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Abstract: Breast cancer is a growing disease, with a high worldwide incidence and mortality rate
among women. Among the various types, the treatment of triple-negative breast cancer (TNBC)
remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer
research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in
TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web
of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four
in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231
cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic
assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness
of the data. There was found to be a decrease in cell proliferation after both chemotherapy and
CAP; however, different protocol settings, including an extensive range of drug doses and CAP
exposure times, were reported. For both therapies, a considerable reduction in tumor volume was
observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with
CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This
systematic review presents a comprehensive overview of the treatment landscape in chemotherapy
and CAP regarding their efficacy in TNBC cell lines.

Keywords: cold atmospheric plasma; chemotherapy drugs; systematic review; cell viability;
triple-negative breast neoplasms; animal models
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1. Introduction

Cancer is a growing disease worldwide. In 2020, breast cancer (BC) had highest in-
cidence among cancers in women and was responsible for the largest number of deaths
across all age groups [1]. The expressions of estrogen receptor-, progesterone receptor-,
and human epidermal growth factor receptor-related protein are primary determinants
of BC biology. This profile, which is associated with various high-throughput techniques,
is used for BC stratification, prognosis, and treatment [2]. Triple-negative breast cancer
(TNBC) represents approximately 15–20% of all breast cancer molecular subtypes [3]. It
is characterized by the absence of these three types of receptors [4] and tends to have a
worse prognosis [5]. Accurate molecular classification of TNBC is crucial for risk strati-
fication [6,7]. Six TNBC molecular subtypes have been proposed, each one with its own
features and responses to standard treatment: two different basal-like types (basal-like 1
and basal-like 2), immunomodulatory, mesenchymal, mesenchymal stem-like, and luminal
androgen receptors [8,9]. These updates have allowed for personalized treatment with
enhanced specificity. Currently, TNBC therapy responds to conventional chemotherapy
and monoclonal antibodies, for example, pembrolizumab and avelumab, in the presence
of specific biological markers such as programmed death-ligand 1 [10,11]. According to
the European Society for Medical Oncology (ESMO) and American Society for Clinical
Oncology (ASCO) guidelines for the treatment of TNBC, (neo)adjuvant chemotherapy
drugs are used in almost all cases [11,12]. There are different regimens in use, including
doxorubicin or epirubicin in combination with cyclophosphamide and paclitaxel or doc-
etaxel in combination with carboplatin. If residual disease or the presence of the BRCA gene
mutations is positive, capecitabine or olaparib is also included as an option [11,12]. Unfor-
tunately, TNBC treatment continues to be a challenge, and new approaches are still needed.
Some patients present insufficient response, others develop resistance, and treatments are
frequently associated with adverse effects [13].

The plasma state, also known as the fourth state of matter, has enough energy to ionize
a significant amount of positive and negative particles [14]. There are two types of plasma,
namely thermal and non-thermal; the latter is frequently referred to as “cold atmospheric
plasma” (CAP). CAP is characterized as non-thermal because the heavy particles are at
room temperature. Several methods for producing it have been described [15]. CAP has
recently been studied as a potential cancer treatment, with evidence obtained in several
malign neoplasms both in vitro and in vivo [16–20]. Some authors have demonstrated
CAP selectivity to tumoral cells compared to non-malignant counterparts, highlighting its
potential in cancer treatment [21–23]. Some mechanisms have been proposed to explain the
effects of CAP, namely properties of ultraviolet radiation [24], electric fields that may affect
cellular permeabilization by increasing calcium permeability [25], and reactive species that
may alter the intracellular redox state, triggering critical cellular responses [20]. Thus, it is
crucial to understand the potential of CAP when compared to chemotherapy drugs. Based
on the population, intervention, comparison, outcome, and study design (PICOS) criteria,
this study aimed to systematically review the literature to determine whether CAP can
be as effective as chemotherapy in the treatment of TNBC. Since CAP therapy is not yet a
clinically approved treatment, TNBC cell lines and animal models were chosen to compare
the cytotoxic effects of CAP with chemotherapeutic agents selected according to ESMO
and ASCO guidelines [11,12]. Specifically, doxorubicin, epirubicin, cyclophosphamide,
paclitaxel, docetaxel, carboplatin, capecitabine, and olaparib were considered for this
study. These chemotherapeutic drugs are the most commonly used in clinical practice.
Therefore, the main aim of this systematic review was to answer the PICO question: Is
cold atmospheric plasma as effective as chemotherapy in the treatment of triple-negative
breast cancer?
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2. Methods

This systematic review was developed and reported following the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [26],
and its protocol was registered in the International Prospective Register of Systematic
Reviews—PROSPERO—with the number CRD42023414394. The research question was
built according to the PICO methodology, as described in Table 1.

Table 1. Population, intervention, comparison, and outcome (PICO) research strategy used in this
systematic review.

Parameter Description

Population (P) Triple-negative breast cancer cell lines and animal models

Intervention (I) Cold atmospheric plasma

Comparison (C) Doxorubicin or epirubicin or cyclophosphamide or paclitaxel or
docetaxel or carboplatin or capecitabine or olaparib

Outcome (O) In vitro studies: cell viability/proliferation
In vivo studies: tumor volume and histopathological changes

2.1. Search Strategy

The literature search was performed in four databases, namely Medline (through
PubMed), Web of Science (all databases), Embase, and Cochrane Library. The search formu-
las used for each database are presented in the Supplemental Materials. No restriction on
publication date was applied, and the English, Portuguese, Spanish, and French language
filters were used. The search was completed on 13 February 2023. A manual search of
the reference lists of relevant studies was performed to find additional potentially rele-
vant studies. The search results were imported to the reference management program
Mendeley Reference Manager© v2.80.1 (Mendeley Ltd., London, UK), and duplicate results
were removed.

2.2. Inclusion and Exclusion Criteria

Two independent reviewers critically assessed the eligibility of studies for inclusion,
first by title and abstract and later by evaluating the full text. In case of uncertainty or
discrepancies regarding eligibility, a third reviewer was consulted, and a decision was made
by consensus. In the eligibility phase, only in vitro and in vivo studies were considered,
according to the following inclusion criteria: (1) cell lines and animal models of TNBC;
(2) CAP treatment; (3) treatment with chemotherapy drugs selected according to the most
recent European and American Society for Medical Oncology Clinical Practice Guidelines
(ESMO and ASCO 2021), specifically doxorubicin or epirubicin or cyclophosphamide or
paclitaxel or docetaxel or carboplatin or capecitabine or olaparib, and (4) papers whose
main goal was to study the cell viability/proliferation of both treatments alone or in combi-
nation or in vivo tumor regression, measured as volume or histopathological changes. The
exclusion criteria were as follows: (1) other study types, (2) new drugs, (3) resistant cell
lines, (4) delivery methods or other formulations, (5) patient samples, (6) non-approved
pharmacological combinations, (7) no report of cell viability/proliferation or tumor regres-
sion, (8) other experimental models, and (9) other types of studies whose main aim was not
to evaluate the efficacy of treatments.
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2.3. Data Extraction

For studies that met the inclusion criteria, the following information was collected:
(1) authors and year of publication; (2) study model (i.e., triple-negative cell line(s) or
animal model(s)), (3) chemotherapy treatment (i.e., chemotherapy agent, concentration
drug, periodicity of drug administration and/or how it was carried out), (4) CAP treatment
(i.e., plasma source, features of machine as voltage, and exposure times), (5) combina-
tion treatments with chemotherapy and CAP, (6) methods for cytotoxicity assay and/or
histopathological assessment, and (7) cell viability/proliferation and in vivo tumor regres-
sion measurements.

