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Abstract: Azacitidine, a DNA methylation inhibitor, is employed for the treatment of acute myeloid
leukemia (AML). However, drug resistance remains a major challenge for effective azacitidine
chemotherapy, though several studies have attempted to uncover the mechanisms of azacitidine
resistance. With the aim to identify the mechanisms underlying acquired azacitidine resistance in
cancer cell lines, we developed a computational strategy that can identify differentially regulated
gene networks between drug-sensitive and -resistant cell lines by extending the existing method,
differentially coexpressed gene sets (DiffCoEx). The technique specifically focuses on cell line-specific
gene network analysis. We applied our method to gene networks specific to azacitidine sensitivity
and identified differentially regulated gene networks between azacitidine-sensitive and -resistant
cell lines. The molecular interplay between the metallothionein gene family, C19orf33, ELF3, GRB7,
IL18, NRN1, and RBM47 were identified as differentially regulated gene network in drug resistant
cell lines. The biological mechanisms associated with azacitidine and AML for the markers in the
identified networks were verified through the literature. Our results suggest that controlling the
identified genes (e.g., the metallothionein gene family) and “cellular response”-related pathways
(“cellular response to zinc ion”, “cellular response to copper ion”, and “cellular response to cadmium
ion”, where the enriched functional-related genes are MT2A, MT1F, MT1G, and MT1E) may provide
crucial clues to address azacitidine resistance in patients with AML. We expect that our strategy
will be a useful tool to uncover patient-specific molecular interplay that provides crucial clues for
precision medicine in not only gastric cancer but also complex diseases.

Keywords: molecular interplay; acute myeloid leukemia; anti-cancer drug resistance; metallothionein
gene family

1. Introduction

Acute myeloid leukemia (AML), a type of blood cancer, affects the bone marrow and
progresses rapidly if untreated. During the last two decades, hypomethylating agents
including azacitidine have been the mainstay of treatment for AML [1]. In particular, azaci-
tidine is the recommended front-line treatment for older patients with AML [2]. However,
azacitidine chemotherapy is not always effective due to the drug resistance, which threatens
patient survival. Numerous studies have attempted to uncover the mechanisms of azaciti-
dine resistance in AML [3–6]. Sripayap et al. [3] generated two azacitidine-resistant cell
lines and uncovered genetic disparities between the resistant cell lines. They revealed that
the resistance arises from negating azacitidine-mediated activation of apoptosis signaling
and reestablishing G2/M checkpoint. Minařík et al. [6] developed a model of 5-azacytidine
resistance from myelodysplastic syndromes (MDS) /AML cell lines and observed the
deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase
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signaling when investigating mRNA expression and DNA variants of the azacytidine
resistant phenotype.

Although many previous studies were conducted to uncover the azacitidine resistance
mechanism based on differential gene expression analysis [6,7], the complex mechanisms
of drug resistance cannot be understood by perturbation of a single gene, because the drug
resistance is caused by abnormalities in complex molecular networks, which should be
considered. The mechanisms underlying acquired drug resistance were poorly understood,
making drug resistance a major problem.

Recently, gene regulatory network analysis has become one of the most powerful strate-
gies to uncover the biological mechanisms of diseases and has been widely used in studies
on the identification of complex disease systems and drug-response genes, etc. [8–11]. In
this study, we aimed to uncover the mechanisms of acquired azacitidine resistance based on
gene regulatory network analysis, especially in a cell line-specific gene network. In general,
the gene regulatory network consists of more than 10,000 genes and has a considerably
complex structure with a huge number of edges. Thus, interpretation of the network and
marker identification based on a complex gene regulatory network remains a challenge.
The existing studies have focused on the well-known markers and then uncovered the
molecular interplay surrounding the markers, because the comprehensive analysis of the
huge and complex gene regulatory networks was impossible. We consider differentially
regulated gene network identification to be one of the approaches for interpreting a com-
plex gene network. Recently, various computational methods for differential gene network
analysis have been developed for a range of research purposes. Grimes et al. [12] developed
a method for differential network analysis that measures dissimilarity between networks
based on the differential connectivity of a set. Tu et al. [13] also developed a method to
measure dissimilarity between gene networks that simultaneously considers the changes
in gene interactions and changes in expression levels. Xie et al. [14] proposed a differential
network flow method that measures the distribution differences in network flow for each
gene in two networks. A computational strategy to detect a statistically significant network
was developed, where the generalized Hamming distance was used to evaluate the topo-
logical difference between networks [15]. Park et al. [16] developed a statistical method for
differentially regulated gene network identification based on comprehensive information
of the gene network structure and extended the method to cell line characteristic-specific
gene network analysis.

