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Abstract: While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension
(PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and
survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraven-
tricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death
regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress
are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension.
These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting
in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion chan-
nel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to
be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downreg-
ulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions
promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is
superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for
a multitargeted approach in PAH. The intention of this review is to provide information regarding the
role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore,
information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic
effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as
well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed.
Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research.
Undoubtedly, such research should include protection of the heart from inflammation and oxidative
stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the
integrity of intercalated disk and extracellular matrix, and, thereby, heart function.
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1. Introduction

PAH is a rare but progressive and potentially life-threatening cardiovascular disorder of
various etiology, with a female predominance and increased male severity [1,2]. Mean pul-
monary arterial pressure >20 mmHg and pulmonary capillary wedge pressure ≤14 mmHg
are relevant diagnostic markers of this disease [3]. PAH development is promoted by
disturbed signaling of the transforming growth factor-β (TGFβ) family and gene mutations
of the bone morphogenetic protein receptor 2 (BMPR2) [4–6]. Sex hormones can determine
the expression of receptors (including BMPR2), ligands and antagonists within the TGFβ
family in a sex-specific manner [1]. Beyond this, sex hormones are differently associated
with function of the right ventricle (RV) in male and female PAH patients. There is an
interplay of sex hormones and long-term RV adaptation in PAH patients [7].
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The pathophysiology of PAH is characterized by endothelial dysfunction, proliferation
of smooth muscle cells and vasoconstriction, leading to progressive remodeling of the
pulmonary arterial tree [2,8]. Endothelial cells, smooth muscle, and fibroblast, as well as
inflammatory cells and platelets, may be implicated in the increase of pulmonary vascular
resistance leading to increased RV afterload and RV heart failure (HF) over time [9–12].
Notably, inflammation and cytokines that are crucial for the regulation of immune responses
have been involved in the pathogenesis of PAH [13].

The length of survival has improved with recent advances in specific therapy [5,11],
depending on the restoration of RV function [12]. Nevertheless, sudden cardiac death (SCD)
associated with malignant arrhythmias and RV failure accounts for approximately 30%
of PAH-related deaths [14,15]. Due to its non-specific symptoms, PAH is often diagnosed
late and at an advanced stage, which jeopardizes RV function and increases the risk of
arrhythmias. Therefore, besides transthoracic echocardiography, the knowledge of typical
ECG signs and the use of magnetic resonance imaging (MRI), as well as dual/energy
computed tomography (CT), single photon emission CT and ventilation perfusion scans,
could help to detect PAH earlier [16,17]. Moreover, the evaluation of a platelet RNA-based
blood test improves the early diagnosis and clinical outcomes of PAH patients [18]. Early
diagnosis is also crucial in the context of the prevention of chronic supraventricular tach-
yarrhythmias, such as atrial fibrillation (AF) and life-threatening ventricular fibrillation
(VF). These arrhythmias develop in the conditions of systemic inflammation and oxidative
stress, associated with hypertension [5,13,19–21], that induce cardiomyocyte and extracellu-
lar matrix (ECM) remodeling, which are the dominant cardiac pathological characteristics
in PAH.

Myocardial structural remodeling (i.e., hypertrophy and fibrosis) is considered a
crucial factor in the occurrence of cardiac arrhythmias as well as mechanical dysfunction
in PAH [12,22,23] and in essential hypertension (HTN) [19]. As shown in Figure 1, the
response of LV to HTN demonstrates the heterogeneity of the subcellular alterations of the
cardiomyocytes and their junctions that underlie disorders in electrical and mechanical
coupling. These changes, accompanied by gap junctions (GJ) Cx43 (GJCx43) abnormalities
(Figure 2), contribute to the electrical and mechanical dysfunctions and the myocardial
instabilities that promote the development of cardiac arrhythmias and HF.

