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Abstract: Animal studies are typically utilized to understand the complex mechanisms associated
with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro
pooled human hepatocytes have the potential to capture population variability. Here, we examined
the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots,
obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle,
1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We
assessed gene expression variability using heat maps, correlation plots, and statistical variance.
We used KEGG pathways and co-expression modules to identify underlying physiological pro-
cesses/pathways. The co-expression module analysis showed that the majority of the lots exhibited
activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of
common differentially expressed genes across the lots with similarities in their response to amino acid,
lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot
variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability
within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our
analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.

Keywords: predictive toxicology; RNA-seq; thioacetamide; in vitro multi-donor pooled hepatocytes;
toxicity modules; liver injury; KEGG pathways; toxicogenomics

1. Introduction

Exposure to toxic chemicals stemming from environmental conditions, contaminated
food, or water can cause health concerns and may lead to acute or long-term injuries.
Methods to evaluate toxicant-induced responses and their potential to cause adverse effects
range from animal chemical exposure studies to different cell-based in vitro approaches.
In vitro experiments provide the possibility of higher throughput investigations as com-
pared to animal experimentation; however, the correlation between the in vivo and in vitro
experiments as well as the interspecies correlation between the animal and human injury
response remain challenging [1]. Primary animal hepatocytes have frequently been used
to study liver function and disease mechanisms, and the primary hepatocyte culture is
recognized as the most relevant in vitro model for studying hepatotoxicity and screening
chemicals for drug-induced liver injuries. Primary human hepatocytes are thus considered
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the gold standard for qualitatively predicting the metabolism, toxicity, and drug interaction
profiles of chemicals [2,3]. However, the results derived from human hepatocyte culture
studies likely differ based on the demographic, genetic, and environmental characteristics
of the donors from which the cells were cultured, as well as the techniques used to preserve
the hepatocyte functionality outside of the body [4,5]. Overall, for a given toxicant, it is
often challenging to identify common expression patterns from different in vitro studies
conducted using hepatocytes cultured from independent donors. Hence, pooled hepatocyte
cultures, obtained from multiple donors, offer the opportunity to reduce variability and
devise a better workflow for consistently analyzing data from these studies.

The field of toxicogenomics has contributed to the understanding of how gene ex-
pression patterns and subsequent affected pathways may characterize the physiological
response to drugs and toxicants [6]. A broad range of methods and platforms can map
the connectivity between toxicant exposure and the affected genes. These methods enable
the identification of molecular mechanisms, relevant biomarkers, phenotypic processes or
injuries, and risk assessment profiles for a given toxicant. Our research group has used a
variety of approaches to identify significantly expressed genes and their altered expression
in order to assess the likely impact of exposure to a variety of toxicants (thioacetamide,
acetaminophen, bromobenzene, carbon tetrachloride, and mercuric chloride) [7–12]. In
particular, our earlier work on thioacetamide presented thorough toxicogenomic analyses
of rat and guinea pig livers and kidneys, as well as of in vitro gene expression data from
human hepatocytes [10]. The objective of the current study is to assess the responses of
pooled human hepatocytes to thioacetamide exposure. Thioacetamide, which is known
to cause liver injury, is often used as a model hepatotoxicant in a variety of experimental
studies. Although previous studies have provided key insights, additional analyses of
multi-donor pooled hepatocytes for liver injury are needed to validate the study outcomes
and characterize toxicity-induced responses using toxicogenomic approaches.

Here, we sought to investigate the gene expression responses from the impact of
thioacetamide exposure using RNA-seq data from multiple lots of pooled human hepato-
cytes. We evaluated five individual lots of pooled hepatocytes, and also evaluated the lots
merged together. Each of the five lots contained primary hepatocytes that were obtained
from either five or ten individual donors. The advantage of pooling hepatocytes from
different donors is to minimize the variation that may arise from a comparison of hepato-
cytes derived from a single donor, thereby improving the predictability of gene expression
outcomes. Thus, the current study aimed to analyze uniformity and variability in pooled
hepatocyte cultures using different toxicogenomic approaches based on the information
from gene level expression data, KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways, and toxicity co-expression modules. Our multi-faceted approach will help elucidate
the utility of different tools to express similarities and differences in pooled hepatocyte
research. In addition, we analyzed the pattern for the key drug metabolism cytochrome
P450 enzymes and hepatocyte transporters from the ABC and SLC families to demonstrate
pooled hepatocyte lot-to-lot variability and uniformity. Some genes consistently showed
up- or down-regulation patterns, such as ATP8B1, ABCC2, CYP26A1, CYP26B1, CYP2C9,
and CYP3A4/5; however, a number of genes, such as ABCB1, ABCC4, SLC22A7, and ABCB4,
showed significant fluctuation and opposite patterns across different lots.

2. Results and Discussion
2.1. Dose Optimization for Thioacetamide Exposure

To determine the dose of thioacetamide and the length of exposure needed to cause
a detectable level of cell injury in a pool of primary human hepatocytes derived from
multiple donors, we carried out a time-course/dose–response study using the two different
following methods to detect injury: (1) we quantified intracellular ATP levels, and (2) we
quantified lactate dehydrogenase activity in the media. Measuring cell viability based
on metabolic activity, i.e., ATP levels, provided quality data for the determination of the
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optimal thioacetamide dose and the length of exposure with minimal variation among
treatment replicates (see Figures S1–S3).

