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Abstract: Prostate cancer is the second leading cause of death in males in America, with advanced
prostate cancers exhibiting a 5-year survival rate of only 32%. Castration resistance often develops
during the course of treatment, but its pathogenesis is poorly understood. This study explores the
human microbiome for its implications in castration resistance and metastasis in prostate cancer. RNA
sequencing data were downloaded for the bone and soft tissue biopsies of patients with metastatic
castration-resistant prostate cancer. These included both metastatic and adjacent normal biopsies.
These sequences were mapped to bacterial sequences, yielding species-level counts. A vast majority
of species were found to be significantly underabundant in the CRPC samples. Of these, numerous
were found to correlate with the expression of known markers of castration resistance, including
AR, PI3K, and AKT. Castration resistance-associated signaling pathways were also enriched with
these species, including PI3K-AKT signaling and endocrine resistance. For their implications in
cancer aggression and metastasis, cancer stem cell markers were further explored for a relation to
these species. EGFR and SLC3A2 were widely downregulated, with a greater abundance of most
species. Our results suggest that the microbiome is heavily associated with castration resistance and
stemness in prostate cancer. By considering the microbiome’s importance in these factors, we may
better understand the highly aggressive and highly invasive nature of castration-resistant prostate
cancer, allowing for the needed improvements in the treatment of this disease.
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1. Introduction

Prostate cancer is the second leading cause of death in males in America [1,2]. It is
estimated that roughly one in eight men will be diagnosed with prostate cancer in their
lifetime [1,2]. This type of cancer is classified as localized, regional, or distant based on the
degree by which it has metastasized to other bodily sites. Bone metastases are the most
common, followed by lymph node and liver metastases [3]. Localized and regional prostate
cancers are rarely fatal, though distant prostate cancers exhibit a 5-year survival rate of only
32% [1]. Understanding the factors that promote the acquisition of this more aggressive
stage is crucial to improving these patients’ survival.

The growth and proliferation of prostate cancer is known to be heavily mediated by
testosterone signaling [4]. In a healthy individual, testosterone is capable of binding to and
activating the androgen receptor (AR) protein, which then stimulates the production of
secretory proteins in the prostate [5,6]. Through mechanisms not well understood, specific
mutations in the genes of the AR signaling pathway are known to ultimately promote the
growth and proliferation of prostate cancer [5,6]. As such, androgen deprivation therapies
are commonly implemented as treatments for high-risk prostate cancers [7]. These largely
include medical and surgical castrations [7]. Nonetheless, these therapies yield fairly
poor survival rates, as the patients who undergo castration likely have more advanced
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diseases [7,8]. Many patients develop castration resistance (CR), which is defined by
the sustained growth of a cancer despite serum testosterone levels being at or below the
level expected with castration. The mechanisms by which prostate cancers acquire this
resistance are well characterized, with AR signaling being integral to many of them [9].
These involve mutations in AR, mutations in AR coactivators and corepressors, androgen-
independent activation of AR, and alternate means of androgen biosynthesis [9]. Several
other mechanisms of resistance have been explored, including the dysregulation of the
lipid metabolism and the mevalonate pathway [10]. For the patients who develop CR, AR
signaling inhibitors are often prescribed as an adjuvant treatment to androgen deprivation
therapy [11–16]. However, many patients remain insensitive to these as well [17], with
few treatment options available thereafter. The median survival length for non-metastatic
castration-resistant prostate cancer (CRPC) cases is estimated to be 30.3 months and that
for metastatic CRPC cases is only 13.3 months. Understanding the factors that influence the
acquisition of CR in prostate cancers may significantly improve our ability to treat these
diseases. Understanding the influences of metastasis in CRPC may prove doubly useful.

Numerous genetic factors have been identified for their implications in CRPC, pri-
marily comprising mutations in the genes of the AR signaling pathway [9]. Metastatic
contributors have been identified too, and they include the loss of PTEN, aberrations in the
PI3K-AKT signaling pathway, and the acquisition of DNA repair defects [18]. The degree
of stemness observed in a cancer is also known to influence CR and metastasis [19–21].
Cancer stem cells (CSC) are thought to compose only about 1% of a tumor’s mass, though
they are crucial in the tumor’s growth and proliferation [22]. CSCs are believed to origi-
nate from epithelial cells through a process known as epithelial–mesenchymal transition
(EMT) [23]. In this process, malignant epithelial cells gain mesenchymal-like traits and
become highly invasive in doing so [24]. The formation of CSCs through the process of
EMT provides a tumor with a high capacity for colonization, ultimately promoting the
cancer’s metastasis [19–21].