In this context, it should be emphasized that myocardial structural remodeling and
subcellular alterations are always accompanied by disorders of electrical coupling protein
connexin43 (Cx43) as illustrated in Figure 2.
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Figure 1. Representative electron microscope images of cardiomyocytes from the left ventricle of
a hypertensive rodent heart. Note the apparent heterogeneity of the subcellular alterations (D–I)
in response to HTN, which may also be expected in the response to PAH. (A) Cardiomyocytes
are connected via the compact structure of the intercalated disk composed of GJCx43 (red arrows),
adherens junctions (orange arrows) and desmosome (yellow arrows) in the healthy heart. (B) Asyn-
chrony of contraction between neighboring cardiomyocytes due to electrical uncoupling of GJCx43.
(C) Impairment of cardiomyocyte adhesion due to the dehiscence of adherens junctions in the vicinity
of GJCx43. (D) Hypertrophied cardiomyocytes coupled with laterally located GJCx43. (E) Ischemic
cardiomyocytes connected with rudimentary adherens junctions. (F) Hypercontracted cardiomy-
ocytes (left corner) due to Ca2+ handling disorders are connected with relaxed cardiomyocytes (right
corner), demonstrating the asynchrony of contraction and the involvement GJCx43. (G) Internaliza-
tion (star) and destruction of lateral GJCx43 due to the pronounced extracellular space remodeling.
(H) Long lateral GJCx43 connecting hypertrophied cardiomyocytes. (I) Myocardial interstitial fibrosis
associated with the widening of extracellular space and internalization of GJCx43 (red star), which
had undergone proteasome degradation. Mito—mitochondria, MFB—myofibrils, ESC—extracellular
space. Scale bar: 0.5 µm. Adapted from [19,24].



Int. J. Mol. Sci. 2024, 25, 3275 4 of 21

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 21 
 

 

star), which had undergone proteasome degradation. Mito—mitochondria, MFB—myofibrils, 
ESC—extracellular space. Scale bar: 0.5 µm. Adapted from [19,24]. 

 
Figure 2. A flow chart illustrating the arrhythmogenic factors involved in the development of car-
diac arrhythmias in hypertension. 

Hypertrophy of cardiac myocytes and increased collagen deposition in ECM are 
linked with the downregulation and abnormal topology of Cx43 [19,25–28], which is 
highly pro-arrhythmic. Redistribution of GJCx43 from the ID of hypertrophied cardiomy-
ocytes to the lateral sides (Figure 3B) and their prominent disorder in areas of fibrosis 
(Figure 3C) promote the occurrence of reentry arrhythmias in HTN, and most likely in 
PAH, as indicated by the changes demonstrated in Figures 4 and 5. 

 
Figure 3. Representative immunofluorescence images of GJCx43 topology in the left rat heart ven-
tricles. (A) Dominant polar localization (double arrows) of GJCx43 at the ID and sporadically on 
lateral sides of cardiomyocytes (short arrows) in healthy rat heart. (B) Enhanced lateral localization 
of GJCx43 (short arrows) and reduced at the ID (double arrow) in hypertrophied cardiomyocytes. 
(C) Reduced and prominently disordered GJCx43 in areas of fibrosis (short arrow and double ar-
row). Scale bar: 100 µm. Unpublished images. 

Figure 2. A flow chart illustrating the arrhythmogenic factors involved in the development of cardiac
arrhythmias in hypertension.

Hypertrophy of cardiac myocytes and increased collagen deposition in ECM are linked
with the downregulation and abnormal topology of Cx43 [19,25–28], which is highly pro-
arrhythmic. Redistribution of GJCx43 from the ID of hypertrophied cardiomyocytes to
the lateral sides (Figure 3B) and their prominent disorder in areas of fibrosis (Figure 3C)
promote the occurrence of reentry arrhythmias in HTN, and most likely in PAH, as indicated
by the changes demonstrated in Figures 4 and 5.
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Figure 3. Representative immunofluorescence images of GJCx43 topology in the left rat heart
ventricles. (A) Dominant polar localization (double arrows) of GJCx43 at the ID and sporadically on
lateral sides of cardiomyocytes (short arrows) in healthy rat heart. (B) Enhanced lateral localization
of GJCx43 (short arrows) and reduced at the ID (double arrow) in hypertrophied cardiomyocytes.
(C) Reduced and prominently disordered GJCx43 in areas of fibrosis (short arrow and double arrow).
Scale bar: 100 µm. Unpublished images.
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Figure 4. Reduced immunolabeling of GJCx43 in the right ventricle and septum in monocrotaline-
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Figure 5. Interstitial fibrosis (blue color) in the right heart ventricle and septum in monocrotaline-
induced PAH in rat. Masson trichrome staining. Scale bar: 15 µm. Unpublished light microscopic 
images. 

