and 2D NMR data (HSQC, COSY, and
HMBC) revealed that the chloromethylene at C-17 of 1 was changed to an epoxy carbon
in 5, as shown in Figure 5 and Figure S46–S51. The relative configuration of 5 was consistent
with those of 1–4 based on NOSEY data. The absolute configuration of 5 was also assigned
as 2S, 5S, 8R, 9R, and 10S based on comparing the optical rotation value of 5 ([a]25

D +26.4)
with those of 1 and 4 ([a]25

D +19.9 for 1 and +16.6 for 4), and 5 was given the name of
epoxylabdan B.

Bioactivities

Compounds 1–6 were evaluated for their antimicrobial properties against three Gram-
positive bacteria, Bacillus subtilis (KCTC 1021), Micrococcus luteus (KCTC 1915), and Staphy-
lococcus aureus (KCTC 1927), and three Gram-negative bacteria, Escherichia coli (KCTC
2441), Salmonella enterica serovar Typhimurium (KCTC 2515), and Klebsiella pneumoniae
(KCTC 2690). In previous studies, the labdane derivatives showed antibacterial activities
against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA),
Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Micrococcus luteus [23,26,27], and
some of the strains were selected for the antimicrobial test to compare antibacterial activ-
ities of 1–6 with known compounds. As a result, 2 displayed weak MIC values against
Gram-positive bacteria ranging from 4 to 8 µg/mL (Table 3), and other compounds did
not significantly show an inhibition of the growth. Additionally, none of the compounds
exhibited any activity against Gram-negative bacteria. Comparing our results with those
of the previous studies [23,26,27], the MIC values of the new compounds were not signifi-
cantly different from those of the previous ones. It is noteworthy that the new labdanes
have chloromethylene moiety at C-8 (1–3). However, the chlorine atom may not serve a
critical role in their activities.

Table 3. Antibacterial activity of 1–6.

Strains
MIC (µg/mL)

1 2 3 4 5 6 Kanamycin

Bacillus subtilis >128 4 32 >128 >128 32 0.5
Micrococcus luteus >128 8 >128 >128 >128 >128 0.5

Staphylococcus aureus >128 8 >128 >128 >128 >128 1
Kanamycin as a positive control. MIC values are minimum inhibitory concentrations.

Due to the limited amount of samples, only compounds 1, 2, and 4 were evaluated for
their cytotoxicity against a normal cell line (RPMI-1788, B lymphocytes) and against seven
blood cancer cell lines which are the most common cancer types in Korea: HL-60 (acute
myelogenous leukemia, AML), Raji (Burkitt’s lymphoma), WSU-DLCL2 (diffuse large B
cell lymphoma, DLBCL), NALM6 C. G5 (B cell acute lymphocytic leukemia, B-ALL), K562
(chronic myelogenous leukemia, CML), RPMI-8402 (T cell acute lymphocytic leukemia,
T-ALL), and U266 (multiple myeloma). The tested compounds displayed cytotoxic activity
against some standard cell lines, with IC50 values ranging from 1.2 to 22.5 µM lines (Table 4
and Table S1), while the compounds did not show activities against K562, RPMI-8402, U266,
and RPMI-1788 cell lines (IC50: >30 µM). Although the tested compounds showed weak
anticancer activities compared with previous studies [28–30], it is interesting that 1 showed
more selective activity than 2 and 4.

Compounds 1, 2, and 4 were further evaluated for their cytotoxicity against six
solid cancer cell lines and a normal cell line: ACHN (renal), MDA-MB-231 (breast), PC-3
(prostate), NUGC-3 (stomach), NCI-H23 (lung), HCT-15 (colon), and MRC-9 (lung fibrob-
last). However, none of the compounds were cytotoxic against the six solid cancer cell lines
or the normal cell line.
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Table 4. Growth inhibition (IC50, µM) of 1, 2, and 4 against blood cancer cell lines.