2.4. Quality Assessment

The risk of bias of the in vitro studies was evaluated with Toxicological Data Reliability
Assessment Tool (ToxRTool), which provides guidance on assessing the consistency and
quality of toxicologic data [27]. The methodological quality of in vivo studies was checked
by assessing the risk of bias with the Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) risk-of-bias tool [28]. Two independent authors evaluated the
quality assessment methodology of eligible studies included in this systematic review.

3. Results
3.1. Study Selection

A total of 19,364 studies were obtained for analysis, with 4614 articles from PubMed
(4507 regarding chemotherapy drugs plus 107 on CAP treatment), 6308 articles from Web of
Science (6016 regarding chemotherapy drugs plus 292 on CAP treatment), 7308 articles from
Embase (7219 regarding chemotherapy drugs plus 89 on CAP treatment), and 1134 from
Cochrane Library (1107 regarding chemotherapy drugs plus 27 on CAP treatment). Before
the screening, duplicate articles (8365) were removed using Web Manager (Clarivate™),
leading to 10,999 records. Of these, 10,927 were excluded based on title and abstract
analysis, resulting in 72 studies for full-text reading. Despite attempts to obtain all full-text
records, only 66 were available to assess eligibility. Of these, seven articles were excluded
for not meeting the inclusion criteria (two did not examine any drugs included in our
review, one performed a mathematical analysis not encompassed in the inclusion criteria,
and four did not evaluate cell viability/proliferation as defined in the PICO strategy). Thus,
59 articles were included in this systematic review for full-text reading and analysis, with
publication dates from 1986 to 2023.

The PRISMA flow diagram, which summarizes the study selection performed in this
systematic review, is shown in Figure 1.
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Figure 1. PRISMA flow diagram summarizing study selection in this systematic review.

3.2. Studies’ Characteristics

Table 2 summarizes the main results observed in the studies included. In this sys-
tematic review, 59 studies were considered. Of these, 54 were in vitro studies, 3 were
in vivo, and 2 articles included in vitro and in vivo experiments. The outcomes regarding
the different types of studies are reported separately. We found articles on all chemotherapy
drugs considered, as well as CAP treatment. Concerning CAP therapy, we identified two
distinct methods: directly administered CAP and plasma-activated media (PAM), an indi-
rect approach consisting of previously exposed solutions. Moreover, a table quantifying the
percentage of inhibition induced by the therapies administered was compiled and included
in the Supplemental Materials (Table S1).
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Table 2. Studies’ details and outcomes.

Author
(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Adachi et al. (2018)
[29] In vitro MDA-MB-231

PTX (1, 10, 100 nM, and 1 µM)
Incubation: 48 h

PTX (100 nM) or DOX (10 µg/mL)
for FC

Incubation: 24 h

Viable cells counted with a
hemocytometer; Annexin

V/PI (FC)

The growth of cells in vitro was significantly
inhibited by increasing doses of PTX (p < 0.01).
Cells treated with PTX (100 nM) for 24 h showed
a slight increase in early apoptotic cells. DOX
markedly inhibited cells in a dose-dependent
manner (p < 0.01). Apoptosis analysis confirmed
an apparent increase in early plus late apoptotic
cells 24 h after DOX3 treatment.

Almeida-Ferreira et al.
(2022)
[20]

In vitro HCC1806

CAP. Plasma device: 4 kV, pulses of
1 kHz through a sterilized needle

0.9 mm in radius and 40 mm
in length

Exposure time: 60 and 120 s
Incubation: 24 h

Annexin V/PI (FC)

The proportion of viable cells significantly
decreased from 80.50 ± 1.59% to 64.67 ± 2.16%
(p = 0.0008) after 60 s of exposure and to
65.00 ± 3.39% (p = 0.01) after 120 s.

Arun et al. (2016)
[30] In vitro MDA-MB-231 DOX (1, 2, 3, 4, 5, and 6 µM)

Incubation: 12 and 24 h MTT assay

DOX (1 µM) resulted in 90% of cell viability, and
DOX (6 µM) resulted in 80% at 12 h. Cell
viability was 65% after 24 h when low doses
were used.

Bernhardt et al. (1992)
[31] In vitro MDA-MB-231 DOX (1 µM)

Incubation: 0–333 h Crystal violet assay The drug was cytotoxic (data were not shown).

Blois et al. (2011)
[32] In vitro MDA-MB-231 PTX (100 mM)

Incubation: 48 h SRB assay IC50 (nM): 0.07

Chen et al. (2018)
[33] In vitro MDA-MB-231

CAP. Plasma device: 8 kV, 16 kHz.
He gas was injected into the quartz

tube with a 0.2 L/min flow rate.
Micro-sized CAP with stainless-steel

tubes 20 mm and 60 mm in length.
Exposure time: 5, 10, 30, 60, and 120 s

Incubation: 24 and 48 h

MTT assay

The cell viability dropped with increasing
treatment time for both 20 mm and 60 mm
µCAP treatment. For each exposure time, the
cell viability of breast cancer cells was lower for
the 20 mm CAP length than for the 60 mm
CAP length.
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Table 2. Cont.

Author
(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Chen et al. (2017)
[34] In vitro MDA-MB-231

PAM. Plasma device: immersed in DI
water. The electrodes were connected

to a secondary high-voltage
transformer (2–5 kV, 30 kHz). Ar, He,
and N2 were used, and the flow rate
was maintained at about 0.3 min−1.

Exposure gas: Ar, He, and N2
Solutions: DI water and DMEM

Incubation: 24 and 48 h

MTT assay

After 24 h, cell viability decreased by
approximately 27.4% and 14.7% when treated
with Ar and He plasma, respectively. Only a
slight decrease in cell viability was observed in
the case of DI water and N2 plasma solution.
After 48 h, viability decreased approximately
73.1%, 22.8%, 14.1%, and 13.5% when cells were
treated with Ar plasma solution, He plasma
solution, N2 plasma solution, and DI water,
respectively. Thus, the most potent effect was
observed in the case of Ar plasma, while the
smallest was in N2 plasma.

Chen et al. (2017)
[35] In vitro MDA-MB-231

PAM. Plasma device: 1–3012 V,
40 mA activated with low or

high current
Solutions: DI water and DMEM

Exposure time: 12, 24, 36, 48, and 60 s
Incubation: 24 and 48 h

MTT assay

The viability of cells incubated in low-current
PAM was generally lower than that of cells
incubated in high = current PAM. This was
observed both after 24 h (36 s, p > 0.05; 48 s,
p < 0.05; 60 s, p < 0.001) and 48 h (36 s, p < 0.01;
48 s, p > 0.05; 60 s, p < 0.05). The cell viability of
cells incubated for 48 h at low current steadily
decreased with treatment duration, while the
cell viability at high current initially decreased
and then increased slightly.

Cheng et al. (2021)
[36] In vitro MDA-MB-231

CAP. Plasma device: Canady Helios
Cold Plasma™. He flow rate at

3 L/min; 4 kV, 300 kHz, and 40 W
Power settings: 80P (15.7 W), 100P

(22.3 W) and 120P (28.7 W)
Exposure time: 3, 5, and 6 min

Incubation: 6, 24, and 48 h

Annexin V/PI (FC)
Exposure for 3, 5, or 6 min at 80P or 120P
reduced the live cells after 24 and 48 h
of incubation.

Chuang et al. (2012)
[37] In vitro MDA-MB-231,

MDA-MB-468, CAL51
Olaparib (20, 40, 60, 80, or 100 µM)

Incubation: 72 h

MTT assay;
Clonogenic assay

(14–21 days)

IC50 (µM) by MTT
MDA-MB-231: >100; MDA-MB-468: 18;
CAL51: 9.5
IC50 (µM) by clonogenic assay
MDA-MB-231: 4.5; MDA-MB-468: 0.2;
CAL51: 0.4
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Table 2. Cont.