To reveal the crucial markers and their molecular interplay that characterize azacitidine
resistance cell lines, we extend DiffCoEx for cell line characteristic-specific gene network
analysis and developed a computational strategy for differential gene network identification
based on the topological overlap. The developed method measures the dissimilarity
network based on a statistic computed with an edge size and node similarity (neighbors
of genes) based on the topological overlap, while the CIdrgn [16] is constructed using the
sum of several statistics; thus, normalization should be performed, because the statistics
have different scales. We applied our method to the publicly accessible DepMap database
(https://depmap.org/portal/ (accessed on 4 August 2022)) and estimated the azacitidine
sensitivity-specific gene networks that vary according to the drug sensitivity values of
cell lines. We then identified the differentially regulated gene networks between drug-
sensitive and -resistant cell lines. The gene network comprising RBM47, ELF3, GRB7, and
the strong suppression of NRN1 by C19orf33 were identified as azacitidine resistance-
specific molecular interactions. Among the identified networks, the interplay between the
metallothionein gene family was observed in both drug-sensitive and -resistant cell lines,
while the network showed different edge strength between drug-sensitive and -resistant
cell lines. The pathways related to “cellular responses” (i.e., “cellular response to metal ion”,
“cellular response to zinc ion, “ cellular response to copper ion”, and “cellular response to
cadmium ion ”, where the enriched functional-related genes are MT2A, MT1F, MT1G, and
MT1E) were identified as enriched pathways related to the differentially regulated gene
network by using GO term pathway analysis. We validated the identified markers through
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a literature survey and found that more than half of the identified genes were considered
as markers of azacitidine and AML.

The conclusions of our analysis are that 1. the gene network between RBM47, ELF3,
and GRB7 is an azacitidine resistance-specific characteristic; 2. the molecular interplay of the
metallothionein gene family is a crucial marker for uncovering the mechanism of azacitidine sen-
sitivity in cancer cell lines. Our results suggest that suppression and/or activation of the
identified genes and “cellular response”-related pathways may be a key to uncovering the
mechanisms of acquired azacitidine resistance in patients with AML.

2. Results
Differentially Regulated Gene Network Identification between Azacitidine-Resistant and -Sensitive
Cell Lines

We applied the developed method, which will be introduced in Section 4, for differen-
tially regulated gene network identification on the DepMap database (https://depmap.org/
portal/ (accessed on 4 August 2022)). The expression dataset (i.e., CCLE_expression.csv) of
mRNA expression levels comprises 19,221 genes for 1406 cell lines. The drug sensitivity
(primary replicate collapsed log fold change) of azacitidine in 578 cell lines was used for the
estimation of azacitidine sensitivity-specific gene networks. We focused on the 1000 genes
with the highest variance in expression levels and 549 cell lines with non-missing values in
both expression level and drug sensitivity datasets. For the 549 cell lines corresponding to
the azacitidine sensitivity values mα, α = 1, ..., 549, we applied NetworkProfiler, a machine
learning strategy for cell line-specific gene network analysis (see Section 4) and estimated
that 549 gene regulatory networks varied depending on the azacitidine sensitivity values
of cell lines.

We defined 100 azacitidine-sensitive and -resistant cell lines corresponding to the
100 largest and smallest values of the drug sensitivity, respectively. We focus on azacitidine
resistance-specific gene networks and extracted edges corresponding to the top 1% largest
absolute edge size from the estimated 100 drug-resistant cell line-specific gene networks.

The edges comprised 32 subnetworks. For the 32 subnetworks, we applied our method
to reveal differentially regulated gene networks between azacitidine-sensitive and -resistant
cell lines, where three subnetworks were identified.