The influences of epigenetic factors in CRPC are less explored, though the human
microbiome may be highly relevant to CRPC The microbiome is a collection of bacterial and
fungal microorganisms that reside largely in the gastrointestinal system [25]. Over recent
decades, the microbiome has seen increased implication in human diseases, including
inflammatory bowel disease and diabetes, among others [26,27]. Moreover, the microbiome
has been shown to influence an array of biological processes and is believed to act through
metabolite-mediated immune modulation [28,29]. Studies have also investigated the
microbiome for its role in cancer, especially colorectal cancers [30–33]. Less is known
of the microbiome’s influence on other cancer types, though studies have demonstrated
the importance of the microbiome in prostate cancers [34,35]. Specific dysbioses of the
gut microbiome have been identified between castration-sensitive (CS) and CR prostate
cancers [35]. Moreover, antibiotic therapies and fecal transplants in mouse models have
demonstrated the gut microbiome’s ability to modulate the effectiveness of androgen
deprivation therapy [36]. The mechanisms behind these relations are less understood.

Hence, this study attempts to characterize microbiome dysbioses for correlations
to both CR and cancer stemness. RNA sequencing data were downloaded for the bone
and soft tissue biopsies of patients with metastatic CRPC across two studies: phs000915
(n = 147) and phs001141 (n = 143). Whole-exome sequencing data were downloaded for
the adjacent normal biopsies from the above study, phs000915 (n = 84). These sequences
were mapped to bacterial sequences, yielding species-level abundance counts for each
sample. We identified numerous species that were differentially abundant between the
CRPC and the normal samples. We also identified correlations of these species to known
transcriptional markers of CR and cancer stemness. Further, we observed enrichment
of the AR, PI3K-AKT, and endocrine resistance signaling pathways with respect to these
species’ abundance. We propose that the human microbiome is heavily associated with CR
and metastasis in prostate cancer. Through this investigation, we may better understand
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the pathology of metastatic CRPC, creating new avenues of research for the treatment of
this disease.

2. Results
2.1. Cross-Study Normalization and Contamination Correction

The samples of two separate datasets were analyzed in this study. In order to account
for innate differences in the sample collection and sequencing procedures used by these
datasets, cumulative sum scaling was performed as a means of normalization (see Section 4).
PCoA was conducted to demonstrate the effectiveness of this technique. In this analysis,
the abundance counts of all the species in a sample were reduced to unitless and arbitrary
dimensions. In these dimensions, the samples of a closer proximity had greater similarity
in their abundance profiles. The samples were analyzed both before (Supplementary
Materials Figure S1A) and after (Supplementary Materials Figure S1B) the normalization
procedures were performed. After normalization, the samples were observed to be of a
closer proximity, with fewer outliers present. This served to confirm the compatibility of
the chosen samples for further analyses. Cumulative sum scaling was similarly performed
on the samples’ gene expression counts.

In tissue extraction and sequencing procedures, there remains the possibility for
contaminant species to be introduced into a sample [37]. Contamination correction was
performed to identify and exclude these species (see Section 4). To visualize the phylogenic
division of these species, they were grouped by class of phylum and plotted in a phylogenic
tree (Supplementary Materials, Figure S1C). The bone metastases were found to contain the
greatest number of contaminant species, followed by the liver and lymph node metastases.

2.2. Differential Abundance Analysis

We analyzed the remaining species to determine if any were differentially abun-
dant between the CRPC tumor and the normal tissue samples. Using the Kruskal–Wallis
test (p < 0.05), we identified 31 differentially abundant species in the bone cohort (Fig-
ure 1A), 70 species in the lymph node cohort (Figure 1B), and 65 species in the liver cohort
(Figure 1C). In all the cohorts, a vast majority of the species were of significantly lesser
abundance in the CRPC samples. This is consistent with the notion that castration causes
ablation of the human microbiome [38,39]. Twelve species were common to all of these
cohorts, including several strains of Escherichia coli, Acinetobacter sp., and Mycobacterium
leprae (Figure 1D). We chose to further analyze only the species that were differentially abun-
dant within each respective cohort. This served to demonstrate the relationship between
CRPC-related microbiome dysbiosis and CRPC pathophysiology.