Such changes facilitate electrical uncoupling of cardiac myocytes and alterations of 
electrical signal propagation, resulting in myocardial electrical instability that in turn pro-
motes atrial or ventricular arrhythmias [24,29]. However, in contrast with HTN, much less 
is known about cardiac Cx43 alterations in PAH. Nevertheless, available data suggest the 
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induced PAH in rat. Polar localization (double arrows) of GJCx43 at the ID and sporadically on lateral
sides of cardiomyocytes (short arrows). Scale bar: 15 µm. Unpublished confocal images.
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Such changes facilitate electrical uncoupling of cardiac myocytes and alterations of
electrical signal propagation, resulting in myocardial electrical instability that in turn
promotes atrial or ventricular arrhythmias [24,29]. However, in contrast with HTN,
much less is known about cardiac Cx43 alterations in PAH. Nevertheless, available data
suggest the pathogenic implication of Cx43 not only in the heart muscle but also in
pulmonary vessels [28,30,31].

According to a statement of the recent ESC 2023 congress, the effective treatment of
PAH and arrhythmias are challenges in cardiac care. It seems necessary to comprehensively
investigate the inter-organ and inter-cellular communication in PAH-induced RV failure
and cardiac arrhythmias in patients and animal models [32,33].

This approach should include investigation of gap junction Cx43 (GJCx43) channels
and Cx43 hemichannels for the elucidation of their impact on pathogenesis and arrhyth-
mogenesis in PAH. In line with these ideas, the intention of this review is to provide
comprehensive information from the better explored HTN and from the, as-yet scarce,
information from the less explored PAH disease, in order to stimulate further research to
reveal novel therapeutic tools. Protection from oxidative stress and inflammation related
to Cx43 (i.e., connexome) and ECM disorders seems to be crucial. Compounds that atten-
uate inflammation and oxidative stress, such as melatonin, omega-3 fatty acids, SGLT2i,
and statins, exhibit antiarrhythmic/cardioprotective properties. Further investigation is
required for the exploration of the potential antiarrhythmic benefit associated with the inhi-
bition of Cx43-hemichannel-mediated NLRP3 inflammasome signaling in PAH. Preventing
Cx43 hemichannel opening and preserving GJCx43 function will be key for the further
research and development of new connexin-based approaches for the in-clinic treatment of
hypertensive heart disease.

2. Electrical Instability and Incidence of Cardiac Arrhythmias in PAH

Patients suffering from PAH are at increased risk of developing of cardiac arrhyth-
mias, [11,34–37], which are serious complications. The incidence of supraventricular and
ventricular tachycardias associated with adverse outcomes has been reported in 8% to
38% of PAH patients [11,14]. During the 3-year follow-up period, 1/3 of patients with
PAH developed supraventricular arrhythmias, which were related to the worsening of
hemodynamic and functional parameters and which independently predicted adverse
prognosis [38,39]. Patients with atrial arrhythmias exhibited higher right atrial (RA) pres-
sure, pulmonary wedge pressure, NT-proBNP and thyroid disease prevalence as well as
higher mortality. Atrial remodeling in PAH patients contributes to a higher incidence
of supraventricular arrhythmias [40], which are treated by pharmacological or electrical
cardioversion and radiofrequency ablation. AF has been shown to be prevalent in 31.1%.
in patients with PAH [41].

Of note, RA function is associated with changes in RV function and there is RA–
RV interaction in PAH [42]. RA–RV uncoupling is evident in PAH patients with atrial
fibrillation (AF). Atrial flutter and AF develop in a sizable number of patients [15,41,43],
most likely due to fibrosis-related electrical conduction abnormalities [44]. The incidence
of AF tremendously worsens cardiac symptoms [40,45]. Therefore, it is essential in PAH to
control heart rhythm.

Premature ventricular beats are more frequent in those subjects with higher adrenergic
drive and lower oxygen saturation, while patients with episodes of syncope exhibit a
relatively higher vagal activity [46].

ECG alterations [46,47] and electrical instability are important predictive factors of
life-threatening events in patients with pressure overload of either LV or RV [48]. Moreover,
right–left heart interactions and electro-mechanical interactions may be helpful when using
ECG as an electrophysiological imaging technology [48]. Electrophysiological changes can
facilitate the recognition of pathophysiological processes in the heart.