Figure 1 shows the identified gene networks, where the top and bottom show their
molecular interplay in drug resistance and sensitive cell lines, respectively.

As shown in Figure 1, azacitidine-sensitive and -resistant cell lines showed distin-
guishing gene regulatory networks, i.e., drug-resistant cell lines have relatively dense gene
networks compared with drug-sensitive cell lines. The gene network of the metallothionein
gene family (i.e., MT1E, MT1F, MT1G, and MT2A) was observed in both drug-sensitive and
-resistant cell lines, whereas the strength of the interplay becomes weaker as the sensitivity
of the cell line increases. RBM47 strongly regulates ELF3 in azacitidine-resistant cell lines,
whereas the subnetwork of RBM47, ELF3, and GRB7 disappeared in drug-sensitive cell
lines. Furthermore, the suppression of NRN1 by C19orf33 also disappeared in the sensitive
cell lines. The genes (i.e., metallothionein gene family, C19orf33, ELF3, GRB7, IL18, NRN1,
and RBM47) in the identified differentially regulated gene networks can be considered
as key markers to understand the mechanisms involving drug resistance of azacitidine
and AML. Table 1 shows the identified markers and previous studies on their mechanisms
related to azacitidine and AML.

https://depmap.org/ portal/
https://depmap.org/ portal/
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Azacitidine-resistant cell lines

Azacitidine-sensitive cell lines

Figure 1. Differentially regulated gene networks between azacitidine-resistant and -sensitive cell
lines, where the edge weights are given as the median of the edge strengths in 100 gene networks. The
top and bottom indicate the molecular interplay in drug-resistant and -sensitive cell lines, respectively.
The edge color indicates sign of the edge weight (i.e., positive—blue and negative—red), A→ B
means that gene A regulates its target gene B and the thickness of line indicates the strength of edges.
Azacitidine-resistant cell lines show relatively dense gene networks. Notably, the molecular interplay
between GRB7, ELF3, and RBM47 exists only in drug-resistant cell lines; thus, their network can be
considered to be an azacitidine resistance-specific gene network.

Table 1. Identified markers from differentially regulated gene network analysis and their evidence
related to AML and azacitidine.

Genes
AML Azacitidine

Yes/No Evidence Yes/No Evidence
C19orf33 No - No -

ELF3 Yes [17] Yes [18]
GRB7 No - No -
IL18 Yes [19–23] No -

Metallothionein family

MT1E

Yes [24,25] Yes [26–29]
MT1F
MT1G
MT2A

NRN1 No - No -
RBM47 Yes [30] Yes [31]
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As shown in Table 1, more than half of the identified genes were studied as markers of
not only azacitidine but also AML.

ELF3
Li et al. [18] identified ELF3 as one of the 5-azacytidine immune genes and ELF3 was
classified as the gene set category of “Inflammation”. It was suggested that ELF3-AS1
could be a prognostic factor and influences the prognosis of AML by Guo et al [17].

IL18
Saadi et al. [19] evaluated the expression levels of IL18 in AML patients according to
their response to treatment and showed that expression levels of IL18 were increased in
AML patients who did not respond to therapy compared to those patients who respond to
therapy. Furthermore, it was observed that the expression levels of IL18 were significantly
increased in high-risk groups of AML patients [19]. A correlation was observed between
the levels of IL18 and the prognosis of AML, i.e., higher levels of IL18 were correlated with
worse prognosis of AML [20]. The expression profiles of IL-6 and IL18 were considered as
prognostic markers for AML [19]. Furthermore, the higher expression levels of IL18 and its
receptor induced drug resistance in AML [19]. From the results, Saadi et al. [19] suggested
that IL18 is an important prognostic marker in AML and control of the expression and
regulation of IL18 may play key roles in the management of AML. Chen et al. [21] showed
that overexpression of IL18 might reflect the convergence of several important unfavorable
prognostic factors in AML. Song et al. [22] also suggested that high circulating levels of
IL18 are a potential predictor for a decreased risk of AML. It was also demonstrated that
the variant GT genotype of IL18 rs1946518 led to poorer survival rates in AML [23].