Cell Lines
IC50 (µM)

1 2 4 Doxorubicin

HL-60 >30 >30 >30 0.018
Raji 15.520 3.406 17.110 0.011

WSU-DLCL2 >30 1.182 14.170 0.006
NALM6 C. G5 >30 22.460 >30 0.003

Doxorubicin as a positive control. IC50 values are the concentration corresponding to 50% cell growth inhibition.
3 and 5 were not tested due to the limited amount of samples.

3. Materials and Methods
3.1. General Experimental Procedures

The 1D and 2D NMR spectra were acquired using a Bruker 600 MHz spectrometer
(Bruker BioSpin GmbH, Rheinstetten, Germany). UV-VIS spectra were measured with
a Shimadzu UV-1650PC spectrophotometer (Shimadzu Corporation, Kyoto, Japan). IR
spectra were measured using a JASCO FT/IR-4100 spectrophotometer (JASCO Corporation,
Tokyo, Japan). High-resolution ESIMS data were obtained with a Sciex X500R Q-TOF
spectrometer (Sciex, Framingham, MA, USA). Low-resolution ESIMS data were acquired
using an ISQ EM mass spectrometer (Thermo Fisher Scientific Korea Ltd., Seoul, Republic
of Korea). Optical rotations were measured using a Rudolph analytical Autopol III S2
polarimeter with a sodium D line at 589 nm and 10 mm path length (Rudolph Research
Analytical, Hackettstown, NJ, USA). HPLC experiments were carried out using a BLS-Class
pump (Teledyne SSI, Inc., State College, PA, USA) on an ODS column (YMC-Pack-ODS-A,
250 × 10 mm i.d, 5 µm, Kyoto, Japan) with a Shodex RI-201H refractive index detector
(Shoko Scientific Co., Ltd., Yokohama, Japan).

3.2. Isolation and Identification of Strain 2210JJ-087

Marine sediment samples were collected at Sehwa Beach, Jeju Island, in the Republic
of Korea during expeditions in October 2022. On the seashore, the sediments were put
into sterile 50 mL conical tubes and kept at 5 ◦C while returning to the laboratory. Then,
selective heating pretreatment was carried out to eliminate unwanted microorganisms.
Collected sediment samples weighing 1 g were placed in a sterile plate and kept in an oven
at 60 ◦C for 30 min. After the heating pretreatment, 0.1 g of sediment was serially diluted to
10−1, 10−2, and 10−3 by sterile seawater, and each aliquot (50 µL) was spread on Bennett’s
(BN) agar, Actinomycetes Isolation Agar (AIA), and Humic acid vitamin (HV) agar. The
plates were stored in a BOD (Bio-Oxygen Demand) incubator at 28 ◦C for 7~28 days until
colonies were visible. After incubation, the selected colonies were transferred onto new
BN agar plates. Purification was carried out several times until single pure colonies could
be seen. Strain 2210JJ-087 was isolated from HV agar and incubated for 7 days. The strain
was identified as Streptomyces griseorubens based on morphological characteristics and 16S
rRNA gene sequence analysis (GenBank accession number OR755843).