Figure 1. Cont.
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Figure 1. Differentially abundant species. Volcano plots showing the species that were differentially
abundant between the CRPC tumor and adjacent normal tissue samples for the (A) bone, (B) lymph
node, and (C) liver cohorts. Fold-changes (FC) indicate the change in each species’ abundance
between the tumor and the normal samples. Heights indicate significance. (D) UpSet plot showing
the number of differentially abundant species that were common to each site of metastasis. Twelve
species were common to all sites.

2.3. Species Abundance Correlates with Castration Resistance Marker Expression

A list of markers known to be implicated in CR at a transcriptional level was collected
from the literature [18]. Among others, it includes AR, PTEN, several PI3K family genes,
and several AKT family genes (Supplementary Materials Table S1). Spearman’s correlations
were used to assess the relationship between each marker and each species. Again, only
the species found to be differentially abundant between the CRPC and the normal samples
were included. The correlations of all the species to these markers are included in the
Supplemental Materials (Figure S2). In all the cohorts, a considerable number of species
were significantly correlated to the CR markers (Figure 2A). Among others, a greater
abundance of Staphylococcus epidermidis corresponded to an increase in the expression of all
but a few of the markers. The lesser abundance of Streptococcus pneumoniae and Mannheimia
haemolytica also corresponded to an increase in the markers’ expression. The overlap in the
species–marker correlations between each cohort was further plotted (Figure 2B). Thirty-
four significant correlations were common to all the sites of metastasis. We next simplified
the abundance values of each species into binary classifications, either “high abundance” or
“low abundance”, based on each sample’s relation to the median abundance of that species.
For only the significant correlations above, the expression counts of several markers were
plotted with respect to the abundance of Klebsiella pneumoniae and Pseudomonas savastanoi
(Figure 2C). The lesser abundance of these species corresponded to a significantly greater
expression of the AKT and PI3K family genes.
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Figure 2. Species castration resistance marker correlations. (A) Heatmaps showing species’ correla-
tions to CR marker expression, grouped by the site of metastasis. Colors indicate the strength of the
correlations. (B) UpSet plot showing the number of species–marker correlations common to each
site of metastasis. Thirty-four correlations were common to all the sites. (C) Box plots showing the
expression of AKT1, AKT2, CREBBP, PIK3C3, PIK3CD, PIK3CG, and FOXA1 with respect to the
abundance of Klebsiella pneumoniae and Pseudomonas savastanoi. The samples were grouped based on
their relation to the median abundance of each species. The expression values are relative due to the
method of cross-study normalization employed (see Section 4). * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.4. Castration Resistance Pathway Enrichment

Select KEGG gene sets were chosen to model the cellular pathways of CR (Supplemen-
tary Materials Table S1). The prostate cancer pathway was chosen to model the AR signaling
cascade, containing many of its component genes, such as AR, CREBBP, and PTEN [18].
PI3K-AKT signaling was also chosen for analysis, as it is known to be upregulated in
patients with CRPC [18,40]. The activation of this pathway has been shown to contribute to
the growth and proliferation of prostate tumors in preclinical models [41]. The endocrine
resistance pathway was chosen to model the resistance to androgen deprivation therapy.
This gene set contains many of the genes that have been implicated in CR, including many
of the PIK family genes [9,18].