ECG has revealed ST segment depression and T wave inversions affecting repolar-
ization in PAH, which might be useful for diagnostics. Moreover, QTc dispersion and
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prolonged QT/QTc interval positively correlated with pulmonary arterial pressure and
were seen to be significantly increased in patients with severe PAH [49]. P-wave dispersion
might be an effective ECG indicator for PAH patients for assisting early diagnosis, disease
severity assessment and prognosis evaluation [50]. Prolonged QRS duration was seen
to be a predictive factor for ventricular arrhythmias that were increased in chronic RV
volume overload [51].

In this context, it is interesting to note that pressure overload-induced RV failure was
shown to be associated with electrophysiological remodeling of the atrophic LV [52] and
contractile dysfunction [53,54]. Longer action potentials (AP) and conduction slowing were
observed, due to a 24% reduction of Cx43 levels that impaired electrical impulse transmission.

Alterations in Ca2+handling proteins contribute to RV diastolic dysfunction due to
insufficient diastolic Ca2+ clearance [55], which is known to be pro-arrhythmic [56–58].

Structural remodeling is always linked with electrical remodeling, mostly due to
Cx43 disorders and defective electrical signal propagation among the cardiomyocytes that
increase arrhythmogenesis [19,59,60]. Indeed, the heterogeneous expression of Cx43 in
the myocardium of the right ventricular outflow tract may promote its dysfunction and
serve as substrate for idiopathic ventricular arrhythmia [61]. Available data suggest that
the impairment of intercellular electrical coupling and signaling via Cx43 channels may be
involved in both the pathomechanisms underlying PAH [28,62,63] and the occurrence of
cardiac arrhythmias in PAH, as in primary HTN [19,26,64–66].

In an animal PAH model, an abnormal and proarrhythmic topology of Cx43 on the
lateral sides of cardiac myocytes in RV was detected [28,67]. The disorganization of Cx43
became more pronounced with the progression of hypertrophy and fibrosis, while the
proportion of Cx43 at the intercalated disk progressively decreased in PAH [62]. In parallel,
conduction velocity and anisotropic ratio in RV were significantly lower than in control
rats [28,62]. These conditions promote the development of arrhythmias. However, current
therapies aiming to specifically attenuate RV remodeling and improve RV function in
PAH [68] did not pay attention to the ECG analysis that might suggest Cx43 disorders, as
in HTN [59].

Taken together, cardiac arrhythmias, AF and VF, are increasingly recognized as serious
complications in PAH contributing to symptoms, morbidity, mortality, and sudden cardiac
death. However, there is still a paucity of epidemiological, pathophysiological, and outcome
data to guide management of these patients. Undoubtedly, more attention should be paid
to systemic inflammation and oxidative stress, relevant factors that promote development
of PAH and arrhythmogenesis.

3. Factors and Mechanisms Involved in the Occurrence of Cardiac Arrhythmias: Cx43 as
a Key Player

In the heart the electrical activation of the pacemaker cells in the sinoatrial node (SA)
is conducted through the atria, atrioventricular node (AV) and via the Purkinje conduction
system into the ventricles [69,70]. Along this pathway, all cardiac myocytes are activated
by currents that flow through gap junction (GJ) Cx channels. In the heart, three main
GJ channel proteins are expressed, Cx40 in the atria, dominant Cx43 in the atria and
ventricles and Cx45 in the SA and AV nodes as well as in the ventricular conduction
Purkinje system [69,70]. Distribution of the action potential and coordinated electrical
activation of the heart is maintained by the coupling of atrial and ventricular myocytes via
phosphorylated GJCx43 channels at the intercalated disks [71]. Cardiac GJCx43 channels
ensure the propagation of both the electrical and the molecular signals that are essential
for myocardial synchronization and proper heart function [69,71]. Notably, there are no
differences in Cx43 expression between RV and LV in either animals or humans [62].

It is generally accepted that the main factors involved in the development of severe
cardiac arrhythmias consist of arrhythmogenic structural substrate (hypertrophy and fibrosis),
ectopic triggers (early after-depolarization (EAD) and delayed after-depolarization (DAD)) and
modulating elements, such as the autonomic nervous system, humoral elements (e.g., renin-
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angiotensin-aldosterone system), redox status, inflammation and ischemia [72–78]. These
conditions underly the electrophysiological mechanisms of arrhythmias, which include
aberrant impulse formation due to triggered activity or the enhanced automaticity and
slowing of impulse conduction promoting re-entrant excitation [73,74,79].