3.3. Fermentation of Strain 2210JJ-087, Extraction, and Isolation of Metabolites

The seed and mass cultures of strain 2210JJ-087 were carried out using the BN medium
(1% glucose, 0.2% tryptone, 0.1% yeast extract, 0.1% beef extract, 0.5% glycerol, sea salts
32 g/L). A single colony of the strain from an agar plate was inoculated aseptically into
a 100 mL conical flask filled with 50 mL of BN broth medium and incubated at 28 ◦C for
7 days on a rotary shaker at 140 rpm. The aliquot (25 mL) was inoculated aseptically into a
2 L flask containing 1 L of BN broth, and the strain was incubated at 28 ◦C for 7 days on a
rotary shaker at 120 rpm. The seed culture broth was transferred to a 100 L fermenter filled
with 70 L of BN broth and incubated at 28 ◦C for 14 days. The mass culture broth (70 L) was
harvested and centrifuged at 60,000 rpm, and the supernatant was extracted twice with an
equal volume of ethyl acetate (EtOAc, 70 L × 2). The EtOAc layer was evaporated to yield
a crude extract (10.7 g). The crude extract was applied to ODS column chromatography
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followed by a stepwise gradient elution with methanol (MeOH) in H2O (1:4, 2:3, 3:2, 4:1, and
100:0, v/v). The fraction eluted with MeOH/H2O (4:1) was purified by a semi-preparative
reversed-phase HPLC (YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm, flow rate 2.0 mL/min,
RI detector) using an isocratic elution of 60% MeOH in H2O to yield 5 (0.7 mg, tR = 36 min)
and 1 (2.4 mg, tR = 56 min). The fraction eluted with MeOH/H2O (100:1) was purified by a
semi-preparative reversed-phase HPLC using an isocratic elution of 85% MeOH in H2O to
yield 6 (4.0 mg, tR = 36 min), 2 (3.9 mg, tR = 52 min), 3 (1.0 mg, tR = 82 min), and 4 (1.4 mg,
tR = 98 min).

Chlorolabdan A (1): a light green powder; [a]25
D +19.9 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 232 (2.94) nm; IR νmax 3430, 2827, 2355, 1642, 1436 cm−1; HRESIMS m/z 379.2012,
[M+Na]+, calcd for [C20H33ClO3Na]+, 379.2010, m/z 343.2237, [M-HCl+Na]+, m/z 325.2278,
[M-HCl-H2O+Na]+; for 1H NMR (CD3OD, 600 MHz), see Table 1; for 13C NMR (CD3OD,
150 MHz), see Table 1.

Chlorolabdan B (2): a light green powder; [a]25
D +29.9 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 232 (2.96) nm; IR νmax 3434, 2837, 2365, 1647, 1426 cm−1; HRESIMS m/z 363.2057,
[M+Na]+, calcd for C20H33ClO2Na 363.2061, m/z 327.2287, [M-HCl+Na]+; for 1H NMR
(CD3OD, 600 MHz), see Table 1; for 13C NMR (CD3OD, 150 MHz), see Table 1.

Chlorolabdan C (3): a colorless solid; [a]25
D +19.9 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 232 (2.92) nm; IR νmax 3433, 2907, 1597, 1438 cm−1; HRESIMS m/z 325.2277, [M+H]+,
calcd for C20H34ClO 325.2293; for 1H NMR (CD3OD, 600 MHz), see Table 1; for 13C NMR
(CD3OD, 150 MHz), see Table 1.

Epoxylabdan A (4): a colorless solid; [a]25
D +16.6 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 232 (2.82) nm; IR νmax 3415, 2905, 2351, 1640, cm−1; HRESIMS m/z 289.2533, [M+H]+,
calcd for C20H33O 289.2526; for 1H NMR (CD3OD, 600 MHz), see Table 1; for 13C NMR
(CD3OD, 150 MHz), see Table 1.

Epoxylabdan B (5): a colorless solid; [a]25
D +26.4 (c 0.1, MeOH); UV (MeOH) λmax (log ε)

232 (2.76) nm; IR νmax 3430, 2893, 2350, 1642, 1136, cm−1 HRESIMS m/z 343.2238, [M+Na]+,
calcd for C20H32O3Na 343.2244; for 1H NMR (CD3OD, 600 MHz), see Table 1; for 13C NMR
(CD3OD, 150 MHz), see Table 1.

Compound 6: a white powder; [a]25
D +23.3 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 232

(2.81) nm; IR νmax 3412, 2923, 2363, 1618, 1163, cm−1; LRESIMS m/z 327.30, [M+Na]+, Figure
S52; for 1H NMR (CD3OD, 600 MHz), see Figure S53; for 13C NMR (CD3OD, 150 MHz),
see Figure S54.