A gene set enrichment analysis was conducted to assess the extent to which each of
these pathways was enriched with respect to each species’ abundance. For the lymph node
cohort, we created enrichment plots to display the enrichment score of these pathways in
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each species (Figure 3A). Across the bone, lymph node, and liver cohorts, we identified a
total of 4116 species to be present intratumorally. Due to this size, only the twenty species
with the greatest number of significant correlations to the above CR markers are shown in
the plots below. Given their correlations to the CR markers, we suspected that these species
would also have the strongest correlation to these CR pathways. The peak of each curve
indicates the total enrichment score of the pathway. Of all the cohorts, these pathways
were found to be negatively enriched with respect to most species (Figure 3B), meaning
that a lesser abundance of these species corresponded to an increase in AR signaling, PIK3-
AKT signaling, and endocrine resistance. Of note, only a handful of species yielded an
FDR < 0.20. The individual genes of each pathway were further assessed for correlation
to these species’ abundances. This served to determine the significance by which each
of the pathways’ components was enriched. The abundance values of each species were
simplified to “high” or “low” classifications, as performed above. The expression counts
of several genes of the AR signaling pathway were plotted with respect to the abundance
of the Paenibacillus sp. and Streptococcus pneumoniae in the bone cohort (Figure 3C). A
considerable number of genes were significantly dysregulated with the greater abundance
of these species, including several PIK and AKT family genes. Ultimately, these species and
others appear to closely reflect the analyzed pathways. Whether these are mechanistically
linked is unclear, as is the direction of their potential regulation.
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Figure 3. Species-associated enrichment of castration resistance pathways. (A) Enrichment plots of
the AR (top), PI3K-AKT (middle), and endocrine resistance (bottom) signaling pathways. Each line
represents a species. The peak of each curve indicates the total enrichment score of the pathway with
respect to each species’ abundance. Only the twenty species of the lymph node cohort with the greatest
number of significant correlations to the above CR markers are shown. (B) Scatter plots showing
the enrichment of the AR (top), PI3K-AKT (middle), and endocrine resistance (bottom) signaling
pathways with respect to the species’ abundances. The points represent the species. The nominal
enrichment scores (NES) describe the direction and strength of the enrichment, and the heights
signify significance. The points are colored according to the metastatic sites. (C) Box plots showing
the expression of several genes of the AR signaling pathway with respect to the abundance of the
Paenibacillus sp. and Streptococcus pneumoniae. The samples were grouped based on their relation
to the median abundance of each species. The expression values are relative due to the method of
cross-study normalization employed (see Section 4). * p < 0.05, and ** p < 0.01.
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2.5. Species Abundance Correlates with Cancer Stem Cell Marker Expression

Cancer stemness is known to be heavily implicated in CR and metastasis [19–21]. CSCs
are thought to have a high capacity for migration and colonization and are widely believed
to be the basis of metastasis across cancer types [19–21]. To assess the microbiome’s relation
to these factors, a list of transcriptional CSC markers was first collected from the litera-
ture [42–45]. Among others, this list includes CD44, SOX2, and NANOG (Supplementary
Materials Table S1). Spearman’s correlations were used to assess the relationship between
each marker and each species. Only the species found to be differentially abundant between
the CRPC and the normal samples were included. The correlations of all the species to
these markers are included in the Supplemental Materials (Figure S3). Of all the cohorts,
select markers appeared to be broadly upregulated or broadly downregulated with re-
spect to these species (Figure 4A). MYC, EGFR, and SLC3A2 expression was negatively
correlated to the abundance of all but a few species. BMI1 was widely overexpressed with
a greater abundance of the above species. It is unclear whether these genes are linked
to the microbiome mechanistically, though the consistency in the correlations’ directions
should be noted. The overlap in the species–marker correlations between each cohort
was further plotted (Figure 4B). Only three significant correlations were common to all
the sites of metastasis. We again simplified the abundance values of each species into
binary classifications, being either “high abundance” or “low abundance”. The expression
counts of EGFR, KLF4, SLC3A2, and PODXL were plotted with respect to the abundance
of Mannheimia haemolytica and Glutamicibacter arilaitensis (Figure 4C). A lesser abundance
of Glutamicibacter arilaitensis corresponded to a significantly greater expression of these
markers, while a lesser abundance of Mannheimia haemolytica corresponded to significantly
a lesser expression of these markers.