Figure S1 illustrates the time-course study to determine the amount of thioacetamide
exposure needed to induce detectable cell injury in the pooled primary human hepatocytes.
We tested eight doses (0, 0.049, 0.148, 0.444, 1.333, 4, 12, and 36 mM) with six different
lengths of exposure (4, 8, 12, 16, 20, and 24 h) for a total of 48 conditions. We determined
the minimum time to respond for each dose and observed a near-maximal reduction in
cell viability occurring as early as 4 h, reaching a maximum by 16 h, and maintaining this
maximum through 24 h. Figures S2 and S3 quantify cell viability versus the thioacetamide
dose at 24 and 4 h of exposure, respectively. Figure S2 illustrates a dose-dependent decline
in cell viability following thioacetamide treatment for 24 h, with doses ranging from 0.049 to
36 mM, as compared to a smaller reduction in cell viability after 4 h of exposure, shown in
Figure S3. We determined that cell viability was dependent on exposure time and concluded
that a 24 h exposure to thioacetamide was optimal for both a low dose (1.33 mM), which
caused minimal cell injury, and a high dose (12 mM), which resulted in an easily detectable
cell injury.

The second method used to measure cell viability, which assessed cell membrane
integrity by measuring the activity of lactate dehydrogenase released into the culture
medium after the thioacetamide treatment (see Figure S4), did not yield high-quality
data, but did yield results that agreed with those obtained with the metabolic activity-
based assay. Figure S4 shows a dose-dependent increase in lactate dehydrogenase activity
in the culture medium after 24 h of exposure to various doses of thioacetamide, which
indicates a reduction in cell membrane integrity and cell viability as the concentration
of thioacetamide increased from 0.049 to 36 mM. These results support the conclusions
regarding the optimal time and doses of thioacetamide needed to induce cell injury in
pooled primary human hepatocytes.

In addition to these preliminary tests, we assessed the efficacy of the low- and high-
dose thioacetamide treatments by performing a cell viability assay on the same five lots
of pooled primary human hepatocytes utilized for the isolation of RNA for our RNA-seq
investigation of the gene expression responses following the thioacetamide exposure of five
different lots of pooled human hepatocytes, labeled lots A–E. Lots A and B each consisted
of a pool of human hepatocytes from five different donors, whereas each of the other lots
consisted of a pool of hepatocytes derived from ten different donors. Figure 1 shows the
cell viability assay results, which suggested a 2% reduction in viability with the low-dose
(1.33 mM) treatment and a highly significant 33% reduction in viability with the high-dose
(12 mM) treatment. Each lot of pooled hepatocytes responded similarly to 24 h of the
thioacetamide treatment, thus suggesting that the cells treated for the isolation of RNA
would likely have only a slight injury at the low dose and a significant injury at the high
dose of thioacetamide. Given the outcomes of both doses, we focused our RNA-seq analysis
on the cells exposed to the high dose of thioacetamide due to the detection of a significant
reduction in cell viability as compared to the lower dose.

2.2. Gene-Level Analysis

The RNA-seq data provide the individual gene expression responses induced by the
toxicant exposure. Table 1 indicates in bold text the number of expressed genes whose
expression was altered significantly after different lots (A–E) of pooled primary human
hepatocytes were exposed for 24 h to thioacetamide at a dose of 12 mM. In addition, the
number of differentially expressed genes found to be common between the different lots of
pooled primary human hepatocytes are indicated in Table 1 as plain text. We identified a
large lot-to-lot variability in the number of significantly altered genes, ranging from 2241
to 3521. This large variability highlights the variation seen across different lots of cells
derived from multiple donors. However, the presence of a large number of gene overlaps
between different lots also highlights the presence of similarities among genes affected by
the thioacetamide toxicant. Additionally, we compared the differentially expressed genes



Int. J. Mol. Sci. 2024, 25, 3265 4 of 21

across all lots and found 816 common genes (Figure 2). Identifying these overlapping
genes allowed us to focus on the commonality of the involvement of these genes and their
potential role in liver function and injury. Table 2 shows the top 10 up- and down-regulated
genes from the 816 common gene set based on the average fold-change values from the
lots. The down-regulation of the top two genes, CYP26B1 and CYP26A1, is noteworthy
because they are largely responsible for retinoic acid (RA) clearance in the liver, as it is
metabolized to 1-oxo-RA and 4-OH-RA by these enzymes [13]. When rats were given
thioacetamide, there was an observed rise in RA and a corresponding decrease in the
activity of enzymes involved in retinoid metabolism [14]. Particularly, mRNA expression
studies have examined CYP26A1 mRNA isoforms in the human liver as a major contributor
to RA clearance in the liver [15–17]. The metabolism of retinoid acid catabolism in the
body is usually attributed to both of these genes [18,19]. Additionally, both of these genes
have been highlighted in the work of Guo et al. [20], and are the most variable expressed
genes among multiple donors [20]. On the other hand, the top two up-regulated genes,
C2CD4B and C2CD4A, have multiple functional associations but are largely involved in the
regulation of the inflammatory response [21]. The SPP1 and THRSP genes have also been
shown to be among the top 10 differentially expressed genes, in line with our previous
research using thioacetamide liver injection in guinea pigs and rats [11]. In fact, SPP1 is
an important biomarker for fibrosis [22]. FGF21 is another significant gene, and according
to recent research, it plays a significant role in lipid metabolism and reduces hepatocyte
damage [23–27]. Moreover, the activation of several of these genes, such as SPP1, THRSP,
SLCO4C1, SERPINA1, and DDAH2, is well known and associated with liver injuries [28–32].
Additional up- or down-regulated genes in Table 2 may be possible markers for early stage
liver injury.
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Table 1. Overlap of significantly altered differentially expressed genes (q < 0.1) found in human
in vitro pooled hepatocyte data across five lots (A–E) for thioacetamide exposure.