Comprehensive research indicates that Cx43 may be implicated in all proarrhythmic
processes in hypertension affected heart as it is illustrated in Figures 2 and 6. Reduced
Cx43 expression and its abnormal topology on the lateral sides of hypertrophied cardiac
myocytes, as well as their disordered distribution in the fibrotic ventricles of rodents with
HTN [19,26,80,81] or with PAH [28,62,72,82–84], may underly arrhythmogenic setting [27],
which promotes non-uniform anisotropy, conduction defects and re-entry [85–88], as well
as ventricular mechanical dysfunction [89,90]. Abnormal Ca2+handling and Ca2+ over-
load [56–58,91], as well as acidosis (due to ischemia or insufficient perfusion [75]), may
induce alterations in the phosphorylation and dephosphorylation of GJCx43 channels with
reduced permeability and even electrical uncoupling [29,92–94], thereby promoting the trig-
gered ectopic excitation and conduction slowing [95]. The functional remodeling of Cx43
occurs by the regulation of Cx43 phosphorylation that impacts arrhythmogenesis [94,96,97]
in HTN [19,26]. Alterations in autonomic tone, sympathetic vs. parasympathetic activ-
ity, and humoral factors including RAAS are considered modulating elements regarding
susceptibility of the heart to arrhythmias [71,74].
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In addition, it should be taken into consideration that electrical coupling via GJCx43
channels depends on the mechanical coupling provided by adherence junctions (AJ) and
desmosomes (D) at the intercalated disk [98–100].The integrity of these structures, con-
nected with GJCx43 and defined as a “connexome” [19], is deteriorated in HTN and most
likely in PAH due to collagen deposition, fibrosis and Ca2+ overload [56,58,64], thereby
increasing cardiac arrhythmia susceptibility [19,101]. Cell adhesion molecules are also
critical in fibrotic progression [102].

The pro-arrhythmic signaling of systemic and tissue inflammation [5,13,103–106], as
well as oxidative stress [5,77,107–109], resulting in the downregulation of Cx43 and the
deterioration of GJCx43-channel-mediated intermyocyte communication in hypertensive
heart diseases [19,20] should be emphasized. Notably, Cx43 hemichannels in the cardiac
and vascular systems are involved in NOD-like receptor protein-3 (NLRP3) inflammasome
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signaling [24,110]. It is most likely that Cx43 hemichannels are activated in HTN as well as
in PAH [111] and, along with lateralized GJCx43 channels, contribute to arrhythmogene-
sis [20,24]. NLRP3, via Cx43 hemichannels, also promotes aberrant and pro-arrhythmic
diastolic Ca2+ leak and triggered ectopic activity (DAD or EAD) [112]. AF has been
shown to be promoted by the enhanced activity of the NLRP3 inflammasome in atrial
cardiac myocytes [106].

Interestingly, heterogeneous Cx43 expression in the RV outflow tract is considered
substrate for idiopathic ventricular arrhythmias [61]. Moreover, differences between LV
and RV electrophysiology during pathophysiological remodeling [79,113,114] may enhance
arrhythmogenicity. Predominant RV electrical remodeling promotes multiwavelet re-entry
which underlies ventricular tachycardia [83]. In this context, the strong proarrhythmic im-
pact of myocardial extracellular matrix (ECM) remodeling should be emphasized, including
the fibrosis in PAH [11,12,22,23,115] and HTN [19,116] that is promoted by neurohumoral
factors. ECM remodeling is associated with electrical instability due to impairment and/or
loss of the GJCx43-channel-mediated electrical coupling of cardiac myocytes [19,117–119]
that is essential for AP propagation. Accordingly, fibrosis contributes to both mechanical
heart failure and the occurrence of malignant re-entrant ventricular arrhythmias VT or
VF [90], as well as persistent supraventricular arrhythmias in the setting of high atrial and
ventricular pressure [14,120,121]. Moreover, there is the clinical impact of cardiac fibrosis
on arrhythmia recurrence after ablation of triggers [122]. In turn, inhibition of pro-fibrotic
TGF-β1 signaling [123] and preservation of Cx43 via the prevention/attenuation of inflam-
mation and oxidative stress appear to be a promising therapeutic strategy in PAH, as it is
in HTN [19,20]. Notably, myocardial fibrosis and diastolic dysfunction are reversible in hy-
pertensive heart disease, in response to pharmacological intervention with lisinopril [124]
and perhaps with other drugs. This issue requires more attention and further research.

