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Abstract: This study addresses the pressing issues of energy production and consumption, in line with
global sustainable development goals. Focusing on the potential of alcohols as “green” alternatives
to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical
properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The
calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary
mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations)
but with different values for the excess enthalpies for each mixture. Despite the structural differences
of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent
mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol,
n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the
NRTL and Redlich–Kister equations show satisfactory agreement with the obtained values.

Keywords: excess enthalpy; calorimetry; sunflower oil; thermochemistry; Redlich–Kister equation;
NRTL

1. Introduction

It is a matter of common observation that the problems of energy production and
consumption remain some of the most acute in the modern world, for both industry and
society. The global attention paid to the use of traditional energy sources and development
of new ones is reflected in 2 (the 7th and 12th) of the 17 Sustainable Development Goals that
were proposed in the 2030 Agenda for Sustainable Development by the United Nations
General Assembly in 2015 [1]. Such a high level of interest in obtaining “affordable” and
“green” energy resulted in extensive scientific research and discussions on developing
alternative ways to produce energy all over the world, e.g., perspectives on using biodiesel
in Turkey [2], India [3], the USA [4] and in Latin America [5] have been discussed. Vari-
ous biofuels, which can be produced from natural resources, are believed to be effective
alternatives to the fossil fuels. Cherwoo et al. [6] discussed different aspects of the biofuel
industry; in particular, three generations of biofuels were observed with their advantages
and drawbacks that restrict their wide commercial usage.

Alcohols are promising “green” alternatives to the traditional fossil fuels. Though
bioethanol is the most widely used one, other alcohols, mainly C1–C5, are also of scientific
and commercial interest. At the same time, alcohols can also be applied as additives to
biodiesel to enhance its properties. Manivasagam et al. [7] studied the influence of propanol
electronic mode fumigation on the performance and emission characteristics of compression
ignition engines with diesel and lemongrass oil biodiesel. Propanol fumigation has been
found to decrease the level of smoke and carbon dioxide emissions. Tosun and Aydin [8]
investigated the properties of binary and ternary blends of propanol with diesel fuel and
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biodiesel from safflower oil. It has been observed that the addition of alcohol has a positive
impact on viscosity, mixing and evaporation properties as well as the thermal efficiency of
the blended fuel. The influence of propanol on diesel and biodiesel (from cooking oil and
Ambadi seed oil) was observed in paper [9]. The mixtures with the alcohol showed better
brake efficiency, lower emissions with higher cylinder pressure and a peak heat release rate
when tested in terms of engine characteristics. Musthafa et al. [10] also discovered that the
main advantage of adding alcohols (in particular ethanol, propanol and butanol) to fuels
is the decrease in emissions. In this regard, the role of alcohol additives consists not only
of improving the energy efficiency and engineering properties of fuels but also of making
them more eco-friendly and less toxic. Yet it should be also taken into account that applying
various alcohols for mixing with diesel and biodiesel fuel may have several disadvantages
as well. A slight decrease in several physical properties (density, viscosity, cetane number,
flash point and heating value) and an increase in CO and NOx emissions were reported in
studies of diesel fuel blended with different alcohols [11–13] and natural oil esters [14,15].
Therefore, different alcohol–fuel blends should be comprehensively studied in terms of
their properties to find the most versatile mixtures. For instance, it is known from the
literature that biodiesel–alcohol (e.g., propanol, butanol, pentanol) blends tend to emit
smaller numbers of cariogenic compounds, especially polycyclic aromatic hydrocarbons,
and reduce the wet stacking in diesel engines in comparison with pure diesel. El-Seesy
et al. [16] determined the optimal composition of propanol–decanol–Jatropha oil biodiesel
in terms of its properties and for its use in an engine: lower viscosity and pollution level
and higher cylinder pressure and heat release rate. Atmanli [11] carried out comparative
analyses of diesel–waste oil biodiesel–alcohol (1-propanol, 1-butanol, 1-pentanol) ternary
mixtures with diesel and biodiesel fuel themselves. Both physico-chemical properties, such
as density and viscosity, and practical engine characteristics were discussed. It has been
shown that addition of alcohols leads to a density and viscosity decrease, similar to the
trends reported in [17,18]. The alcohols have been also found to slightly decrease the cetane
number of the blends. This problem was also discussed in [13] in terms of adding a cetane
improver to cancel out that effect.