Overlap 12 mM Thioacetamide

Lots A B C D E

A 2821 1631 1542 1302 1609

B 3128 1970 1600 1567

C 3521 1548 1444

D 2241 1275

E 2347
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Figure 2. Venn diagram depicting the common differentially expressed genes across different lots
(A–E) of in vitro pooled human hepatocytes exposed to thioacetamide (12 mM) treatment.

Table 2. Top 10 down- and up-regulated differentially expressed genes from the 816 common genes
across all lots of pooled human hepatocyte and their average fold-change (FC) in expression and
standard deviation (SD).

Gene (Down) log2(FC) SD Gene (Up) log2(FC) SD

CYP26B1 −4.50 1.66 C2CD4B 2.42 0.39
CYP26A1 −3.75 2.00 C2CD4A 2.40 0.27
IFNGR1 −2.53 3.03 SERPINA1 2.32 4.92
MCM10 −2.15 0.78 DDAH2 2.08 2.17
STEAP4 −1.95 0.62 THRSP 1.85 0.52
GNAO1 −1.75 1.74 FGF21 1.81 0.22

SPP1 −1.44 0.28 PIWIL2 1.35 0.37
LPCAT1 −1.44 1.12 FUT1 1.32 0.23

DTL −1.41 0.18 SNORC 1.26 0.08
WDR76 −1.33 0.23 SLCO4C1 1.21 0.35

Furthermore, Figures 3 and 4 illustrate the heat maps, correlation plots, and standard
deviation (SD) histogram plots for all the genes, as well as the common 816 genes for each
lot and the merged set. The merged column in the figures represents the average of the
fold-change values of all five lots of primary human hepatocytes. Visualizing the expression
of all the genes through heat maps and a triangle correlation matrix (Figure 3), one can
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observe relatively lower correlation scores (<0.20) from lot to lot, with some improvement
(between 0.20 to 0.40) when compared to the merged dataset. The SD values were also
slightly higher for several genes and were largely evenly distributed. We expected the lower
correlation scores and larger SD values due to the involvement of roughly 15,000 genes
and the wide demographic diversity of the donor hepatocytes. On the other hand, the heat
map for the common 816 genes (Figure 4) is more clustered and homogeneous in up- and
down-regulated gene expression profiles. Quantitatively, this can be observed in the higher
correlation scores, varying from 0.55 to 0.89 between the different lots. Likewise, the SD
histogram plot values for the common 816 genes (Figure 4) are below 0.50 for 95% of the
genes. Overall, the lower SD values and strong correlation scores are encouraging and
build confidence in the shared differentially expressed genes among the different lots. All
the genes and their fold-change values from each lot and the merged lots can be found in
the Supplementary Materials (Tables S1 and S2).
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2.3. KEGG Pathway Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis is com-
monly used in bioinformatics to understand the biological function, signaling pathways,
inflammatory responses, and molecular mechanisms based on the co-expressed genes list.
Table 3 shows the 15 most enriched KEGG pathways that are common in all the lots for
the thioacetamide experiments, with steroid biosynthesis at the top of the list. Our path-
way analysis shows that most of the overlapping genes are associated with lipid, amino
acid, carbohydrate, terpenoid, and polyketide metabolism. Lipid molecules are crucial
in metabolic processes, and their alteration can lead to liver disease. As the liver is a site
for the elimination of toxic metabolites, the peroxisome is involved in the biosynthesis of
bile acids [33–35]. The p53 signaling pathway is also associated with liver inflammation,
fibrosis, and steatosis, and its effect on the liver changes substantially at different stages
of liver injury [36]. Furthermore, several other pathways listed in Table 3, such as tight
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junction and ribosome biogenesis in eukaryotes, are also reported to be associated with liver
disease [37–39]. Collectively, these pathways show the potential impact of thioacetamide on
the liver and how this can affect most of the metabolic pathways, leading to liver disorders.
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set. The fold-change values ranging from −0.6 to 0.6 are shown in beige on the heat map. Significantly
lower and higher values are shown in red and green, respectively.

Additionally, Figure 5 shows the heat map, triangular correlation plot, and SD his-
togram plot for the KEGG pathways of all the genes for each lot and the merged set.
Similarly, Figure 6 depicts the heat map, triangular correlation plot, and SD histogram plot
for the KEGG pathways of the common 816 genes and their corresponding fold-change
values for each lot and the merged set. The merged column in Figures 5 and 6 represents
the averaged z-score values of all five lots. The heat maps of the up- and down-regulated
pathways, estimated with TOXPANEL version 1.0 [40], are shown in red and green, respec-
tively. We provide detailed information for all KEGG pathways as well as their calculated
scores for Figures 5 and 6 in the Supplementary Materials (Tables S3 and S4). The heat
maps created using the common genes show grouping of up- or down-regulated path-
ways and are more structured when compared to the pathway heat maps using all the
genes. The majority of the metabolic pathways consistently exhibit up-regulation on the
heat maps, while the signaling and cellular pathways exhibit down-regulation. In the
following paragraph, we describe in depth the functional behavior of different pathways.
The KEGG pathway correlation scores and the SD variations improved significantly in the
pathways computed using the common 816 genes as compared to the results obtained from
all the genes. The correlation scores between lots were below 0.40; these also improved
(between 0.40 and 0.60) when linked with the merged lot. On the other hand, the correlation
scores ranged from 0.40 to 0.80 for pathways obtained using the common genes. Likewise,
80% of the pathways had SD statistics below 1 using the common genes as compared to
50% when considering all the genes. In summary, the KEGG pathways using common
differentially expressed genes revealed a consistent pattern of pathways underlying liver
injury mechanisms.
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Table 3. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways enriched in overlapping
differentially expressed genes obtained from different lots of pooled primary hepatocytes in response
to thioacetamide treatment.