The abovementioned stressful factors may deteriorate the integrity of ID, accompanied
with the reduction and lateralization of Cx43 [100,125]. The altered topology of GJCx43,
along with the disruption of the adherens junctions and desmosome may result in conduc-
tion slowing [126] as well as in electro-mechanical disorders. Therefore, it can be expected
that the preservation of GJCx43 channels and the improvement of cardiac-GJCx43-mediated
communication [97,103,127,128], as well as the integrity of the intercalated disks [58], could
be a promising antiarrhythmic strategy.

Taken together, pathogenesis of PAH, as with essential HTN, is influenced by genetic,
epigenetic, and environmental factors. Arterial hypertension is a common causative factor
of vascular as well as cardiac remodeling and dysfunction [33,129]. Given that NLRP3
inflammasome is a key driver of vascular disease [130] and heart failure [131], it appears that
enhanced NLRP3 signaling via Cx43 hemichannels may be implicated in pulmonary artery
remodeling and endothelial, as well as RV, dysfunction. Indeed, inhibition of the NLRP3
inflammasome by melatonin has been shown to have alleviated acute lung injury [104].
This suggests that Cx43 abundantly expressed in the heart, lung and vessels might be a
promising therapeutic and antiarrhythmic target in PAH [30,62,63,110,115,132]. Indeed,
Cx43 mimetic peptides [133] (e.g., Gap26, Gap27 and Peptide5) have been reported as
therapeutic candidates for the disease processes linked to aberrant Cx43 and some have
advanced to clinical testing in humans [134].

4. Progress in Research and Treatment in PAH with the Potential to Prevent
Cardiac Arrhythmias

Investigation and cardio protection of the RV are less established [135,136], whereas
the molecular mechanisms of conditioning in the LV are well characterized [62,113].
From the perspectives of novel therapeutic strategies for right heart ventricle failure and
the prevention of cardiac arrhythmias in PAH, the lesson from the left heart seems to
be relevant [19,137,138].

The primary pathomechanisms in PAH appear to be inflammation and oxidative stress,
which affects various cell types, such as endothelial cells, smooth muscle cells, pericytes and
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fibroblast, as well as inflammatory cells and platelets [13,139–141]. This suggests that PAH
patients may benefit from multitargeted therapy [5,142] that focuses on the improvement
of vascular function, along with afterload reduction [3,137,143].

Vascular dysfunction is crucial in the pathophysiology of PAH [32] as well as in HTN
(Tomiyama 2023). The NLRP3 inflammasome [130,144] is one of the key drivers. Inflamma-
some signaling is transmitted via the Cx43 hemichannels and Pannexin1 channels [145,146]
that promote pro-inflammatory and pro-fibrotic processes [24].

Melatonin (a pineal hormone), via inhibition of the inflammasome-associated acti-
vation of endothelium and macrophages, attenuates PAH [105,147] and most likely ar-
rhythmogenesis. Indeed, melatonin has been shown to reduce susceptibility of HTN rat
heart to VF that was associated with increased Cx43 expression in LV [80]. In addition,
melatonin, as a potent antioxidant, attenuates the abnormal proarrhythmic topology of
Cx43 and suppresses fibrosis in catecholamine-stressed HTN rats [81]. These findings
provide a basis for the application of melatonin that is clinically focused on inflammasomes
and reactive oxygen species (ROS) as a possible target of PAH treatment. This may include
mitochondrial uncoupling proteins involved in the restriction of ROS production [148].

4.1. Benefits of SGLT2i Therapy

Preclinical and clinical studies [149] indicate that sodium glucose co-transporter-2
inhibitors (SGLT2i) attenuate endothelial and microvascular dysfunction via several inter-
playing molecular mechanisms linked with the suppression of inflammation and oxidative
stress resulting in vasodilation and beneficial cardiovascular effects. Indeed, SGLT2i exerts
direct anti-inflammatory and anti-oxidative effects that ameliorate endothelial dysfunc-
tion [150], one of the main pathomechanisms in PAH. Targeting inflammation via SGLT2i
canagliflozin may prevent vascular calcification [151,152] and suppress fibrogenesis by
empagliflozin [153]. Dapagliflozin has been shown to reduce the risk of severe ventric-
ular arrhythmias in patients with HF [154]. Empagliflozin protects the heart against
experimental ischemia/reperfusion-induced SCD via activation of the ERK1/2-dependent
cell-survival signaling pathway [155]. Notably, dapagliflozin attenuated vulnerability to
arrhythmias by regulating Cx43 expression and enhancing its phosphorylation via the
AMPK pathway in post-infarcted rat hearts [156].