2

Figure 4. Species–cancer stem cell marker correlations. (A) Heatmaps showing species’ correlations to
CSC markers’ expression, grouped by the site of metastasis. Colors indicate the correlation coefficients.
(B) UpSet plot showing the number of species–marker correlations common to each site of metastasis.
Three correlations were common to all sites. (C) Box plots showing the expression of EGFR, KLF4,
SLC3A2, and PODXL with respect to the abundance of Mannheimia haemolytica and Glutamicibacter
arilaitensis. The samples were grouped based on their relation to the median abundance of each
species. The expression values are relative due to the method of cross-study normalization employed
(see Section 4). *** p < 0.001.
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2.6. Epithelial–Mesenchymal Transition and Pluripotency Regulation Pathway Enrichment

CSC formation is believed to be dependent on the invasion of epithelial cells through
the process of EMT [25]. The microbiome’s relevance to these processes has been demon-
strated [46,47], though not with regard to CR or metastasis in prostate cancer. Select KEGG
gene sets were first chosen to model EMT and stemness (Supplementary Materials Table S1).
The adherens junction pathway contains many of the genes involved in EMT and was
chosen to model this process [48]. The Signaling Pathways Regulating Plurioptentcy of
Stem Cells was chosen to model stemness.

A gene set enrichment analysis was again conducted to assess these pathways for
enrichment with respect to each species’ abundance. For the lymph node cohort, we created
enrichment plots to display the enrichment score of these pathways with each species
(Figure 5A). Only the twenty species with the greatest number of significant correlations
to the above CSC markers are shown. Of all the species, we suspected that these would
also correlate the most strongly to the EMT and pluripotency pathways. Similar to the AR
signaling, PI3K-AKT signaling, and endocrine resistance pathways above, these pathways
were negatively enriched with respect to all but a few species (Figure 5B). This may indicate
that EMT and stemness are greater in patients with a lack of microbial diversity. Only a
handful of species yielded an FDR < 0.20. The individual components of each pathway
were assessed for correlation to these species’ abundances. Spearman’s correlations were
computed between each gene’s expression and each species’ abundance. The resultant
correlation coefficients and test statistics were plotted for all the cohorts (Figure 5C). Only
the twenty species with the greatest number of significant correlations to the above CSC
markers were analyzed. In each cohort, several species appeared to correlate with a majority
of these genes in a consistent direction. A decreased abundance of Mycobacterium leprae,
for instance, correlated to an increased expression of all but a few genes of the EMT and
pluripotency pathways. Moreover, many genes were common to both of these pathways,
perhaps explaining why these results appeared to mirror one another closely.

Due to the microbiome’s implications in host immunity [28,29], we investigated
22 KEGG immune pathways for enrichment with respect to these species. We would like
to note that very few species resulted in a significant enrichment of these pathways. As
such, we have not included these results in the current paper.
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3. Discussion

Our results suggest that the tumoral microbiome is strongly reflective of CR in prostate
cancer. Of all the cohorts, numerous species were found to be differentially abundant
between the CRPC tumor and the normal tissue samples. Twelve of these species were
common to all the cohorts. We believe that this may be attributed to castration itself, which
has been shown to reduce the diversity in the gut microbiome [38,39]. Of these species,
numerous were observed to correlate significantly to the expression of the chosen CR
markers. AR expression was significantly greater in the samples with lesser abundance
of Veillonella parvula and Streptococcus pneumoniae. The reverse was true of the genus
Staphylococcus, which had previously been reported to be of greater abundance in prostate
cancers [49]. Species of the genus Shewanella were also observed to correlate positively with
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AR expression and have been shown to be enriched in malignant prostate cancers [50]. The
microbiome is known to be implicated in an array of human diseases and is thought to
exert its effects through the release of metabolites [26–29]. It is unknown whether these
metabolites interact directly with AR or its related proteins, though metabolomic analyses
may speak to this influence.

PI3K-AKT signaling is also known to be upregulated in patients with CRPC [16]. We
identified several PI3K and AKT family genes that correlated negatively to many of the
species studied. The PI3K-AKT pathway as a whole was negatively enriched by many
species, as well. The effects of probiotics on this pathway have been demonstrated [51]. It
is thought that the metabolites of select species are capable of suppressing this pathway’s
activation, ultimately suppressing a cancer’s growth [51]. Thus, decreased diversity in the
microbiome, as observed in these patients with CRPC, may allow for the aberrant activation
of the PI3K-AKT pathway. Further metabolomic analyses might confirm whether these two
are indeed causally related. Nonetheless, the tumoral microbiome appears to closely follow
the AR, PI3K-AKT, and endocrine resistance signaling pathways. Thus, dysbiosis of the
microbiome may allow clinicians to monitor disease progression in patients with CRPC.