Author
(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Di et al. (2009)
[38] In vitro MDA-MB-231 DOX Clonogenic assay (14 days) The mean number of colonies was 2.7 ± 0.9%

compared to the control.
Frankfurt & Krishan

(2003)
[39]

In vitro MDA-MB-468 DOX or PTX
Incubation: 48 h

MTT assay
SRB assay

IC50 (µM) by MTT and SRB assays, respectively.
DOX: 0.05; 0.1
PTX: 0.01; 0.01

Halfter et al. (2016)
[40] In vitro HCC1143 and

HCC1937 spheroids

Single or combined regimens of CAR,
CCP, DOC, EPI, and PTX

Incubation: 96 h
ATP assay

Metabolic activity (HCC1143 and HCC1937,
respectively)
CAR: 104.71 ± 26.68; 80.95 ± 0.67
DOC: 121.36 ± 45.60; 101.38 ± 2.69
PTX: 81.97 ± 42.22; 93.37 ± 1.71
EPI and CCP: 86.07 ± 24.99; 85.12 ± 5.26
EPI and CCP and DOC: 117.00 ± 23.75;
87.57 ± 5.03
EPI and CCP and PTX: 91.59 ± 33.35;
83.74 ± 10.44
DOC and DOX and CCP: 97.56 ± 6.57;
75.06 ± 2.80

Hassan et al. (2017)
[41] In vitro

MDA-MB-436,
MDA-MB-231,
MDA-MB-453,
MDA-MB-468,

HCC1143, HCC1937,
HCC1806, HCC1395

Olaparib (0.25 nmol/L to
100 mmol/L)

Incubation: 9 days, drugs plus media
changed after 4–5 days

Chemosensitivity assay IC50 differed in all cell lines, ranging from
0.003 to 3.8 mmol/L.

Hernández-Vargas et al.
(2007)
[42]

In vitro MDA-MB-231 DOC (from 0 to 500 nM)
Incubation: 24–96 h

Crystal violet assay;
Annexin-V-FITC Apoptosis

detection kit (FC)

Cells were sensitive to nM concentrations of
DOC. There was a growth inhibition at
concentrations lower than 10 nM.
IC75 (nM): 2 nM

Izbicka et al. (2005)
[43] In vitro MDA-MB-231

DOC (0.1, 0.5, or 5 nM) or PTX
(0.1, 1, or 5 nM)

Incubation: 72 and 120 h
MTS assay

IC50 (pM)
DOC: 499 (72 h); 35 (120 h)
PTX: 933 (72 h)
PTX toxicity at day five increased about twofold
in comparison with day three.
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Table 2. Cont.

Author
(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Jezeh et al. (2020)
[44] In vitro MDA-MB-231

CAP or PAM. Plasma device:
20–70 kHz and 5 kV. Gas flow: He or

He + 0.5% O2
Exposure time: 1, 2, 3, 4, and 5 min

Incubation: 48 h
PAM: 200 µL of medium

MTT assay

CAP: Cell viability was reduced in almost all
CAP exposure. Generally, better results were
obtained using He + 0.5% O2 than pure gas. The
viability of MDA-MB-231 cells decreased by
more than 60% after 5 min of treatment.
PAM: Similar results were observed despite no
significant differences between He + 0.5% O2
and He. Cell viability decreased to about 50%
after 5 min.

Keung et al. (2020)
[45] In vitro

MDA-MB-231,
MDA-MB-436,
MDA-MB-468,

HCC1143, HCC1937,
BT-549, HCC70,

HCC1806

Olaparib (from 0.001 to 200 µM)
Incubation: 7 days MTT assay

IC50 (µM)
MDA-MB-231: 13.5; MDA-MB-436: 4.7;
MDA-MB-468: 5.2; HCC1143: 14; HCC1937: 96;
BT-549: 81; HCC70: 11; HCC1806: 1.2

Kibria et al. (2014)
[46] In vitro MDA-MB-231

DOX (several concentrations)
Incubation: 24 h with medium

changed after 8 h
WST-8 assay EC50: 25.72 ± 20.27 µg/mL

Kim et al. (2003)
[47] In vitro MDA-MB-231 DOX or PTX

Incubation: 48 h MTT assay
IC50 (µM)
DOX: 0.3
PTXl: 0.03

Koechli et al. (1993)
[48] In vitro BT-20

PTX (0.001; 0.002; 0.005; 0.01 PPCs)
or DOX (0.1; 0.2; 0.5; 1.0 PPCs) or

PTX and DOX (1:1000)
ATP cell viability assay

IC50 (PPCs):
PTX: 0.00163; DOX: 0.319; PTX and DOX: 0.2277.
The CI values ranged from 5.4 to 0.9. At a ratio
of 1:10 (PPC), the CI values ranged from 0.4 to
0.5, indicating synergism over the whole range.

Koechli et al. (1994)
[49] In vitro BT-20 DOX or PTX or CCP (0.01, 0.02, 0.05,

0.1, and 0.5 PPC ATP cell viability assay IC50 (µM)
DOX: 0.32; PTX: 0.007; CCP: 5.53

Konecny et al. (2001)
[50] In vitro MDA-MB-231

PTX (0.9, 1.8, 3.6, 7.2, 14.5, 29, 58,
116 nM) and CAR (3.1, 6.2, 12.5, 25,

50, 100, 200, 400 µM) or PTX (0.4, 0.9,
1.8, 3.6, 7.2, 14.5, 29, 58, 116 nM and
EPI (1.7, 3.3, 6.7, 13.4, 26.8, 53.7, 107,

215, 430 nM)

Crystal violet assay

CAR doses (<10 µM) showed additive
interactions in combination with PTX.
However, EPI and PTX demonstrated an
antagonistic effect.
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Table 2. Cont.

Author
(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Lafontaine et al. (2020)
[51] In vitro

BT549, Hs578T,
MDA-MB-157,
MDA-MB-231,
MDA-MB-468

CAP. Plasma device: 10 or 35 W, He
and O2 gas flow

Exposure time: 10 to 120 s
Olaparib

Concentration: 2 µM
Incubation: 2 h before CAP

Crystal violet assay

CAP: Only 30 s of CAP treatment reached a
more intense effect than did other application
modes. The efficacy increased with
treatment time.
Olaparib: Affected cell growth, especially for
MDA-MB-468 (more than 60% of inhibition,
p < 0.001).
CAP + olaparib: The combination improved the
cytotoxic effect of CAP in all cell lines.

Liu et al. (2017)
[52] In vitro MDA-MB-231,

MDA-MB-453

CAP. Plasma device: 10 kV and 5 mA
Exposure time: 60, 90, and 120 s

Incubation: 48 h
Trypan blue

There was significant reduction of cell viability
after 60 s in MDA-MB-231, while MDA-MB-453
did not show significant reduction. After 120 s,
CAP treatment decreased the viability to <80%
MDA-MB-453 and <50% MDA-MB-231.

Ly et al. (2020)
[53] In vitro MDA-MB-231,

Hs578T, HCC1806

CAP. Plasma device: Canady Helios
Cold Plasma™ Scalpel, 4 kV, He flow
rate at 3 L/min and power set to 80,

100, and 120 P.
Exposure time: 1, 2, 3, 4, 5, and 6 min

Incubation: 48 h

MTT assay

Increasing power and treatment duration from
80 to 120 P for 1–6 min yielded a greater
viability reduction in MDA-MB-231. A 92–99%
decrease in cell viability was achievable after
120 P at 5 or 6 min (p ≤ 0.05). HCC1806 showed
the greatest overall CAP resistance.