KEGG Pathway
(HD, 24 h) Benjamini p-Value

Steroid biosynthesis 9.4 × 10−6

Peroxisome 6.5 × 10−5

Metabolic pathways 1.3 × 10−3

Carbon metabolism 4.8 × 10−3

Steroid hormone biosynthesis 8.4 × 10−3

Glyoxylate and dicarboxylate metabolism 9.2 × 10−3

Glycine, serine, and threonine metabolism 1.2 × 10−2

Biosynthesis of cofactors 1.2 × 10−2

Tight junction 1.6 × 10−2

p53 signaling pathway 2.0 × 10−2

Biosynthesis of amino acids 2.4 × 10−2

Terpenoid backbone biosynthesis 3.5 × 10−2

Ribosome biogenesis in eukaryotes 5.0 × 10−2

Biosynthesis of unsaturated fatty acids 7.0 × 10−2

DNA replication 7.0 × 10−2
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A range of metabolic and signaling pathways as well as several cellular and inflam-
mation processes are involved in the development of liver injury. Because of the diversity
in pooled hepatocyte data, it is of the utmost importance to identify shared processes
and pathways in order to better understand the molecular mechanisms. Figure 7 illus-
trates all the significant KEGG pathways identified in the in vitro pooled hepatocytes by
employing the common 816 genes from all the individual lots and the merged set. We
have categorized different pathways into groups, i.e., Carbohydrate/Lipid/Amino acid/Other
Metabolism, Signaling, Cellular, and Miscellaneous. Every relevant pathway that is up-
regulated or down-regulated can be identified by a color-coded z-score which corresponds
to each lot. We found that thioacetamide exposure in pooled hepatocytes altered several
metabolic, signaling, and cellular response pathways. Figure 7 shows a substantial eleva-
tion in important metabolic pathways associated with lipid, amino acid, carbohydrate, and
other metabolisms. Specifically, all lots exhibited elevated z-scores in the lipid metabolic
pathways involving arachidonic acid metabolism, terpenoid backbone biosynthesis, and
steroid biosynthesis. The enrichment analysis also demonstrated the importance of the
metabolic pathways and the production of terpenoid backbone and steroids biosynthesis
pathways. We observed very similar responses when we exposed the primary hepatocyte
cells in our earlier in vitro human cells study to thioacetamide-S-oxide, a metabolite form
of thioacetamide [10]. Furthermore, our group’s other toxicity and metabolomics studies
involving thioacetamide-induced injury in guinea pigs and rats demonstrated up-regulated
fold-change values for the metabolism of lipids and amino acids [11].
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Figure 7. KEGG pathways activated using gene expression data from each individual lot of pooled
human hepatocytes exposed to thioacetamide as well as the merged set. Significantly up- and
down-regulated pathways are indicated in red and green, respectively.

Several studies in the literature indicate that thioacetamide treatment also activates
the mitogen-activated protein kinase (MAPK) pathway in liver tissue, and our data demon-
strate significant alterations in this pathway in multiple lots as well [41]. We observed
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a substantial down-regulation of the apelin, hypoxia-inducible factor (HIF)-1, and phos-
phatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathways, in addition to
extracellular matrix (ECM)–receptor interactions. Our results show a considerable change
in the alteration of ECM interactions, which has been linked to the imbalance and impair-
ment of liver function upon treatment with thioacetamide [42,43]. Liver disease progression
is known to be related to HIF, PI3K-AKT, and apelin pathways, which are known to partici-
pate in different cell activations of inflammation and proliferation [44–46]. A number of
other cellular and miscellaneous pathways also showed consistent down-regulation trends
across all the lots after thioacetamide exposure. These pathways include cell cycle, oocyte
meiosis, focal adhesion and cellular senescence, DNA replication, base excision repair, and
progesterone-mediated oocyte maturation.