3.4. Preparations of the MTPA Ester of 1 and 2 Using the Modified Mosher’s Method

(R)-MTPA chloride (5 µL) was added to a solution of 1 (0.2 mg) in anhydrous pyridine
(0.5 mL) to obtain the (S)-di-MTPA ester of 1 (1a). The mixture was stirred at room
temperature for 12 h. The mixture was dried under an N2 gas steam at 38 ◦C and extracted
with EtOAc. The mixture was washed with 0.1 M HCl, 0.1 M NaHCO3, and 0.1 M NaCl
solution. The mixture was evaporated, and 1H, HSQC, and COSY NMR spectra of 1a were
recorded to obtain the key 1H NMR data around stereocenters. Using the same procedure
with (S)-MTPA chloride, (R)-di-MTPA ester of 1 (1b) was prepared, and (R)-MTPA ester of
2 (2b) and (S)-MTPA ester of 2 (2a) were also obtained.

(S)-di-MTPA esters of 1 (1a): δH 5.55 (H-12), 5.29 (H-2), 5.20 (H-7), 3.43 (H-17b), 3.33 (H-
17a), 2.42 (H-11b), 2.23 (H-11a), 2.16 (H-1b), 1.98 (H-6b), 1.77 (H-3b), 1.70 (H-6a), 1.59 (H-9),
1.32 (H-3a), 1.09 (H-1a), 1.03 (H-19), 0.97 (H-18)

(R)-di-MTPA esters of 1 (1b): δH 5.46 (H-12), 5.30 (H-2), 5.20 (H-7), 3.16 (H-17b),
2.79 (H-17a), 2.36 (H-11b), 2.15 (H-11a), 2.06 (H-1b), 2.04 (H-6b), 1.90 (H-3b), 1.86 (H-6a),
1.52 (H-9), 1.42 (H-3a), 0.96 (H-1a), 1.07 (H-19), 1.02 (H-18)

(S)-MTPA esters of 2 (2a): δH 5.54 (H-12), 5.20 (H-7), 3.37 (H-17b), 3.29 (H-17a), 2.45 (H-11b),
2.13 (H-11a), 1.96 (H-6b), 1.67 (H-6a), 1.48 (H-9), 1.04 (H-5), 0.96 (H-19), 0.86 (H-18)

(R)-MTPA esters of 2 (2b): δH 5.50 (H-12), 5.19 (H-7), 3.13 (H-17b), 2.78 (H-17a), 2.39 (H-11b),
2.10 (H-11a), 2.00 (H-6b), 1.84 (H-6a), 1.46 (H-9), 1.05 (H-5), 0.97 (H-19), 0.89 (H-18)



Int. J. Mol. Sci. 2024, 25, 3311 10 of 12

3.5. Antibacterial Assay

Antibacterial assay was conducted in a 96-well plate (SPL Life Sciences, Pocheon, Re-
public of Korea) by applying the broth microdilution method described by the Clinical and
Laboratory Standards Institute [31]. Standard bacteria, KCTC 1021 (Bacillus subtilis), KCTC
1915 (Micrococcus luteus), KCTC 1927 (Staphylococcus aureus), KCTC 2441 (Escherichia coli),
KCTC 2515 (Salmonella enterica serovar Typhimurium), and KCTC 2690 (Klebsiella pneumoniae),
were purchased from Korean Collection for Type Cultures (KCTC, Daejon, Republic of Korea).
The bacteria were incubated in Mueller Hinton Broth (MHB) for a day. Compounds (1–6)
were dissolved in dimethyl sulfoxide (DMSO), and a serial twofold dilution of the compounds
was prepared with MHB (100 µL) in the plate well in the range of 0.5–256 (µg/mL). After that,
the broth containing the bacteria (100 µL) was added to each well, and the final concentration
of bacteria was adjusted to 5 × 105 CFU/mL by comparison with the McFarland standard.
Growth-control well and sterility-control well were also prepared, and kanamycin was used
as a positive control. The plates were incubated for 20 h at 37 ◦C, and MIC was determined by
the lowest concentration at which the growth of bacteria was not visible.