Ma et al. (2017)
[54] In vitro HCC1937, BT-549,

HCC38 PTX Annexin V/PI (FC) and
7AAD kit (BD559763) PTX increased the number of apoptotic cells.

Ma et al. (2020)
[55] In vitro MDA-MB-231

CAP. Plasma device: 12 kV, 24 kHz.
Power density: 0.9 W/cm2. Gas flow:

He at 120 L/h
Exposure time: 30, 60, 90, and 120 s

Incubation: 24 h

Cell counting kit-8 kit and
Annexin V-FITC/PI (FC)

CAP significantly decreased the cell viability in
a dose-dependent manner and induced
apoptotic cell death.



Int. J. Mol. Sci. 2024, 25, 3254 11 of 28

Table 2. Cont.
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(Year) Type of Study Experimental

Model
Treatment

Characteristics Methods Main Results

Man et al. (2002)
[56] In vivo

MDA-MB-231; Female
CB-17 SCID mice;

Orthotopically
implanted into the
mammary fat pad

CCP (25 mg/kg of continuous low
doses via drinking water;

450 mg/kg/cycle:
150 mg/kg/injection every other day

over six days)

Tumor and weight
monitoring

Six-day therapy cycles were similar to low-dose
administration for tumor size reduction.
However, the former was extremely toxic to
SCID mice, resulting in severe weight loss and
death of mice after the first week. No weight
loss or other signs of toxicity were observed in
the group of SCID mice treated via
drinking water.

McCloskey et al. (1996)
[57] In vitro MDA-MB-468 PTX

Incubation: 3, 24, and 120 h Trypan blue

Cells exposed for 3 h demonstrated
concentration-dependent growth inhibition at
≥10 nM PTX (IC50 = 17 nM). At 24 h, growth
inhibition was at 1 nM (IC50 = 2.6 nM). At 120 h,
the IC50 was 1.8 nM.

Merrill et al. (2019)
[58] In vitro

MUM51, BT-20,
BT-549, CAL148,
CAL51, DU4475,

HCC1806, HCC1937,
HCC38, HCC70,

Hs578T,
MDA-MB-157,
MDA-MB-231,
MDA-MB-436,
MDA-MB-453,
MDA-MB-468,

MFM223, SUM52,
SUM102, SUM149,
SUM159, SUM185

PTX (from 0.6 to 10,000 nM) or DOC
(from 0.1 to 1000 nM)

Incubation: 72 h

WTS-1 followed by
CellTiter-Glo® assay

IC50 (nM)
PTX: 110 (MUM51); 159 (BT-20); 110 (BT-549);
4 (CAL148); 310 (CAL51); 19 (DU4475);
77 (HCC1806); 130 (HCC1937); 1700 (HCC38);
3 (HCC70); 150 (Hs578T); 190 (MDA-MB-157);
200 (MDA-MB-231); 110 (MDA-MB-436);
2 (MDA-MB-453); 89 (MDA-MB-468);
4 (MFM223); 9 (SUM102); 13 (SUM149);
2 (SUM159); 10 (SUM185); 3 (SUM52).
DOC: 2 (MUM51); 2 (BT20); 1 (BT549);
2 (CAL148); 4 (CAL51); 5 (DU4475);
4 (HCC1806); 1 (HCC1937); 1 (HCC38);
1 (HCC70); 1 (Hs578T); 1 (MDA-MB-157);
2 (MDA-MB-231); 1 (MDA-MB-436);
1 (MDA-MB-453); 1 (MDA-MB-468);
740 (MFM223); 1 (SUM102); 5 (SUM149);
140 (SUM159); 2 (SUM185); 2 (SUM52).
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Mihai et al. (2022)
[19] In vitro

MDA-MB-231 and
MDA-MB-231

spheroids

PAM. Plasma device: 10 kV and
28 kHz

Solution: DMEM without FBS
(160 µL)

Exposure time: 30 and 60 s
Incubation: 20 min and medium

changed to 10% FBS DMEM
PTX (0.1 µM, 0.01 µM, and 0.001 µM)

after PAM
Incubation: 24 and 48 h

MTT assay; Clonogenic assay;
Spheroid area

PTX: Cell viability was reduced to 63.05% and
28.31% (0.1 µM PTX) after 24 and 48 h,
respectively.
PAM: At 48 h, cell viability reduced to
approximately 25%.
PTX + PAM: Cell line showed values between
33.77% and 36.28% at 24 h and 18.80% and
19.95% at 48 h.
After 15 s of PAM, the total area of spheroids
significantly decreased to 23.81% compared to
control (p < 0.05) and 20.95% compared to PTX
treatment. Cells were susceptible to PAM and
combined treatment. PAM could induce a stable
cytotoxic effect and improve PTX
chemosensitivity.

Morse et al. (2005)
[59] In vitro MDA-MB-231

DOC (10 nmol/L)
(1) Incubation: 48 h

(2) Incubation: 24 or 48 h or 48 h
followed by 24 h in drug-free

medium
(3) Incubation: 0, 2, 4, 8, 16, 24, and

48 h

(1) Trypan blue
(2) Crystal violet assay
(3) Annexin V/PI (FC)

(1) Cells had 10% lower viability.
(2) IC50 (24 h): 9.28 × 10−8 (1.63 × 10−9 to
5.28 × 10−6); IC50 (48 h): 5.12 × 10−8

(3.25 × 10−8 to 8.07 × 10−8); IC50 (48 + 24 h):
5.00 × 10−8 (3.43 × 10−8 to 7.29 × 10−8).
(3) The maximal increase of apoptosis was 0.97%
(p = 0.39) at 8 h.

Moschetta-Pinheiro
et al. (2022)

[60]
In vitro MDA-MB-468 CAR (1, 2, 4, 8, 10, and 20 µM)

Incubation: 24 h MTT assay

IC50 (µM): 10
Results showed that within 24 h, all CAR
concentrations, except for 2 µM, were able to
significantly reduce cell viability when
compared to control (p < 0.05).
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Munõz et al. (2019)
[61]

In vitro and
in vivo

(1)
MDA-MB-231/LM2-4

(metastatic variant)
(2) Female CB-17

SCID mice;
2 × 106 cells

orthotopically
implanted into the

right inguinal
mammary fat pad

CCP
(1) 0.01, 0.05, 0.1, and 1 µM

Incubation: 6 days
(2) 20 mg/Kg/day through the

drinking water, initiated on day 14

(1) MTS assay
(2) Tumor growth and

volume (mm3) and H&E

(1) 1 µM showed a marked decrease in
cell proliferation.
(2) Tumor volume was reduced. The median of
necrosis was 78% (70–80% range) for the control
group and 85% (80–90% range) for the treated
group. In the invasive tumor border, the
percentage of necrosis was 16% (0–40% range)
for untreated tumors and 40% (20–80% range)
for the CCP group. No weight loss or other
signs of toxicity were observed.

Ninomiya et al. (2013)
[62] In vitro MDA-MB-231

CAP. Plasma device: 9 kHz,
He gas flow

Exposure conditions: 4, 8, 12, 16, or
18 kV for 600 s

Incubation: 24 h

Trypan blue
The half-maximal effective peak-to-peak voltage
was 16.7 ± 0.3 kV. Cell viability reduced with
the increase in voltage.