2.4. Liver Injury Module Analysis

Our research group has formulated eight kidney injury and eleven liver injury modules
involving several sets of genes linked with histopathological injury phenotypes [40]. Each
module indicates a set of co-expressed genes representing a well-defined histopathological
injury endpoint. This analysis is available via the TOXPANEL software [40]. We analyzed
the responses of these co-expressed genes to assess the impact of liver injury in different lots.
Figure 8 shows the heat map for liver injury module scores in all the lots after exposure, as
well as the correlation scores and SD histogram. We observed weaker activation for most of
the liver injury modules and large variability in the fold-change-based z-score metric. We
mainly identified the activation of bile duct proliferation and anisonucleosis injury modules
in some of the lots following thioacetamide exposure. Other modules only occasionally
showed activation in one of the lots. The activation of the bile duct proliferation module is
commonly associated with a ductular reaction and results in acute or end-stage chronic
liver disorders in patients and animal models [47–50]. We also observed weaker activation
scores for all the modules in our previous study of the thioacetamide-S-oxide treatment of
human single-donor primary hepatocytes [10]. While the earlier study involved a toxicant
in the form of a metabolite of thioacetamide and the dosage was different from this study,
the pattern of lesser activation scores was still visible. Notably, the bile duct proliferation
module was also activated in the human single-donor primary hepatocyte study [10].
In our earlier work, we established an appropriate threshold value of 2 for the z-score
metric in order to classify the degree of activation for a module representing a significant
indication of injury [40]. However, we saw weaker z-scores in the case of in vitro single-
donor human primary or pooled hepatocytes when compared to other in vivo or in vitro
animal experiments. The inter-lot correlation also produced lower correlation scores (below
0.2) due to the excessive variation of the module’s z-scores, with a few exceptions. Lot
comparisons A to C and A to D showed correlation scores of 0.50 and 0.30, respectively. The
SD histogram also reflected large SD values, given the weaker z-scores for most of the liver
injury modules. We provide all the z-score values for all the modules in the Supplementary
Materials (Table S5). Furthermore, to understand the variations in the lots, we analyzed
three different liver toxicity gene sets that contained co-expression genes associated with
liver toxicity. Table 4 shows the performance of the predictive toxicogenomics space (PTGS)
(all) [51], PTGS (core) [51], and toxicity module gene (TMG) [52,53] for all the lots subjected
to the thioacetamide exposure. For each feature set, we calculated the absolute average
fold-change values of the co-expressed genes belonging to each gene set. The variability
among the different lots ranged from 0.75 to 0.94 for PTGS (all), 0.71 to 0.89 for PTGS (core),
and 0.68 to 0.83 for TMG. The average (SD) values for each gene set’s scores across all
the lots were 0.84(0.07), 0.80(0.06), and 0.75(0.06) for PTGS (all), PTGS (core), and TMG,
respectively. We found an overall variability of ~10% for each gene set across the different
lots, which derives from the differences in pooled cultures found between the lots.
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Table 4. Liver toxicity prediction model performance across all lots for the thioacetamide treatment.

Lots
Gene Level Feature Sets

PTGS (All) PTGS (Core) TMG

A 0.75 0.71 0.68

B 0.80 0.78 0.70

C 0.94 0.89 0.83

D 0.88 0.80 0.79

E 0.85 0.81 0.74
PTGS: Predictive toxicogenomics space; TMG: toxicity module gene.

2.5. Hepatocyte Transporters and Cytochrome P450 Enzymes

The primary organ in charge of metabolism is the liver, where transporters play a role
in managing uptake and efflux. Alterations in hepatocyte transporters and cytochrome
P450 (CYP) enzymes can contribute to liver injury. Table 5 shows the main hepatocyte
transporters from the ABC and SLC families that exhibited substantial fold-change values
in one or more lots, as well as the average and SD values. The basolateral uptake transporter
OATPs (organic anion-transporting polypeptides), OATs (organic anion transporters), and
OCTs (organic cation transporters) are most frequently expressed in the liver and mediate
the bidirectional transport of a wide variety of substances and molecules [31,54,55]. The
basolateral transporter genes SLCO1B3, SLCO2B1, SLC22A7, and SLC22A1 exhibited both
up- and down-regulated patterns from various lots, as well as significant fluctuations.
OAT7 (SLC22A9) displayed fluctuations and indicated the constant up-regulation of the
fold-change values across all the lots. Additionally, MRP3 and MRP4 are basolateral efflux
transporters that transport large sets of endogenous and xenobiotic organic anions [54].
Both transporters showed substantial variations from lot to lot, and no inference can
be made.
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Table 5. Fold-change values for the key hepatocyte transporters and corresponding genes from
different lots after thioacetamide exposure. The up- and down-regulated fold-change values are
indicated in red and green, respectively. SD, standard deviation.

Drug
Transporters Names Gene

Symbol A B C D E Avg. SD

Basolateral or
sinusoidal

uptake
transporters

OATP1B3 SLCO1B3 0.37 −0.10 −0.33 −0.34 1.27 0.17 0.68

OATP2B1 SLCO2B1 0.76 0.29 1.19 0.58 −2.49 0.07 1.46

OAT2 SLC22A7 2.56 −1.88 −3.97 −1.59 4.25 −0.13 3.40

OAT7 SLC22A9 0.08 0.67 0.86 0.45 0.14 0.44 0.33

OCT1 SLC22A1 0.22 −1.52 0.23 3.32 0.21 0.49 1.75
Basolateral

efflux
transporters

MRP3 ABCC3 −0.24 0.63 1.45 −0.65 0.97 0.43 0.86

MRP4 ABCC4 0.24 −1.81 −1.57 2.19 0.37 −0.11 1.63

Canalicular
efflux

transporters

MRP2 * ABCC2 0.24 0.37 0.25 0.32 0.30 0.30 0.06

FIC1 * ATP8B1 −0.22 −0.36 −0.55 −0.49 −0.16 −0.36 0.17

BCRP * ABCG2 0.25 0.44 0.14 0.18 0.27 0.26 0.12

Pgp
(MDR1) ABCB1 0.20 −0.63 0.90 0.14 5.27 1.18 2.35

MDR3 ABCB4 −0.41 0.37 0.85 −2.17 −0.48 −0.37 1.15

SLC
transporters

SLC16A11 3.94 0.64 3.61 0.66 1.85 2.14 1.58

SLC16A13 0.44 0.78 0.93 1.08 0.52 0.75 0.27

The star (*) symbol entries do not show significant fold-change values but show a consistent pattern across all lots.