We also observed similar microbial relations to cancer stemness and pluripotency.
Numerous CSC markers were found to correlate significantly to the abundance of these
species, including Brevundimonas subvibrioides and Geobacillus thermodenitrificans. Among
other markers, MYC, EGFR, and SLC3A2 were consistently downregulated, with a greater
abundance of most species. Hence, a lesser abundance of these species, as observed in these
patients with CRPC, may correlate with increased MYC, EGFR, and SLC3A2 expression,
increased MYC, EGFR, and SLC3A2 signaling, and, ultimately, a CSC-like phenotype [43,44].
Interestingly, overexpression of EGFR has been implicated in the metastasis of prostate
cancers to the bone [43]. SLC3A2 has similarly been shown to regulate proliferation,
migration, and therapy resistance in cancer cells [44]. We propose that ablation of the
microbiome, as induced by androgen deprivation therapy, may promote the growth and
development of CSCs. In this way, the microbiome may mediate the rapid progression of
CRPC. We note that this hypothesis is purely driven by the correlations above.

CSCs are thought to originate through the process of EMT as they migrate from the
epithelium to the mesenchyme [19–21,23]. We found the EMT and pluripotency regula-
tion pathways to be negatively enriched with respect to a majority of the species studied.
Among the other genes in these pathways, the FGFR family genes and the Wnt family
genes were consistently downregulated, with a greater abundance of these species. This
was particularly true of the liver cohort. The Wnt signaling pathway is commonly aberrant
in prostate cancers [52]. The FGFR family genes have been implicated in prostate cancers
as contributors to metastasis [53,54]. Moreover, FGFR family genes are common to both the
EMT and pluripotency regulation pathways. Our findings suggest that decreased microbial
diversity in patients with CRPC, as observed, may correlate with an increased expression
of these genes. Ultimately, this may result in the enrichment of the EMT pathway. The
microbiome has been shown to regulate the process of EMT through metabolic interac-
tions [46,47], though less is known of the microbiome’s relation to cellular pluripotency.
Due to this, we suspect that the observed correlations of these species to the pluripotency
regulation pathway may only be coincidental and mediated by EMT. Investigation of the
interaction of microbial metabolites with the above CSC markers may be used to further
test this hypothesis.

Ultimately, we found that the tumoral microbiome is highly reflective of CR and
cancer stemness in prostate cancer. We must note that our results are limited, largely due
to the correlational nature of the above analyses. Though we do not demonstrate a causal
relationship between microbiome dysbiosis and CRPC, we hope that this study speaks
to the relevance of the microbiome to this disease. Analysis of the metabolic interactions
of these species may reveal whether the microbiome is of causal influence toward the
acquisition of CR. Such research may also suggest the utility of targeting the microbiome as
a therapeutic approach for CRPC. Relatedly, the procedures used to collect and sequence
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the samples of the above studies likely contained slight discrepancies. This has the potential
to confound our conclusions, although we attempted to mitigate these differences using
the normalization procedures described below. Lastly, we utilized a reference database of
bacterial sequences to map the sequences of our samples. This will only capture the species
that have been cultured on Earth, although this is a common limitation to all microbiome
studies which utilize direct sequence alignment.

4. Materials and Methods
4.1. Data Acquisition

RNA sequencing data were downloaded from the dbGaP Data Browser (https://www.
ncbi.nlm.nih.gov/gap/) for the bone and soft tissue biopsies of patients with metastatic
CRPC (accessed on 24 December 2023). This high-throughput sequencing was performed
using the Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA), which reports
99.9% accuracy in sequencing results. The samples spanned two studies: phs000915
(n = 147) and phs001141 (n = 143). Only bone (n = 159), lymph node (n = 92), and liver
(n = 39) metastases were analyzed, as the remaining sites contained insufficient sample
sizes (n < 30). Whole-exome sequencing data for adjacent normal biopsies were similarly
downloaded from the above study, phs000915 (n = 84). This consisted of bone (n = 24),
lymph node (n = 42), and liver (n = 18) samples, as well. Samples of each site were
considered independently throughout the remainder of this study.