Emerging evidence on the ability of SGLT2i to modify epigenetic signatures in cardio-
vascular diseases has stimulated the investigation of a possible implication of these drugs
in the development of cardiac arrhythmias [157].

Empagliflozin suppresses the production of mitochondrial reactive oxygen species
and mitigates the inducibility of AF [158]. Furthermore, empagliflozin has been shown to
attenuate fibrosis and the downregulation of Cx43 as well as to shorten QT interval in mice
with metabolic syndrome [159]. Empagliflozin has also been shown to suppress cardiac
fibrogenesis through the inhibition of a sodium–hydrogen exchanger and modulation
of the calcium homeostasis in human fibroblasts [153]. Pretreatment with empagliflozin
has been shown to protect the heart from the lethal ventricular arrhythmia induced by
myocardial ischemia and reperfusion injury. These protective benefits may occur because
of the activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-
independent manner [155].

Dapagliflozin has been shown to reduce the risk of serious ventricular arrhythmia,
cardiac arrest, or SCD when included in the conventional therapy offered to patients with
HF, with reduced ejection fraction [154]. Reduced ventricular ectopic burden suggests
an early antiarrhythmic benefit of dapagliflozin in patients with HF [160] that might be
associated with significantly reduced SCD and death from progressive HF [161].

4.2. Targeted Treatment

The multitargeted benefits of sotatercept [162] include various vascular actions and
anti-remodeling effects, associated with the inhibition of Smad2/3 activation and down-
stream transcriptional activity. In this context it would be interesting to explore the effect of
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sotatercept on cardiac fibrosis, Cx43 expression and topology, and the vulnerability of the
heart to arrhythmias.

Targeting upregulated Wnt-β Catenin-FOSL signaling in PAH using pharmacological
inhibition with porcupine O-acyltransferase ameliorated the RV remodeling and collagen
deposition [68] that may influence Cx43 expression/distribution and arrhythmogenesis.

Recent findings have identified the upregulation of long noncoding RNA H19 in
decompensated RV in PAH patients that correlated with RV hypertrophy and fibrosis [163].
Therefore, RNA H19 is suggested as a new therapeutic target and a promising biomarker
of PAH severity and prognosis.

Augmentation of ACE2 and conversion of angiotensin II to angiotensin-(1–7) improved
PAH in rodent [164] and reduced markers of oxidant and inflammatory mediators in
human PAH [164]. The anti-fibrotic potential of angiotensin (1–7) has been reported in
hemodynamically overloaded rat heart [165].

Trandolapril and losartan attenuated pressure and volume overload-induced adverse
alterations of cardiac Cx43 and ECM in hypertensive Ren 2 transgenic rats [166]. Pirfenidone
inhibited the production of tTGF-β1 and diminished fibroblast proliferation and collagen
production [167].

The antiarrhythmic effect of ranolazine has been associated with the inhibition of
the late sodium current and the suppression of RV remodeling and fibrosis. These results
support the notion that ranolazine can improve the electrical and functional properties of
the right ventricle, highlighting its potential benefits in the setting of RV impairment [34].

Nintedanib, a tyrosine kinase inhibitor that has been approved for the treatment
of idiopathic pulmonary fibrosis has been shown to be favorable to RV remodeling due
to the inhibition of cardiac fibroblast activation, decreased RV dilatation and reduced
hypertrophy [168].

A benefit of the β3 adrenergic agonist mirabegron was shown to be a significant
improvement in RV ejection fraction in PAH assessed during the SPHERE-HF trial [169].

Stimulating the parasympathetic activity of pyridostigmine through the inhibition of
acetylcholinesterase improved survival, RV function, and pulmonary vascular remodeling
in experimental PAH [170].

Detrimental neurohormonal overactivation was inhibited by renal denervation that
reduced pulmonary vascular remodeling in experimental PAH [171].

The epigenetic mechanisms involved in the pathogenesis of PAH, specifically DNA
methylation, histone modifications, and microRNAs may be a therapeutic potential [18,172].
Bromodomain and extra-terminal domain proteins are epigenetic modulators and bromo-
domain-containing protein 4 (BRD4) is involved in the inflammation of several major
human lung diseases [173]. Preclinical findings suggest the benefit of targeting these
proteins using pharmaceutical inhibitors in different lung diseases.