Bile acids and their salts are toxic to hepatocytes; hence, they must be effectively
eliminated. The MDR3 transporter (phosphatidylcholine floppase, ABCB4) and P4-ATPase
(ATP8B1) genes are ATP-binding cassette members and are crucial for the efflux of bile’s
constituents [31,54–57]. We observed large fluctuations and an inconsistent pattern of
up- or down-regulation for the MDR3 transporter across different lots. ATP8B1, another
important hepatocyte transporter for the production of bile, prevents bile salt toxicity and
functions as a phosphatidylserine translocase or flippase [58]. Table 5 shows a steady down-
regulation pattern for this gene across all the lots. A deficiency of the ATP8B1 transporter
could result in irregular lipid composition in the membrane bilayer, causing bile acids to
affect the function of membrane proteins and the bile salt export pump [58–60]. A loss of
function of the ATP8B1 gene could manifest clinically as progressive familial intrahepatic
cholestasis type 1 (PFIC1), also known as Byler’s disease [58–60]. Furthermore, other
canalicular efflux transporters, such as P-glycoprotein (Pgp, gene symbol ABCB1), breast
cancer resistance protein (BCRP, gene symbol ABCG2), and multidrug resistance-associated
protein 2 (MRP2, gene symbol ABCC2), are primarily responsible for multidrug resistance
and eliminating bile from the hepatocytes [31,54,55]. All of the lots showed consistent
up-regulated patterns for ABCC2 and ABCG2; however, none of the lots had substantial
fold-change values. We also saw a similar pattern with Pgp (ABCB1), with the exception
of one lot, and lot E reported a fold-change value of 5.27. Additional SLC transporters
(SLC16A11 and SLC16A13), which mediate the influx and efflux of ions, nucleotides, and
sugars, showed the consistent up-regulation of fold-change values and have been linked to
liver injury [32].

The CYP family, which is largely expressed in the liver, is involved in the metabolism
of drugs, chemicals, and endogenous substrates, and is crucial for the removal of vari-
ous substances from the bloodstream [61,62]. Table 6 lists the prominent CYP enzymes
from various lots, as well as their average and SD fold-change values. Except for a small
number that displayed an opposite inclination, the majority of the major CYP enzymes
showed a consistent pattern of up- or down-regulation throughout the various lots. The
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major CYP isoforms, namely, CYP2C9, CYP2C19, and CYP3A4/5, have the highest im-
pact on drug metabolism and showed consistent up-regulation [63]. In particular, as
described above, CYP26A1 and CYP26B1 had fold-change activities with a greater de-
gree of down-regulation than any other enzymes. These CYP enzymes, thought to be
involved in all-trans RA clearance, are members of the CYP26 family, including CYP26A1
and CYP26B1 [17,64]. Targeting RA signaling has been shown to be beneficial for humans,
and numerous studies have demonstrated a relationship between the imbalance of RA
and various liver diseases [13,15,16,65–69]. The CYP1A1 enzyme plays a significant role
in the conversion of procarcinogens into reactive metabolites and displayed a stronger
up-regulation in four out of the five lots. The CYP2E1 enzymes, which cause oxidative
stress and encourage the development of liver injury, also showed a less pronounced but
persistently up-regulated pattern [70–72]. The CYP2E1 enzymes are also involved in the
biotransformation of thioacetamide to thioacetamide-S-oxide/S-dioxide [42,73]. Many
published studies have explicitly shown an inter-individual variability pattern for major
drug-metabolizing CYP enzymes among different donors [63,74–76]. These results imply
a heterogeneity of CYP expression across various donor liver pools. The CYP enzymes
go through a complicated process that might differ greatly from donor to donor in terms
of their expressions and mechanisms, and genetic testing may help clinicians diagnose
and assess liver injury. Overall, it is essential to monitor changes in transporters and CYP
enzymes in order to detect early indications of liver injury.

Table 6. Fold-change values for the key drug metabolism cytochrome P450 (CYP) enzymes from
different lots after thioacetamide exposure. The up- and down-regulated fold-change values are
indicated in red and green, respectively. SD, standard deviation.