Metallothionein (MT) gene family
Exposure of cells in culture to 5-azacytidine stimulates the expression of the metalloth-
ionein gene [26]. Stallings et al. [28] showed that 5-azacytidine-induced conversion to
cadmium resistance is correlated with early S-phase replication of inactive metalloth-
ionein genes in synchronized cadmium-sensitive cells. Increased MT-I expression is a
poor prognostic marker for AML [24]. MT was identified as a drug-resistance-related
protein and was expressed in leukemic cells in more than half of cases of newly diagnosed
AML [24]. Patricia et al. [25] showed that MT1 is critical for the growth and survival of
DNMT3A;NPM1-mutant AML cells and nominated MT1 as a key marker for the treatment
and prevention of DNMT3A;NPM1-mutant AML.

RBM47
5-azacytidine-resistant metabolic adaptable cells have several other alterations in RBM47
expression [31]. RBM47 was identified as an important AML-specific RBP gene, and
Saha et al. [30] revealed that RBM47 is a potential candidate for therapeutic intervention
toward effective eradication of leukemic stem cells in AML.

It can be seen through the literature survey that our analysis provided biologically
reliable results for identifying crucial markers and for understanding the molecular inter-
play that has the potential to improve the therapeutic efficiency of azacitidine in patients
with AML. Although some genes were not yet identified as a marker, the genes and their
interplay can be considered as novel markers to understand the mechanism of azacitidine
resistance in cancer cell lines.

To identify the biological pathways involved in the differentially regulated gene
networks in azacytidine-resistant cell lines, we performed a Gene Ontology (GO) term
pathway analysis of the genes in the identified network. Figure 2 shows the significantly
enriched pathways corresponding to the p.value (i.e., −log(p.value)).
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Figure 2. GO term pathway analysis result of the genes in the differentially regulated gene network
in azacitidine-resistant cell lines.

As shown in Figure 2, “GO:0071248: cellular response to metal ion (definition: Any
process that results in a change in state or activity of a cell (in terms of movement, secretion,
enzyme production, gene expression, etc.) as a result of a metal ion stimulus.)” was the most
enriched pathway. Furthermore, “cellular response”-related pathways (“GO:0071294:
cellular response to zinc ion (definition: Any process that results in a change in state or activity
of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a
zinc ion stimulus)”, “GO:0071280: cellular response to copper ion (definition: Any process
that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme
production, gene expression, etc.) as a result of a copper ion stimulus)”, “GO:0071276: cellular
response to cadmium ion (definition: Any process that results in a change in state or activity
of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result
of a cadmium (Cd) ion stimulus)”, where the enriched functional-related genes are MT2A,
MT1F, MT1G, and MT1E), were identified as crucial biological pathways for azacitidine
resistance-specific molecular interplay. The cellular response is a reaction of a cell to
extracellular signals. “GO:0071276: cellular response to cadmium ion” was identified as
enriched pathway for genes that show different expression levels between AML subgroups
and normal bone marrow (BM) [32]. The mechanisms of cellular responses involving
resistance to chemotherapy in cancer have been demonstrated in several studies [33–35].
Cheng et al. [33] suggested that drug efficacy can be enhanced by Asplatin through altering
the cellular response.

We suggest though our results and literature survey that the metallothionein gene
family and the enriched pathways associated with them (i.e., “cellular response”-related
pathways) may play crucial roles in acquisition of azacitidine resistance of cancer cells.
Suppression and/or activation of the genes in the identified network and their interplay
may provide crucial insights to understand and address azacitidine resistance of cancer
cell lines.

3. Discussion

We aimed to uncover the mechanisms of acquired azacitidine resistance in cancer cell
lines based on gene network analysis. In particular, we focused on cell line-specific gene
regulatory networks that vary depending on the characteristics of cell lines.