Norris et al. (2013)
[63] In vitro HCC1937 Olaparib (0.02–100 µM)

Incubation: 120 h SRB assay IC50 (µM): ≈100

Oncul et al. (2017)
[64] In vitro MDA-MB-231

DOX (50, 100, 200, 400, 800, 1000,
1500, 2000, 3000, 4000, 8000 nM)

Incubation: 48 h

SRB assay;
Annexin V/PI (FC)

IC50 (nM): 6602
Cells underwent apoptosis in proportions of
6.75, 15, and 8.25% when treated with 50, 200,
and 800 nM of the drug, respectively. Necrotic
cells increased by 29% as a response to
treatment of 800 nM.

Park et al. (2015)
[65] In vitro MDA-MB-231 CAP

Exposure time: 30 s, 10 times

Cell counting kit-8 and
clonogenic assay;

Annexin V/PI (FC)

Six days after the treatment, CAP reduced the
growth rate compared to control. Apoptosis
increased from 7.67 to 13.8%.

Parrella et al. (2014)
[66] In vitro MDA-MB-231 CAB or DOX

Incubation: 48 and 72 h MTT assay
IC50 (µM)
CAB: 5150 (24 h) and 2790 (72 h)
DOX: 19 (24 h) and 4 (72 h)

Pilco-Ferreto & Calaf
(2016)
[67]

In vitro MDA-MB-231 DOX (1, 2, 4, and 8 µM)
Incubation: 24 and 48 h MTT assay

IC50 (µM): 1
The increase in DOX concentration decreased
the viability in a time- and
dose-dependent manner.
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Risinger et al. (2015)
[68] In vitro

MDA-MB-231,
MDA-MB-468, BT-549,

Hs578T, HCC1937
PTX or DOC SRB assay MDA-MB-468 was the most sensitive, and

BT-549 and HCC1937 were the most resistant.

Sauter et al. (1986)
[69] In vitro BT-20 CCP or DOX Phase-contrast microscopy

Cytotoxicity effect was measured by
cytopathogenic effect, with no results from CCP.
It was 1.7 µM regarding DOX.

Shaked et al. (2016)
[70] In vivo

MDA-MB-231/LM2–
4 (metastatic variant);
Female CB-17 SCID
mice; 2 × 106 cells

were orthotopically
implanted in the

mammary fat pad of
6-week-old females

CAB (LDM: 100 mg/kg; MTD:
400 mg/kg/day for 4 days followed
by a 17-day drug-free break period)
or CCP (20 mg/kg/day through the

drinking water)

Survival

There were no significant differences in the
mortality between CAB LDM, CAB MTD, and
control. Adding CCP to the LDM of CAB
significantly increased the survival percentage
compared to the control (p = 0.006).

Stope et al. (2020)
[71] In vitro MDA-MB-231

CAP
Exposure time: 5, 20, and 60 s

PAM
Exposure time: 20 and 60 s

Incubation: 4, 24, 48, 72, 96, and 120 h

Cell counting

CAP: Effects were seen after 20 s of treatment
and 72 h of incubation. More pronounced effects
were seen after 60 s. After 60 s, a 4.5-fold growth
reduction occurred from 4 to 120 h of incubation.
PAM: The results showed a slightly lower
anti-proliferative potential for PAM than for
CAP. From 4 to 120 h, cell growth was reduced
threefold. At 48 h of incubation, the cell growth
reduced significantly from the control at
two conditions.

Subramanian et al.
(2020)
[72]

In vitro MDA-MB-231

PAM. Plasma device: 5 kV, 15 kHz,
6.8 ± 0.6 W

Solution: UP water
Exposure time: 6, 12, and 18 min

Volume: 60, 80, 100, 150, and 200 µL
for 6 min

MTT assay

Cell viability was 81% (p < 0.001), 55%
(p < 0.001), and 24% (p < 0.001) after 6, 12, and
18 min, respectively, under a volume of 200 µL.
A significant reduction of cell viability was
observed only at higher volumes (>100 µL),
with 66% (p < 0.01) and 20% (p < 0.001) at
150 and 200 µL, respectively.

Taherian et al. (2012)
[73] In vitro MDA-MB-231 DOX or DOC;

Incubation: 48 h MTT assay IC50 (nM)
DOX: 887.75 ± 65.26; DOC: 634.58 ± 92.4
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Tassone et al. (2003)
[74] In vitro MDA-MB-231,

HCC1937

DOX (from 0.1 to 100 µM) or PTX
(from 0.01 to 2 µM);

Incubation: 48 h

MTT assay;
Annexin V/PI (FC)

IC50 (µM)
DOX: 45–50 (HCC1937); 5–10 (MDA-MB-231)
PTX: 2 (HCC1937); 0.01–0.02 (MDA-MB-231)
An apoptotic effect was seen in HCC1937 cells
exposed to PTX IC50.

Terefinko et al. (2021)
[75] In vitro MDA-MB-231

PAM. Plasma device: 6 kV, 66.45 kHz,
He gas flow rate at 10.6 L/min
Solution: DMEM or Opti-MEM
media with or without 3% FBS;

Incubation: 24 and 48 h
Exposure time: 150, 180, 210, and

240 s
Volume: 1.5 or 3 mL

MTT assay;
Annexin V/PI (FC)

Without FBS: No significant results in cells
incubated with DMEM-activated media.
However, after 48 h, Opti-MEM-activated media
exhibited a great impact on the decrease in cell
viability, especially in the treatment times of
180 and 240 s (** p < 0.001, *** p < 0.0004,
respectively).
With FBS: DMEM-activated media did not affect
cell viability. On the other hand,
Opti-MEM-activated media affected cell
viability after 180 and 240 s (** p < 0.0014;
*** p < 0.0002, respectively) at 24 h. At 48 h, cell
viability was reduced in all exposure times
(* p < 0.013; ** p < 0.0014; *** p < 0.0002).
Opti-MEM-activated media exhibited the most
prominent reduction of the live cell population
after the one-day experiment (day 1—from
84.00% to 68.12%, **** p < 0.0001; day 2—from
84.00% to 67.86%, ** p < 0.0015).

Wali et al. (2017)
[76] In vitro

BT-20, MDA-MB-231,
MDA-MB-468, BT-549,
MDA-MB-436, HCC38

PTX (0.03, 0.01, 0.03, 0.1, 1 µM)
Incubation: 72 h

ATP-based CellTiter-Glo®

luminescent; Cell
viability assay

PTX reduced cell viability with increased
concentrations in most cell lines. MDA-MB-231
was the less sensitive cell line. The highest
concentration ≤ IC50 was 3 nM.

Wang et al. (2013)
[21] In vitro MDA-MB-231 BRCA

CAP. Plasma device: 60 V/6 A, He
gas flow rate of 4.6 L/min

Incubation: 24, 48, and 120 h
Exposure time: 30, 60, and 90 s

MTS assay
All CAP-treated groups showed significantly
inhibited cell proliferation after 3 and 5 days
(p < 0.01).
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Wang et al. (2021)
[77] In vitro MDA-MB-231,

MDA-MB-468

PAM. Plasma device: Ar jet, model
kINPen 09, gas flow rate of 5.0 L/m

Exposure time: 10 min
PAM was diluted to different

concentrations as designated by the
percent remaining (e.g., 70% 10PAM
refers to 70% concentration at use)

Incubation: 24 h

Cell viability assay

The cell viability of MDA-MB-468 and
MDA-MB-231 cells subjected to 100% PAM was
40.29 ± 6% and 16.02 ± 5.02%, respectively.
Treatment did not influence the attached cell
numbers of MDA-MB-468 cells but did inhibit
the MDA-MB-231 cell line, which indicated
MDA-MB-231 cells were more sensitive than
were the other cancer lines.