Gene Symbol A B C D E Avg. SD

CYP2C9 0.33 0.36 1.16 0.90 0.14 0.58 0.43

CYP3A4 0.51 2.11 1.22 0.86 0.35 1.01 0.70

CYP3A5 1.05 0.87 0.87 0.91 0.90 0.92 0.07

CYP26A1 −2.20 −7.22 −2.66 −3.33 −3.37 −3.75 2.00

CYP26B1 −2.98 −5.48 −4.07 −3.10 −6.86 −4.50 1.66

CYP1A1 1.02 2.02 2.86 2.89 −1.46 1.46 1.81

CYP1A2 −0.20 0.68 0.14 0.60 −0.12 0.22 0.40

CYP2C19 0.27 0.33 0.85 0.69 0.82 0.59 0.27

CYP2C8 −0.63 −0.29 −0.28 3.45 −0.38 0.37 1.73

CYP2E1 0.31 0.23 0.28 0.24 0.22 0.26 0.04

3. Materials and Methods
3.1. Chemicals and Reagents

We obtained multi-donor pools of plateable cryopreserved human hepatocytes (HPCH05+
and HPCH10+) in five different lots (2110283, 1810126, 1810050, 2010236, and 2210146)
from a commercial vendor (Sekisui XenoTech, Kansas City, KS, USA), along with OptiThaw
Hepatocyte Kit (K8000), OptiPlate Hepatocyte Media (K8200), and OptiCulture Hepatocyte
Media (K8300) for culturing the hepatocytes. We secured Corning BioCoat 96-well clear
(354407), 96-well white (354519), and 6-well clear (354400) collagen 1-coated plates from
Thermo Fisher Scientific (Waltham, MA, USA). We purchased thioacetamide (163678) and
a Lactate Dehydrogenase Activity Assay Kit (MAK066) from Sigma-Aldrich (St. Louis,
MO, USA). We obtained a CellTiter-Glo 2.0 Cell Viability Assay (G9242) from Promega
(Madison, WI, USA). We accomplished hepatocyte RNA isolation using the RNeasy Plus
Mini Kit (74134) and RNase Free DNase Set (79254) from Qiagen (Germantown, MD, USA).
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3.2. Cell Viability Assays

In order to optimize the dose and length of thioacetamide exposure needed to induce
liver cell injury, we used a single pool of cells derived from 30 individual liver donors
(15 males and 15 females) and prepared them by combining aliquots from four of the
five lots (2110283, 1810126, 1810050, 2010236) of multi-donor pooled primary human
hepatocytes (Sekisui XenoTech). We plated the hepatocytes from this single pool at a density
of 40,000 cells per well in either white 96-well collagen 1-coated plates for the measurement
of cell viability (intracellular ATP levels) after exposure to thioacetamide using the CellTiter-
Glo 2.0 Cell Viability Assay (Promega) or in clear 96-well collagen 1-coated plates to
measure cell viability (membrane integrity) using the Lactate Dehydrogenase Activity
Assay Kit (Sigma-Aldrich). We thawed cryopreserved human hepatocytes and plated
them following the supplier’s (Sekisui XenoTech) protocol using the cell culture reagents
provided, OptiThaw Hepatocyte Kit (K8000), OptiPlate Hepatocyte Media (K8200), and
OptiCulture Hepatocyte Media (K8300). The dosing of thioacetamide in OptiCulture
Hepatocyte Media began 24 h after the hepatocytes were placed into culture. We tested
8 doses (0, 0.049, 0.15, 0.44, 1.33, 4.0, 12, and 36 mM) with 6 different lengths of exposure
(4, 8, 12, 16, 20, and 24 h) for a total of 48 conditions. We plated the hepatocytes at a density
of 40,000 cells per well in white 96-well collagen 1-coated plates following the supplier’s
(Sekisui XenoTech) protocol using the cell culture reagents provided to assess the efficacy
of the low-dose (1.33 mM) and high-dose (12 mM) thioacetamide treatments after 24 h on
the same five lots of pooled primary human hepatocytes that were utilized to isolate RNA
for RNA-seq analysis. We assessed the cell viability after the thioacetamide treatment using
the CellTiter-Glo 2.0 Cell Viability Assay (Promega).

3.3. Experimental Procedures

We identified pools of plateable cryopreserved human hepatocytes, derived from mul-
tiple human liver donors, from a commercial vendor (Sekisui XenoTech). We obtained the
metabolically characterized plateable hepatocytes as separate collections (lots) composed
of groups of ten or five liver donors. We selected five different lots of multi-donor pooled
primary human hepatocytes as follows: two lots (A: 2110283 and B: 1810126) consisted of
pools from five individual donors, and three lots (C: 1810050, D: 2010236, and E: 2210146)
consisted of pools from ten individual donors. The multi-donor pooled primary human
hepatocytes were derived from 40 individual donors (39 unique donors), 21 females and
19 males, with an average age of 46 and body mass index of 28 for both males and females
(Figure 9). We identified one donor, H1442, in two lots of pooled primary human hepato-
cytes, and indicated this in Figure S5, which shows a summary of the demographics of the
40 donors, varying in race, ethnicity, gender, and age, for the five lots of pooled primary
human hepatocytes.

We treated the five different lots of multi-donor pools of primary human hepatocytes
for 24 h with zero (control), 1.33 mM (low dose), and 12 mM (high dose) thioacetamide (Mil-
liporeSigma, Burlington, MA, USA), with 1.33 mM and 12 mM representing the optimized
low and high doses, respectively, to generate a minimal to a significant toxicant injury.
These cell treatments generated a total of seventy-five RNA samples, five samples per each
of the three treatments of the five different lots of liver cells. We plated and cultured each
lot of pooled primary human hepatocytes into five wells of six-well, collagen 1-coated
plates (Corning BioCoat Plates, Thermo Fisher Scientific) for each treatment condition using
the protocols and reagents provided by the supplier (Sekisui XenoTech). We performed
three treatments (0, 1.33, and 12 mM thioacetamide), thus, fifteen six-well plates with
~300,000 cells per well were used to isolate RNA samples from seventy-five wells of cells af-
ter 24 h of treatment. We isolated and purified total RNA using RNeasy Plus Mini Kits with
in-column DNase I digestion (Qiagen) from these 75 samples and submitted all 75 RNA
samples to the Vanderbilt University Medical Center VANTAGE Core (Nashville, TN, USA)
for RNA sequencing. A stranded mRNA (polyA-selected) library preparation kit was used
for mRNA enrichment and cDNA library production on each RNA sample. Sequencing
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was performed at the paired-end 150 bp on an Illumina NovaSeq 6000 (San Diego, CA,
USA), targeting an average of 50 million reads per sample. Quality control reports for the
sequencing and the per sample yield were provided. The RNA sequencing results were
in the form of de-multiplexed FASTQ files. All the files obtained from the RNA-seq were
placed in the NCBI’s Gene Expression Omnibus (GEO) database, using the GEO series
accession number GSE250139.
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3.4. Computational Details for RNA-Seq Data, KEGG Pathways, and Injury Module Analysis