To uncover the azacitidine resistance mechanism, we developed a computational
method for differentially regulated gene network identification by development of a com-
putational strategy that can identify differentially regulated gene networks between drug-
sensitive and -resistant cell lines by extending the existing method, i.e., DiffCoEx.
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We first estimated azacitidine sensitivity-specific gene regulatory networks by us-
ing the NetworkProfiler, which is the methodology for cell line-specific gene network
estimation. We then applied the developed method to the estimated 549 gene networks’
corresponding 549 azacitidine sensitivity values and revealed azacitidine resistance-specific
molecular interplay. As a result, three differentially regulated gene networks were extracted,
where the metallothionein gene family, C19orf33, ELF3, GRB7, IL18, NRN1, and RBM47
were identified as members of the identified networks. The subnetwork comprising RBM47,
ELF3, and GRB7 was found to be an azacitidine resistance-specific gene regulatory network.
The strong suppression of NRN1 by C19orf33 was also considered a drug resistance-specific
molecular interplay. Among the identified three subnetworks, the interplay between the
metallothionein gene family (i.e., MT1E, MT1F, MT1G, and MT2A) was observed in drug-
sensitive and -resistant cell lines, and their interplay becomes weaker with an increase in
the drug sensitivity of a given cell line. The “cellular response”-related pathways were
identified as enriched pathways of the genes in the differentially regulated gene network,
where the enriched function-related genes were in the metallothionein gene family.

Our findings suggest that suppressing and/or activating the identified genes and
“cellular response”-related pathways may provide crucial information to help understand
the mechanisms of acquired azacitidine resistance in cancer cell lines.

Although our strategy and results were validated by literature, the statistical accuracy
for the differential gene network analysis is also considered to validate the proposed
method. Further work remains to be performed on the evaluation of our method through
comparison with other methods.

4. Method for Differential Gene Network Analysis

In this section, we introduce the computational method for azacitidine sensitivity-
specific gene regulatory network estimation and differentially regulated gene network
identification.

Let X = (x1, ..., xn)T ∈ Rn×p, where xi = (xi1, ..., xip)
T is the expression levels of p

regulator genes and yℓ ∈ Rn is the expression levels of the ℓth target gene. We suppose that
the p regulator genes control the target gene transcription for n cell lines. We consider the
following linear regression model to represent the gene regulatory network,

yiℓ = βT
ℓ xi + ϵiℓ, i = 1, ..., n, ℓ = 1, ..., q, (1)

where βℓ = (βℓ1, ..., βℓp)
T is the regression coefficient vector that indicates the effect of

p regulator genes on the ℓth target gene, and ϵiℓ is a random error vector for the model
of the ℓth target gene. The regulatory strength of the p regulatory genes on the ℓth target
gene is described by the estimated regression coefficient βℓ. To estimate the regression
coefficient βℓ, various statistical methods have been developed and used in various fields
of research. We consider the L1-type regularization methods (e.g., lasso [36], elastic net [37])
that perform gene selection and edge strength estimation simultaneously. In particular, the
elastic net has been often used to gene network analysis, because it enables us to select
more than n (e.g., number of cell lines) genes.

Although the regression model in (1) has been frequently used to represent gene
regulatory networks and is easy to understand, the model cannot describe cell line-specific
molecular interactions because the regulatory effect of gene p, i.e., βℓ, is given for all n
cell lines, i.e., cell line-specific βℓ cannot be described by the model. Figure 3 shows the
correlation between two genes (i.e., UPF1 and DPM1) in azacitidine-sensitive, moderately
azacitidine-sensitive, and azacitidine-resistant cell lines. As shown in Figure 3, DUSP23 and
AKR1C3 show a positive correlation in azacitidine-resistant cell lines (bottom right of
Figure 3), whereas the positive interplay disappeared in drug-sensitive cell lines (top
right of Figure 3). In other words, the interplay between DUSP23 and AKR1C3 shows
distinct patterns in drug-sensitive, moderately drug-sensitive, and drug-resistant cell lines.
Furthermore, the scatter plot for all cell lines (top left of Figure 3) cannot accurately describe
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the pattern of their correlation, which vary depending on the drug sensitivity. These
findings indicate that gene regulatory networks should be constructed after considering
cell line characteristics (i.e., azacitidine sensitivity of cell lines).
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Figure 3. Correlation between two genes (i.e., DUSP23 and AKR1C3) under varying azacitidine
sensitivities of cancer cell lines (top left—all cell lines, top right—azacitidine-sensitive cell lines,
bottom left—moderately azacitidine-sensitive cell lines, bottom right—azacitidine-resistant cell lines)
where the color of dots indicates drug-sensitive (red) and -resistant (green) cell lines.