In the context of the prevention or attenuation of myocardial fibrosis, more atten-
tion should be paid to non-coding RNAs, such as microRNA-21, microRNA-29 and long
RNAH19, that have become not only biomarkers but could also serve as therapeutic targets
with which to fight fibrosis [115,163]. Indeed, inhibition of microRNA-206 ameliorates
arrhythmias via targeting Cx43 [174].

According to the 2022 ESC/ERS guidelines for the diagnosis and treatment of PAH [3],
recommendation therapies include endothelin receptor antagonists, phosphodiesterase
type 5 inhibitors, soluble guanylate cyclase stimulators, prostacyclin analogues and prosta-
cyclin receptor agonists. Improvement of vascular function, along with afterload reduction,
is still the cornerstone in the treatment of PAH [132,137,143,175,176]. Progress in imaging
techniques, such as positron emission tomography, may become helpful in the deter-
mination of neurohormonal status in PAH patients of different disease stages and the
optimization of individual treatment responses [177].

Finally, it should be noted that the task of ERS is to increase the availability and aware-
ness of exercise training and rehabilitation programs for PAH patients as an important
treatment option that has been shown to be beneficial in cardiovascular diseases [178].
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Endurance exercise training in patients with stable PAH has a positive effect, promot-
ing potential mechanisms of damage repair. This effect could contribute to a positive
hemodynamic and clinical response [179], as with HTN [180].

Moreover, nutritional deficiencies, such as those of iron, vitamins D, B12, K1 and
selenium [181], have been found in patients with PAH. The improvement of dietary intake
and future research to demonstrate the clinical importance of nutritional interventions are
ongoing tasks.

Altogether, nutrition and lifestyle interventions may not only improve the quality of
life of patients with PAH [181,182], but most likely also prevent development of the disease.

5. Conclusions

Although advances in PAH therapy have improved outcomes, poor survival remains
worldwide [183]. There are still gaps in our knowledge of arrhythmias in PAH in terms of
both pathogenesis and optimal management strategies [184]. One of the most important
issues in PAH is late diagnosis, since screening or diagnostic efforts are often overlooked
due to the rarity of the disease. Currently there are no selective treatments targeting the
failing right ventricle. New treatments directly targeting the crucial pathological deter-
minants of RV failure and arrhythmogenesis are still emerging. Moreover, the discovery
of novel disease pathways and modifiers affecting the pulmonary circulation requires
intense investigation [185].

Due to the health benefits conferred by the early detection of PAH, as well as the
identification of novel PAH-associated genes and biomarkers, [186] perspectives seem
to be better [187]. The length of survival has improved with recent advances in specific
therapy, although it is still the case that only 65% to 70% of patients survive five years
with a PAH diagnosis [11]. Unfortunately, there are no studies that definitively confirm
that specific PAH therapies reduce the risk of cardiac arrhythmias. Further research is also
essential to elucidate sex differences in the development of HTN and PAH for efficient
treatment response [19].

Endothelial dysfunction in arterial hypertension as a complex interplay has been a
matter of study in recent years as a strategy while treating hypertension [137]. Considering
NLRP3 inflammasome as a key driver of vascular disease and endothelial dysfunction [130]
suggests the implication of Cx43 hemichannels, which might be therapeutic targets. The
potential benefit of the inhibition of Cx43-hemichannel-mediated NLRP3 inflammasome
signaling in PAH requires further investigation. This challenging strategy may attenuate or
reverse the process of myocardial fibrosis and the downregulation and mislocalization of
GJCx43, thereby offering protection from malignant arrhythmias in hypertension. Moreover,
a peptide mimetic of the Cx43 carboxyl-terminus reduces GJ remodeling and the incidence
of arrhythmia [133].

Numerous experimental findings and results of clinical trials undoubtedly indicate
the use of a multitargeted approach to prevent or attenuate the development of malignant
arrhythmias in pathophysiological conditions, including PAH. Suppression of ECM re-
modeling and the preservation of the cardiac GJCx43 channel’s function and topology, for
proper electrical signal propagation supporting myocardial electrical stability, is “conditio
sine qua non”.

Thus, clinicians should monitor the markers of inflammation and oxidative stress in
order to reduce their adverse effects in hypertensive patients. This view is supported by
literature selection process outlined in Figure 7.
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