3.6. CellTiter-Glo (CTG) and Sulforhodamine B (SRB) Assay for Cytotoxicity Testing

The cytotoxicity test was evaluated using CTG luminescent cell viability and SRB
assay according to the published procedures [32,33]. Briefly, the blood cancer cell lines and
a normal cell line were purchased from the American Type Culture Collection (Manassas,
VA, USA) (HL-60, acute myelogenous leukemia, Raji: Burkitt’s lymphoma, NALM6 C.
G5: B cell acute lymphocytic leukemia, K562: chronic myelogenous leukemia, U266:
multiple myeloma, and RPMI-1788: B lymphocytes) and the DSMZ-German Collection
of Microorganisms and Cell Cultures (WSU-DLCL2: diffuse large B cell lymphoma and
RPMI-8402: T cell acute lymphocytic leukemia). The cell lines were incubated in RPMI
1640 supplemented with 10% fetal bovine serum, penicillin (100 IU/mL), and streptomycin
(100 µg/mL) at 37 ◦C under a humidified atmosphere of 5% CO2, and the passage of
cells was between 12 and 8. The cell lines were prepared in an opaque-walled 96-well
plate (8 × 103 cells/well), and compounds (1, 2, 4, and doxorubicin as positive control)
with 0.1% DMSO were added to each well and incubated for 48 h. Then, the cell cultures
were treated with 100 µL of CellTiter-Glo Reagent (Promega, Madison, WI, USA) and
maintained for 10 min to obtain the luminescence signal. GloMax-Multi Detection System
(Promega, Madison, WI, USA) was used for measuring. The solid cancer cell lines and the
normal cell line were purchased from the American Type Culture Collection (Manassas,
VA, USA) (ACHN: renal, MDA-MB-231: breast, PC-3: prostate, NCI-H23: lung, HCT-15:
colon, and MRC-9: lung fibroblast) and the Japanese Cancer Research Resources Bank
(JCRB) (NUGC-3: stomach). The cell lines were incubated in RPMI 1640 supplemented
with 10% fetal bovine serum, penicillin (100 IU/mL), and streptomycin (100 µg/mL) at
37 ◦C under a humidified atmosphere of 5% CO2, and the passage of cells was between
12 and 18. Then, cells were seeded in the 96-well plate (8 × 103 cells/well), and compounds
(1, 2, 4, and adriamycin as positive control) with 0.1% DMSO were added to each well. After
incubation for 48 h, the cell cultures were fixed using 50% trichloroacetic acid (50 µg/mL)
and were dyed with 0.4% SRB in 1% acetic acid. Unbound dye was washed using 1% acetic
acid, and protein-bound dye was collected with 10 mM Tris base (pH 10.5) to measure the
optical density. Absorbance was measured at 540 nm with a VersaMax microplate reader
(Molecular Devices, Sunnyvale, CA, USA). GraphPad Prism 4.0 (GraphPad, San Diego, CA,
USA) was used to calculate IC50 value.

4. Conclusions

Six labdane-type diterpenoids were isolated from the marine-derived Streptomyces
griseorubens 2210JJ-087, including five new compounds (1–5), namely, chlorolabdans A–C,
along with epoxylabdans A–B. The gross structures of the new compounds were elucidated
by detailed analysis of HR-ESIMS, 1D, and 2D NMR data. The absolute configurations of
the compounds were determined by the modified Mosher’s method and comparing their
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optical rotation values with those of the co-isolated derivatives and other analogs in the
literature. Among the new compounds, 2 exhibited weak antimicrobial activity against
Gram-positive bacteria (Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus) with
MIC values ranging from 4 to 8 µg/mL. Additionally, 1, 2, and 4 were evaluated for their
cytotoxicity against seven blood cancer cell lines, six solid cancer cell lines, and two normal
cell lines. The tested compounds displayed cytotoxicity against some blood cancer cell lines
with IC50 values ranging from 1.2 to 22.5 µM, and 1 showed cytotoxicity against only the Raji
cell line. The results suggest that labdane may serve as a lead structure for developing new
anticancer agents targeting certain cancer cell lines and expanded biochemical diversities
of labdane-type diterpenoids occurring in nature. However, further studies on the semi-
synthesis of their derivatives are required to optimize their pharmacological properties.
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