4.1. Azacitidine Sensitivity-Specific Gene Regulatory Network Estimation To estimate azacitidine
sensitivity-specific gene regulatory networks which vary according to the drug sensitivity of cell
lines, we consider the following varying coefficient model [38]

yiℓ = βT
ℓ (mα)xi + εiℓ, (2)

where βℓ(mα) = (βℓ1(mα), ..., βℓp(mα))T is the varying coefficient vector that describes
the effects of p regulatory genes on the ℓth target gene in the αth cell line having the
azacitidine sensitivity value mα. The varying coefficient model allows us to describe the
azacitidine sensitivity value mα-specific gene regulatory network, that is, we can estimate
n gene regulatory networks for n cell lines corresponding to n azacitidine sensitivity
values (mα, α = 1, ..., n). Thus, we can reveal the molecular interplay changes according
to the sensitivity to azacitidine and identify key markers and pathways involved in the
mechanisms of acquired azacitidine resistance.

The varying coefficient βℓ(mα) was estimated by the following kernel-based L1 type
regularization, called a NetworkProfiler [39],

β̂ℓ(mα) = arg min
βℓ(mα)

{1
2

n

∑
i=1

{yiℓ − βT
ℓ (mα)xi}2K(mi −mα|bℓ) + P{βℓ(mα)}}, (3)
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where P{βℓ(mα)} is the recursive elastic net penalty with regularization parameters λℓα > 0
and 0 < δℓα < 1,

P{βℓ(mα)} = λℓα

p

∑
j=1

[
1
2
(1 − δℓα)β2

ℓjα + δℓαwℓjα|βℓjα|], (4)

and

K(mi − mα|bℓ) = exp
{−(mi − mα)2

bℓ

}
, (5)

is the Gaussian kernel function, where bℓ is a bandwidth to control width of kernel function.
In the NetworkProfiler, the Gaussian kernel function plays a key role to group cell lines
according to the characteristics of cell lines (i.e., azacitidine sensitivity mi). When we
estimate the azacitidine sensitivity value mα-specific gene network, we measure similarity
between drug sensitivity values of cell lines, i.e., mα and mi for i = 1, ..., n, based on
(mi − mα)2, then determine weights of each cell lines that control the influence of cell lines
in estimating the azacitidine sensitivity value mα-specific gene network. In other words,
the Gaussian kernel function K(mi − mα|bℓ) is used as weight to control the influence of
cell lines and enables us to estimate mα-specific gene networks based only on cell lines
with a similar characteristic mi to that of the target cell lines, i.e., mα. This implies that the
NetworkProfiler can identify the specific molecular interactions for a cancer related status
of cell lines, i.e., mα.

The NetworkProfiler is implemented by the open-source software SiGN-L1 of the
Super Computer System, Human Genome Center, Institute of Medical Science, Univer-
sity of Tokyo (https://sign.hgc.jp/signl1/index.html (accessed on 4 August 2022)). We
use SiGN-L1 and estimate the azacitidine sensitivity value mα-specific gene network
(α = 1, . . . , 549). For details on the kernel-based L1-type regularization and SiGN-L1,
see Shimamura et al. [39].

4.2. Differentially Regulated Gene Network Identification in Azacitidine-Resistant Cell Lines
4.2.1. Existing Method for Identifying Differentially Coexpressed Gene Set: DiffCoEx

Tesson et al. [40] proposed a method for identifying gene sets or clusters that are
differentially co-expressed between phenotypes, called DiffCoEx. DiffCoEx measures the
correlation changes of genes between two phenotypes based on the following three steps:

Step 1. For the drug-sensitive (-resistant) cell lines, the correlation matrix CS(CR) is com-
puted, where the (i, j)th entry of CS(CR) is given as a correlation between ith and
jth genes as follows,

CS = cS
ij = corr(xS

i , xS
j ) and CR = cR

ij = corr(xR
i , xR

j ), (6)

where xS
i and xS

j (xR
i and xR

j ) are expression levels of the ith and jth genes in
drug-sensitive (-resistant) cell lines.

Step 2. Compute adjacency difference matrix

D = dij =
(√1

2
|sign(cS

ij)(c
S
ij)

2 − sign(cR
ij )(c

R
ij )

2|
)γ

, (7)

where γ is a parameter that can emphasize large correlation differences in the
matrix D.