We employed Kallisto [77,78] for the analysis of the multi-donor pooled human hepa-
tocyte RNA-seq data. The program pseudo-aligns the reads to a reference and produces the
quantification of the transcript abundances for each read. For this study, we downloaded
the Homo sapiens transcriptome from the Ensemble [79] website and used it for the pseudo-
aligning of the reads. We accomplished the estimation for the uncertainty of transcript
abundance by repeating the analyses 100 times after resampling with replacement through
the bootstrap technique. We used another related tool named Sleuth [80] for the analysis
and comparison of all the transcript data, estimating the gene variance and leading to
the identification of the significantly expressed genes. We set the criteria for significantly
expressed genes with a false discovery rate-adjusted p-value (q-value) as ≤0.1.

Next, we used the publicly available gene co-expression-based tool TOXPANEL [40],
formulated by our research group, to assess injury modules and KEGG pathways. This tool
uses the gene expression of a set of genes to predict an adverse effect on the kidney or liver.
Because it is challenging to predict organ injury or damaging effects based on individual
genes, using the co-expressed gene set may be able to provide a clearer injury endpoint and
mechanism. TOXPANEL uses the following two methods: aggregated absolute fold change
(AAFC) and aggregated fold change (AFC) [7,8]. We input into TOXPANEL the responses
from the set of genes, in the form of log-transformed gene expression values for the control
and treatment groups. The AAFC method calculated the fold-change values for each gene
by taking the difference between the control and treatment cohorts. The fold-change values
for the set of pre-defined genes were subsequently grouped together, resulting in the z-score
of each module or a particular pathway. Each module encompassed several genes along
with their fold-change values. The AAFC method accounted only for the change in the set
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of genes and did not categorize the up- or down-regulated pattern of the genes. The AFC
method can support this particular functionality and provide the direction for the gene
expression sets, which becomes advantageous for the analysis of KEGG pathways [81].
The significance of each module was also estimated by the p-value, which is defined as the
probability of the score for randomly (10,000 times) selected fold-change values becoming
greater than the actual module score [40]. A lower p-value (preferably <0.05) indicated the
importance of a particular module from the different modules. For additional details on
TOXPANEL and its methods, we refer the reader to our earlier articles [7,8,40]. In addition,
we utilized the DAVID [82] tool for the set of 816 common differentially expressed genes in
order to perform the gene-enrichment/KEGG analysis.

4. Conclusions

Utilizing thioacetamide as a model hepatotoxicant, we collected transcriptomics data
from multi-donor human pooled hepatocytes. We used five biological replicates (experi-
mental lots) of pooled human hepatocytes, collected from several donors with different
racial, gender, and age distributions, at two different thioacetamide concentrations. In this
work, we focused on the high dose of thioacetamide as it led to a significant reduction in
cell viability, thus likely generating an injury response. Based on the studies reported so far,
the utility or suitability of pooled human hepatocytes to predict liver toxicity is unclear,
and this motivated us to perform this study. We evaluated the generated gene expression
data using conventional gene expression statistical methods, KEGG enrichment analysis
to predict molecular pathways, and liver injury modules to predict histopathological out-
comes as potential liver injury phenotypes. We identified significantly altered genes that
displayed similarities in their response despite the high variability between the lots, and we
found that several of these genes are associated with amino acid, lipid, and carbohydrate
metabolism KEGG pathways. In particular, significant alterations in lipid metabolism
pathways, including steroid, steroid hormone, and unsaturated fatty acid production, were
evident and were associated with liver injuries. The pooled human hepatocytes showed
weaker activation signals for most of the injury modules than previously observed with
the in vitro single-donor primary hepatocytes; however, our analysis showed bile duct
proliferation as a consistent change in the lot-to-lot readout. Despite the large inter-subject
variability, we found a common set of differentially expressed genes that displayed similar
behavior to thioacetamide across the lots of pooled human hepatocytes. This common gene
set can be evaluated in future pooled hepatocyte experiments with hepatotoxicants. We
also analyzed the expression pattern of key transporters and cytochrome P450 enzymes in
the pooled human hepatocytes. We found larger lot-to-lot variability in their expression
patterns, indicating a potential for alteration in toxicant bioavailability within the cells,
which could in turn affect the gene expression patterns between the lots. Our work pro-
vides some key insights that should be considered in future pooled human hepatocyte
experiments. Overall, the inherent variability of the characteristics of multi-donor pooled
hepatocytes shows that additional work needs to be completed in order to capture and
assess this variability and the impacts on toxicity studies.
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