Wesierska-Gadek et al.
(2015)
[78]

In vitro BT-20 Olaparib (from 1 to 10 µM)
Incubation: 24, 48, and 72 h

CellTiter-Glo® cell viability
assay (correlated with

ATP levels)

There were no significant variations in the
number of viable cells or increase of apoptosis.

Xiang et al. (2018)
[79]

In vitro and
in vivo

(1) MDA-MB-231,
MDA-MB-468

(2) Female BALB/c
mice; 1 × 106

MDA-MB-231 cells
were injected

subcutaneously

PAM. Plasma device: 1.0 to 1.4 kV,
8.8 kHz, He gas flow was 1 L/min

Solution: 2 mL of medium;
Exposure time: 1, 2, 3, 4, and 5 min

Incubation: 24 h

(1) Cell counting kit-8;
Annexin V/PI (FC)

(2) Tumor growth and weight

(1) Five-minute PAM reduced the viability to
0.41 and 0.46, respectively, for MDA-MB-231
and MDA-MB-468 cells. The relative apoptosis
increased on both cell lines compared to
healthy cells.
(2) Tumor growth was inhibited, and tumor
weight dropped considerably after PAM
treatment (from 4.053 g to 0.787 g,
p = 4.69 × 10−4). No visible side effects
were observed.

Yan et al. (2015)
[80] In vitro MDA-MB-231

PAM. Plasma device: 3.16 kV, 5 W,
He gas flow rate was 4.7 L/min
(1) Cell concentrations: 20,000,

40,000, and 80,000 cells/mL
Exposure time: 30, 60, 90, and 120 s
(2) Well number on a plate: 6, 12, 24,

and 48
(3) Volume media: 1, 2, 3, and 4 mL

Exposure time: 60 s
Incubation: 72 h

MTT assay

(1) The anti-tumor capacity increased as
the treatment time exposure increased
and decreased as the cell seeding
confluence decreased.
(2) One minute after PAM, proliferation
decreased as the size of the wells decreased. The
effect of treatment was reduced 2/3 in the
48-well plate compared to the 6-well plate.
(3) Relative viability significantly increased as
the volume of media increased from 1 to 4 mL.
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Yan et al. (2017)
[81] In vitro MDA-MB-231

PAM. Plasma device: 3.16 kV, 30 kHz,
He gas flow rate was 4.7 L/min

Solution: Ringer’s solution mixed
with DMEM or only medium;

Exposure time: 60 s
Incubation: 20 min, 1, 2, 3, and 4 h

MTT assay

Removing PAM 2, 3, or 4 h after the treatment
did not change the effect of PAM on cell
viability. When PAM was removed 1 h after
treatment, the cytotoxicity was not as severe.
The dilution remarkably impacted the
anti-cancer capacity of the PAM solutions.

Yaourtis et al. (2023)
[82] In vitro

MDA-MB-231
(spindle and stellar

phenotype)

DOX (Serial dilutions, from 0 to
10 µM)

Incubation: 72 h
MTT assay

Spindle phenotype: IC50 = 0.31 ± 0.05 µM,
p > 0.05
Stellar phenotype: IC50 = 0.25 ± 0.05 µM,
p > 0.05

Zasadil et al. (2014)
[83] In vitro MDA-MB-231; CAL51 PTX (5, 10, 20, 50, or 100 nM)

Incubation: 24,72 and 120 h
Trypan blue;

Clonogenic assay

Low nanomolar concentrations of PTX caused a
decrease in live cell numbers over 120 h. Colony
formation was substantially inhibited at
concentrations ≥5 nM after 14 days.

Zhou et al. (2020)
[84] In vivo

Female BALB/c mice;
3 × 106 MDA-MB-231

cells were injected
subcutaneously in the

right forelimbs

CAP or PAM. Plasma device: 5 kV,
8.8 kHz; He gas flow was 0.2 L/min

CAP
Exposure time: 5 min

PAM injection treatment
Solution: 2 mL of PBS
Exposure time: 10 min

It was subcutaneously administered
into two slots of the tumor in each

mouse at 100 µL/slot.
Treatments were repeated every 72 h

until death or the end of study
(30 days).

Tumor monitoring

All mice in the control group died within
27 days, and all mice from the CAP direct group
survived to the last day. The 30-day survival of
mice in the CAP group was significantly higher
than that of the PAM group (p = 4.9 × 10−4).
Both treatments significantly inhibited tumor
growth (CAP: p = 0.044 for CAP; PAM:
p = 0.017). However, the growth of the tumors
in the PAM group was more suppressed than
that in the CAP group.

Ar—argon; ATP—adenosine triphosphate; CAB—capecitabine; CAP—cold atmospheric plasma; CAR—carboplatin; CCP—cyclophosphamide; CI—combination index; DI—deionized;
DMEM—Dulbecco’s Modified Eagle Medium; DOC—docetaxel; DOX—doxorubicin; EPI—epirubicin; FC—flow cytometry; He—helium; H&E—hematoxylin and eosin;
IC50—half-maximal inhibitory concentration; IC75—concentration to inhibit 75%; LDM—low-dose metronomic; MTD—maximum tolerated dose; MTS—3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTT—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; N2—molecular nitrogen; PAM—plasma-activated
media; PI—propidium iodide; PPCs—peak plasma concentrations; PTX—paclitaxel; SCID—severe combined immunodeficiency; SRB—sulforhodamine B; WST—water-soluble
tetrazolium; UP—ultrapure, *—p < 0.05; **—p < 0.01; ***—p < 0.001; ****—p < 0.0001.



Int. J. Mol. Sci. 2024, 25, 3254 18 of 28

3.2.1. In Vitro Studies

The TNBC cell line MDA-MB-231 was employed in most of the research. The BT-20, BT-
549, CAL51, CAL148, DU4475, HCC1143, HCC1395, HCC1806, HCC1937, HCC28, HCC38,
HCC70, Hs578T, MDA-MB-157, MDA-MB-436, MDA-MB-453, MDA-MB-468, MFM223,
MUM51, SUM52, SUM102, SUM149, SUM159, and SUM185 cell lines were also used.
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], MTS [3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium], sul-
forhodamine B (SRB) assay, annexin-V/propidium iodide (PI) for flow cytometry (FC),
trypan blue, and clonogenic assay were performed as described in Table 2. Detailed values
can be consulted in Table S1.

Chemotherapy

Paclitaxel, docetaxel, doxorubicin, olaparib, cyclophosphamide, and carboplatin con-
centrations ranged from 0.1 nM to 10,000 nM, from 0.1 nM to 500 nM, from 0.1 µM to
100 µM, from 0.001 µM to 250 µM, from 0.01 µM to 1 µM, and from 1 µM to 20 µM,
respectively. The concentrations of capecitabine and epirubicin were not reported for
in vitro studies [40,66]. Survival, assessed via the formation of colonies after 14 days, was
inhibited by paclitaxel concentrations higher than 5 nM [83]. Cell viability was reduced
to 80% with the exposure to 6 µM of doxorubicin for 24 hours [30]. The half-maximal
inhibitory concentration (IC50) of doxorubicin was 0.3 µM in MDA-MB-231 and BT-20
cells [47,49]; however, other studies reported different values regarding MDA-MB-231
cells (1 µM [67], 6602 nM [64], 888.75 ± 65.26 nM [73], 45–50 µM and 5–10 µM [74]). The
concentration of docetaxel that reduced cell proliferation by 75% in MDA-MB-231 cells
was 2 nM when a 24-hour incubation was performed [42]. Cyclophosphamide induced
a decrease in cell proliferation at 1 µM. Olaparib demonstrated an IC50 > 100 µM and
an IC50 = 18 µM in MDA-MB-231 and MDA-MB-468 cells, respectively [37]. However, a
different study in MDA-MB-231 and MDA-MB-468 cells reported values of IC50 = 13.5 µM
and IC50 = 5.2 µM, respectively [45]. Concentrations from 1 µM to 10 µM (olaparib) were
insufficient to induce significant alterations in the cell viability after 72 hours [78]. Carbo-
platin showed an IC50 = 10 µM after 24 h, and 1, 4, 8, 10, and 20 µM significantly reduced
cell proliferation (MTT assay) [60]. The IC50 of capecitabine in MDA-MB-231 cells was
5150 µM and 2790 µM after incubations of 24 and 72 hours [66]. Epirubicin, in combination
with other drugs [40,50], namely paclitaxel, demonstrated an antagonistic effect [50]. Doses
of carboplatin lower than 10 µM, and paclitaxel showed additive interactions in MDA-
MB-231 cells [50]. Despite the vast number of strategies used for chemotherapy studies,
doxorubicin, paclitaxel, and docetaxel seemed to be the most promising drugs, exhibiting
greater cell viability reduction at lower concentrations. Paclitaxel was capable of inhibiting
50% of cell viability at lower concentrations (0.07 nM–SRB assay) in contrast to olaparib
(13.5 µM–MTT assay), with all IC50 values for the MDA-MB-231 cell line being compared.