Step 3. Compute dissimilarity matrix T based on the topological overlap [41],

T = tij = 1 −
∑k(dikdjk) + dij

min(∑k dik, ∑k djk) + 1 − dij
. (8)

https://sign.hgc.jp/signl1 /index.html
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The small value of tij indicates that the ith and jth genes both show considerable
correlation changes within the same group of genes. This implies that the groups
of genes corresponding to small values of tij were differentially coexpressed be-
tween phenotypes.

4.2.2. Differentially Regulated Gene Network Identification from the Azacitidine
Sensitivity-Specific Gene Networks

To reveal the differentially regulated gene networks between azacitidine-sensitive and
-resistant cell lines, we developed a computational method for differential gene network
analysis. We extended the DiffCoEx to cell line-specific gene network analysis and devel-
oped a dissimilarity measure based not on the correlation but on the edge weight in the
network. Our strategy is based on the following steps in line with the DiffCoEx.

Step 1: Paired cell lines
Construct paired cell lines based on randomly selected drug-sensitive and -resistant cell
lines,

m = {(mS
1 , mR

1 ), (m
S
2 , mR

2 ), ..., (mS
n/2, mR

n/2)}, (9)

where mS
α and mR

α are randomly selected αth azacitidine sensitivity values from the drug-
sensitive and -resistant cell lines, respectively.

Step 2: Edge weight
From the estimated mS

α and mS
α-specific gene networks, the edge weight W(mS

α) and W(mR
α )

are computed

W(mS
α) = wij(mS

α) =
|βij(mS

α)|+ |β ji(mS
α)|

2
, (10)

W(mR
α ) = wij(mR

α ) =
|βij(mR

α )|+ |β ji(mR
α )|

2
,

where βij(mS
α) and βij(mR

α ) are the varying coefficients of the jth regulator gene on ith target
gene in the αth cell line.

Step 3: Adjacency difference matrix
Compute the adjacency difference matrix for the αth paired cell lines (i.e., (mS

α , mR
α )),

D(α) = dij(α) =
(√1

2
|sign(wij(mS

α))(wij(mS
α))2 − sign(wij(mR

α ))(wij(mR
α ))

2|
)γ

, (11)

where γ is a tuning emphasizing large correlation differences in the matrix D. In practice,
it is advisable to select optimal value of γ because the result heavily depends on the value
of γ.

Step 4: Dissimilarity matrix for αth cell line
Compute the dissimilarity matrix T(α) for the αth paired cell lines,

T(α) = tij(α) = 1 −
∑k(dik(α)djk(α)) + dij(α)

min(∑k dik(α), ∑k djk(α)) + 1 − dij(α)
. (12)

Compute the average of the entries in the dissimilarity matrix

Ave[T(α)] =
1
p2

p

∑
i=1

p

∑
j=1

tij(α), α = 1, ..., n/2. (13)
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Step 5: Dissimilarity measure of all cell lines
Compute the dissimilarity measure of the cell line-specific gene network analysis as follows:

DCS =
1

n/2

n/2

∑
α=1

Ave[T(α)]. (14)

Step 6. Statistical significance
Shuffle cell lines into drug-sensitive and -resistant groups and construct permutation paired
cell lines,

mpm = {(mS(pm)
1 , mR(pm)

1 ), (mS(pm)
2 , mR(pm)

2 ), ..., (mS(pm)
n/2 , mR(pm)

n/2 )}. (15)

For the permutation paired cell lines mpm, Steps 2–5 are conducted, and then the dissimi-
larity measure Dpm

CS is computed for pm = 1, ..., T. The permutation p value is computed as
follows,

p.value =
∑T

pm=1 I(DCS ≤ Dpm
CS )

T
, (16)

where I(·) is the indicate function.

Step 7. Identifying differentially regulated gene networks
For the significance level τ, we identify differentially regulated gene networks that satisfy

p.value < τ. (17)

The differentially regulated gene network identification between azacitidine-sensitive
and -resistant cell lines was based on the parameter γ = 1, significance level τ = 0.05 and
permutation numbers T = 500.
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