4.2. Bacterial Read Mapping

We mapped the above sequencing data to bacterial sequences using the software
Pathoscope 2.0 [55]. The bacterial sequences were sourced from the NCBI Nucleotide
Database (https://www.ncbi.nlm.nih.gov/nucleotide/) (accessed on 2 August 2023). This
software attempts to map sequencing reads to a reference of human sequences. The
software excludes these reads and then attempts to map the remaining reads to a reference
of bacterial sequences.

4.3. Gene Read Mapping

We mapped the above sequencing data to the hg38 reference genome using the STAR
2.7.10a software [56]. The hg38 genome was sourced from the NCBI Nucleotide Database
(https://www.ncbi.nlm.nih.gov/nucleotide/) (accessed on 2 August 2023). This was
performed with the max number of mismatches set to 10, a mates max gap of 500,000, and
a max multimapping of 10.

4.4. Cross-Study Normalization

Given that the above samples spanned two distinct studies, we chose to utilize cu-
mulative sum scaling as a means of cross-study normalization. This technique divides
the expression value of a gene by the sum of all genes’ expressions in that sample. The
resultant expression values are relative and on scale of 0 to 1. By nature, the total expression
of all the genes will be greater in some samples than others. This may present an issue
when comparing the expression values of an individual gene between these samples, as
any differences may purely be resultant of one of the samples being more transcriptionally
active. With this technique, samples with a greater total expression of all genes are made
more comparable to those with a lesser total expression of all genes. We similarly performed
this technique on the samples’ species abundance counts. We utilized principle coordinate
analysis (PCoA) to demonstrate the effectiveness of this technique. Sample dissimilarities
were calculated by means of a Euclidean distance.

4.5. Microbial Contamination Correction

In tissue extraction and sequencing procedures, there remains the possibility for
contaminant species to be introduced into a sample [37]. These species are not reflective
of a patient’s tumoral microbiome and are likely introduced in a fixed amount. As such,

https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
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these species are expected to be of similar abundances in all samples, regardless of the total
abundance of taxa in a sample. To identify and exclude these species, the total abundance
of all the species was tallied in each sample. Spearman’s correlations were used to assess
the relationship of each individual species to the total abundance of all the species in
each sample. Species that did not exhibit a significant relation (p < 0.05) were deemed
contaminants and were excluded from further analyses.

4.6. Differential Abundance Analyses

The Kruskal–Wallis test was used to identify species that were differentially abundant
between the CRPC and the normal samples (p < 0.05). Only these species were included in
the remaining analyses for each respective cohort.

4.7. Expression Correlation Analyses

A list of genes known to be implicated in CR at a transcriptional level was collected
from the literature [18]. A list of known CSC markers was similarly collected [42–45]. Two
of these studies investigate CSC markers, with a particular emphasis on prostate cancer.
The third investigates CSC markers across several cancer types, and the fourth investigates
SLC3A2 as a CSC marker, which has been implicated in the prognosis of prostate cancer [57].
Spearman’s correlations were used to assess the relation of each species’ abundance to each
gene’s expression.

4.8. Gene Set Enrichment Analyses

The clusterProfileR v4.6.2 R package was used to assess pathway enrichment with
respect to each species’ abundance [58]. The pathways were sourced from the KEGG PATH-
WAY Database (https://www.genome.jp/kegg/pathway.html) (accessed on 28 December
2023). The prostate cancer (hsa05215), PI3K-AKT (hsa04151), and endocrine resistance
(hsa01522) pathways were used to model CR. The adherens junction pathway (hsa04520)
and the signaling pathway regulating the pluripotency of stem cells (hsa04550) were used
to model EMT and stemness, respectively.

5. Conclusions

Our observations suggest that the microbiome is heavily associated with CR and
stemness in prostate cancer. Numerous species were observed to correlate strongly with the
expression of the CR and CSC markers studied. These species further correlated with the
enrichment of select signaling pathways involved in CR and cancer stemness. The potential
regulation of these factors by the microbiome should be further investigated to explore the
microbiome’s relevance to CRPC. Ultimately, this may provide great nuance with respect
to the aggressive nature of this disease. By exploring the microbiome’s implications in CR,
stemness, and metastasis, we may better understand the pathology of high-risk prostate
cancers, allowing for the needed improvements in the treatment of patients with these
diseases.
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