CAP Treatment

This section describes the analysis of 19 studies. Regarding PAM treatment, the
solutions used were millipore water, cell culture medium, and Ringer’s solution. A decrease
of cell proliferation to 20% (p = 0.001) was observed in a volume of 150 µL and 200 µL of
PAM (millipore water-based) [72]. The cell viability was reduced to 0.41 and 0.46 in MDA-
MB-231 and MDA-MB-468 cells, respectively, compared to control cells after 5 minutes
of PAM treatment (medium-based) [79]. The viable cells significantly decreased from
80.50 ± 1.59% to 65.00 ± 3.39% after 120 seconds of CAP treatment in HCC1806 cells [20],
while another study demonstrated a reduction of more than 50% in the MDA-MB-231
cell line [52]. Chen et al. reported a reduction of cell viability of approximately 27.4%
and 14.7%, respectively, with argon or helium gas flow. CAP decreased cell viability in a
dose-dependent manner with statistical significance, as described in Ma et al. [55]. The
viability of the MDA-MB-231 cell line decreased to under 40% or 50% after 5 minutes of
CAP or PAM exposure, respectively [44]. Furthermore, apoptosis seemed to be the most
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prevalent type of cell death [20,55,65]. In general, CAP and PAM demonstrated an effective
anti-tumoral effect in short exposure times, such as 60 and 120 seconds; however, some
authors tested longer exposure times, mainly in PAM treatment.

CAP Treatment and Chemotherapy

Interestingly, CAP treatment and chemotherapy drugs, specifically paclitaxel and
olaparib, were combined in two studies [19,51]. Olaparib showed a tendency to improve
the efficacy of CAP in all cell lines [51]. Moreover, the chemosensitivity to paclitaxel
(0.01 µM) was improved after 15 seconds of CAP exposure. According to clonogenic assay,
the combined treatment decreased the number of colonies to a number similar to or even
smaller than that specific to PAM or paclitaxel [19].

3.2.2. In Vivo Studies

To obtain animal models, the strains CB-17 of severe combined immunodeficiency
mice [56,61,70] and Balb/c were used [79,84] and were inoculated with the TNBC cell line
MDA-MB-231.

Chemotherapy

As described by Man et al., cyclophosphamide was administered following two
regimens. The group continuously administered 25 mg/kg of cyclophosphamide (low
concentration) via drinking water showed an initial reduction of tumor size with no
weight loss for 50 days. However, the group of mice treated in cycles of 6 days with
450 mg/kg/cycle (150 mg/kg/injection every other day) demonstrated severe weight
loss and death one week after starting the therapy [56]. Munõz et al., demonstrated that
20 mg/kg/day via drinking water starting on the 14th day reduced the volume of tumor
compared to the control group. The percentage of necrosis increased from the control
group (78%) to the treated group (85%), and no weight loss or other signs of toxicity were
observed [61]. Another study demonstrated that cyclophosphamide (20 mg/kg/day) added
to capecitabine (100 mg/kg) significantly increased survival compared to the control [70].

CAP Treatment

CAP treatment was administered directly into animal tumors, and PAM injection of
PBS showed significant inhibition of tumor growth (p = 0.044 and p = 0.017, respectively).
In the comparison of both approaches, the survival of mice in the CAP treatment group was
significantly higher than that in the PAM group (p = 4.9 × 10−4). In addition, all control
mice died within 27 days, while all mice from the CAP group survived until the end of the
experiment (30 days) [84]. Another study showed that the tumor volume was inhibited by
PAM injection, and tumor weight dropped considerably after treatment (from 4.053 g to
0.787 g, p = 4.69 × 10−4). No visible adverse effects were observed [79].

3.3. Quality Assessment

In terms of quality assessment, most studies presented an unclear bias, determined
by the SYRCLE tool regarding in vivo studies, as described in Figure 2 and detailed in
Supplemental Table S2. According to these bias tool guidelines, only three parameters were
correctly reported for all studies, specifically, incomplete outcome data, selective outcome
reporting, and other sources of bias. Moreover, 20% of articles presented no data on random
outcome assessment, as shown in Figure 2. For other studies, the ToxRTool protocol was
used, and articles were categorized based on this score. We observed scores between 11 and
14 as the most prevalent, where the studies were considered reliable with restrictions.
Although five articles were classified as not reliable, eleven studies were classified under
the criterion of reliability without restrictions. The risk assessment for individual study
bias is represented in Figure 3 and detailed in Supplemental Table S3.
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4. Discussion

The clinical complexity of treating TNBC often requires a tailored approach due to
its aggressive nature and poor prognosis compared to other molecular subtypes [85–87].
Chemotherapy is a well-established treatment indicated in clinical practice regarding
TNBC [10,11]; however, it has associated adverse effects. CAP has been investigated
across a vast array of medical fields, specifically in dental medicine, regeneration of tissues,
and tumor therapy, without causing significant harm to healthy cells, as well as having
antimicrobial effects and an impact on stem cells and nitric oxide levels [88]. It has been
explored as a new emerging medical approach for several types of cancer, including TNBC,
with promising results in terms of cell death [20,44,75,77]. As CAP is not a clinically
approved treatment, being under preclinical research, a comparison was conducted to
determine the efficacy of both treatments without associated interventions.

The chemotherapeutic drugs explored—paclitaxel, docetaxel, cyclophosphamide, dox-
orubicin, olaparib, carboplatin, and capecitabine—were selected based on ESMO and ASCO
guidelines [11,12], ensuring a broad and complete assessment of cellular effects [52,79].
Currently, chemotherapy drugs are used in clinical practice and are heavily used as a
positive control in most experiments [89,90]. For all treatments, the outcomes depended on
the protocol definitions, including the dose of chemotherapy drugs administered and the
time of exposure to CAP. Several assays, such as MTT, MTS, SRB, annexin-V/propidium
iodide, trypan blue, and clonogenic assay, were performed to prove the in vitro efficacy of
CAP and chemotherapy drugs.

We found a wide range of chemotherapy concentrations tested in in vitro assays. The
papers showed a reduction in cell proliferation, which is supported by the mechanisms
of action of the drugs on tumor cells [91–95]. There were additive interactions between
paclitaxel and carboplatin in vitro [50]. In fact, in patients whose TNBC disease progressed
after taxane administration, carboplatin was one of the recommended chemotherapy
agents [11,12]. According to the guidelines, taxane-anthracycline-based combinations are
options for treatment [11,12]. The results obtained corroborated our expectations about
the efficacy of chemotherapy in TNBC cell lines. However, the evidence available was
often insufficient to statistically compare several studies since the data were not described
quantitatively, and the various strategies do not allow for a comparative evaluation.

CAP therapy is an emerging therapeutic approach in cancer although the mechanism
of action remains unclear. Recent studies have shown its effects on cell proliferation in
several types of cancer, leading to cell death [35,44,96–98]. Here, we examine two different
strategies concerning the application of CAP in TNBC cell lines, namely CAP and PAM,
which used different exposure times and solutions. Both strategies are also reported in
preclinical studies regarding other types of cancer [17–19,44,99–101]. Different types of
equipment that are able to generate CAP are described. Some authors used a flow of
gases such as argon or helium [34,44,53,62,77], and the frequency and high voltage were
also dependent on the equipment of each research group. Generally, the exposure times
were 60 seconds or 120 seconds [19–21,33,35,44,51–53,55,71,80,81]. The reduction of cell
viability in TNBC cells was time dependent in all studies. Apoptosis seemed to be the
predominant type of cell death [19,20]. Studies on different types of cancer demonstrated
a close correlation with the abovementioned, supporting the anti-tumoral potential of
CAP as a promising strategy. A vast number of cell lines representing melanoma, brain
tumor and leukemia, cervical, breast, colorectal, gastric, lung, ovarian, head and neck,
and pancreatic cancers have already been used for CAP studies, demonstrating its anti-
proliferative effect [88]. Moreover, some authors reported the selectivity of CAP to tumor
cell lines [22,102,103]. The efficacy of olaparib or paclitaxel combined with CAP tended to
improve the cytotoxicity of treatment in five distinct TNBC cell lines [51]. PAM improved
the chemosensitivity to the lowest concentration of paclitaxel and reduced the metabolic
activity compared to isolated therapies [19].

Translating cell line models into animal models is a crucial stage in assessing the
efficacy of therapy in a biologically complex organism. In the studies, the methods used
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were tumor growth or volume, animal weight, or survival monitoring. Cyclophosphamide
was able to reduce the volume of tumor with no weight loss and no signs of toxicity [61].
The combination of cyclophosphamide and capecitabine increased survival [70]. Similarly,
CAP and PAM inhibited tumor growth significantly, and no noticeable adverse effects
were observed [52,84]. CAP was applied locally to the tumor in both plasma approaches.
Although we only analyzed two papers with CAP treatment in vivo, the results proved the
efficacy in TNBC. In vivo studies with different types of cancer have been performed in
recent years [104,105]. Nevertheless, further studies should include cell lines representative
of other TNBC molecular subtypes and consider other animal models to encompass as
many of the characteristics observed in clinical practice as possible. Unfortunately, in vivo
studies regarding CAP and chemotherapy combination are unavailable. In the future, to
maximize the anti-tumor potential of CAP, combining it with chemotherapy drugs should
also be studied in vivo, promoting a potential coordinated translation to the clinical setting.
Furthermore, patient-derived xenograft models could be an enriched research option for
evaluating CAP efficacy in human BC tissue samples.

As regards CAP, it could be a promising option for clinical practice. From the results
obtained, we hypothesize a reduction of the side effects associated with chemotherapy with
a lowering of the concentrations of the drugs administered.

One of the limitations observed was the heterogeneity between the studies due to
methodological approaches, namely exposure, intervals and doses of drugs, voltages of
equipment, times of exposure, and evaluation times. Moreover, the lack of important
information, such as concentrations and detailed and quantitative results, impeded meta-
analysis studies. In addition, we observed differences between the number of studies for
each drug, which means that the sample included in some groups was reduced, limiting
the conclusions. The bias assessment, based on a set of well-defined guidelines, proved the
difficulty in obtaining all the information necessary to proceed to the planned statistical
study, as illustrated in Figures 2 and 3. CAP studies provided a more detailed description
of the conditions of treatment used. Table 3 summarizes key aspects of this systematic
review, including the main considerations of the study and the next steps. In the future,
based on our results, we suggest creating a list of standard methodologies to address the
limitations found. Moreover, correlating studies with human tissue samples of TNBC after
CAP treatment with clinical reports of patients will enhance the potential translational
value of therapy. Nevertheless, combining chemotherapy and CAP or PAM in vivo appears
to be a strategic option.

Table 3. Key aspects of this systematic review.

Key Aspect Highlights

TNBC

(1) Due to its aggressive nature and poor prognosis compared to other molecular subtypes, TNBC
requires a broader range of treatment options.
(2) Chemotherapy is a well-established treatment for TNBC, but it comes with associated adverse
effects. The selection of chemotherapy drugs, particularly paclitaxel, docetaxel, cyclophosphamide,
doxorubicin, olaparib, carboplatin, and capecitabine, was based on ESMO and ASCO guidelines.

Plasma treatment Cold plasma, investigated across various medical fields, including tumor therapy, shows promise in
cancer treatment, including TNBC, with results indicating cell death.

Search
(1) Initial retrieval of 19,364 studies from four databases.
(2) After screening, 59 articles were included in the systematic review. Articles were published
between 1986 and 2023, with focus on the efficacy of chemotherapy drugs and CAP treatment.

In vitro studies

(1) In vitro studies demonstrated a reduction in cell proliferation with various chemotherapy
concentrations tested, and additive interactions were observed between paclitaxel and carboplatin.
(2) Different strategies, including CAP and PAM, exhibited a time-dependent reduction in TNBC cell
viability, with apoptosis being the predominant type of cell death.
(3) Combination therapies involving cold plasma and chemotherapy drugs tended to improve
cytotoxicity in TNBC cell lines.

In vivo studies Animal models are crucial for assessing therapy efficacy. Studies demonstrated inhibition of tumor
growth with no noticeable adverse effects in animal models regarding CAP treatment.
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Table 3. Cont.

Key Aspect Highlights

Limitations
Heterogeneity between studies, including methodological approaches and lack of detailed
information, poses limitations to meta-analysis studies and conclusive interpretations. This
emphasizes the need for standardized methodologies.

Future directions

(1) This systematic review underscores the need for further research using standardized
methodologies to address current limitations and advance clinical translation.
(2) Studies directly comparing CAP, PAM, and standard chemotherapy regimens should be
performed, including the evaluation of cell death and associated mechanisms of action.
(3) Conducting studies to unravel specific protein alterations after CAP and PAM treatment might be
a strategy for establishing combinations with drugs used in clinical practice.
(4) Future studies should consider other animal models and explore combination therapies. Cold
plasma therapy could potentially reduce chemotherapy-associated side effects by lowering drug
concentrations, necessitating further investigation in this field.
(5) The use of patient-derived xenografts must be considered as a key approach to verifying the
effects of CAP. The findings should be correlated with patients’ clinical data.

5. Conclusions

Chemotherapy agents effectively reduced cell proliferation in most TNBC cell lines,
depending on a wide range of concentrations and experimenting conditions. CAP treatment
successfully treated TNBC cell lines, with apoptosis being the most prevalent type of cell
death. Paclitaxel or olaparib combined with CAP in vitro should be further investigated.
Our results suggest that other combinations should be considered and evaluated. In
the in vivo studies, the selection of different chemotherapeutic regimens influenced the
obtained results, with both CAP and PAM effectively reducing tumor volume without
visible side effects. However, the lack of information on both treatments and the diversity
of experimental conditions underscore the need for more research. Despite the weaknesses
observed, our results indicate that CAP is as effective as chemotherapy in TNBC. Innovative
studies should be performed to increase the knowledge of CAP treatment and enhance
future medical options on TNBC.
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