Bioethanol being relatively more available, widespread and cheap may seem to be its
considerable edge. At the same time, using higher alcohols is reported to improve several
properties, especially miscibility [11,13,19]. As a result, n-butanol is also quite interesting to
study in both binary mixtures with diesel [20,21] and biodiesel [22] fuel and ternary blends,
e.g., n-butanol–diesel–cotton oil [23,24], n-butanol–diesel–palm oil [25], n-butanol–diesel–
vegetable oil [26,27] and n-butanol–diesel–biodiesel fuel [28,29]. n-Pentanol has been also
widely studied either as a fuel itself [30] or in mixtures: binary with diesel [17,31,32] and
biodiesel [18] and ternary n-pentanol–diesel–biodiesel ones [33].

It should be also noted that, despite the high level of interest in the use of alcohols
and natural oils for biodiesel production, most of the works in this field are dedicated
only to the industrial and practical characteristics of the engines and fuels. At the same
time, information on the physico-chemical properties for these kinds of systems is rather
limited, especially in terms of thermodynamics and thermochemistry. Huang et al. [34]
performed experimental determination of the evaporation and micro-combustion properties
(evaporation rate, micro-explosion intensity, etc.) of propanol–soybean oil blended droplets
at three temperatures. Bencheikh et al. [35] applied several methods of thermal analyses
(DSC, TGA) as well as other physico-chemical methods to study several mixtures of waste
cooking oil biodiesel with diesel and propanol. Addition of the alcohols was proved to
reduce the crystallization temperature of the mixtures. Propanol was also found to improve
several characteristics of the combined fuel. Saied et al. [36] studied castor oil adducts
with three acid (phthalic, maleic, succinic) anhydrides. A number of physical properties
were experimentally determined at different temperatures. Permittivity, dielectric loss and
electrical conductivity were measured at 30 ◦C and 60 ◦C. Data on viscosity were obtained
in the temperature range 30 ◦C–80 ◦C. The density of the mixtures was studied at 50 ◦C.
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This paper is dedicated to the physico-chemical properties of three alcohols (n-
propanol, n-butanol and n-pentanol) blended with oil. Earlier, we investigated liquid–
liquid equilibria and excess enthalpies in multicomponent systems containing ethanol [37],
propanol [38], butanol [39] and pentanol [40]. Because the observed alcohols are not only
used as the additive to fuels or the biodiesel fuel itself, and, together with carboxylic
acids and corresponding esters are the components of various natural oils, the alcohol–oil
blends can be observed as model ones to investigate the physico-chemical properties which
can be needed for industrial application. In this work, we present experimental results
on the excess enthalpies for pseudo-binary mixtures of sunflower oil with three alcohols
(n-propanol, n-butanol, n-pentanol) at 303.15 K and atmospheric pressure.

2. Results

Tables 1–3 present the new experimental results for the binary systems of sunflower
oil–n-propanol, sunflower oil–n-butanol and sunflower oil–n-pentanol. These data are also
visually represented in Figures 1–3.

Table 1. Molar excess enthalpies of the oil + n-propanol system at 303.15 K a (J mol−1), x—mole
fraction of oil.

x (Oil) HE
m/J mol−1 x (Oil) HE

m/J mol−1

0.0811 1444.5 0.4971 3098.1
0.1609 2320.9 0.5408 2962.9
0.2484 2899.7 0.6377 2677.5
0.3375 3109.0 0.7559 2000.1
0.3396 3124.3 0.8740 1162.9
0.4337 3255.2

a Standard uncertainties of temperature u(T) = 0.05 K, mole fraction u(x) = 0.0001 and molar excess enthalpies is
Ur(HE

m) = 0.03 (95% level of confidence).

Table 2. Excess enthalpies of the oil + n-butanol system at 303.15 K a (J mol−1), x—mole fraction of
oil.

x (Oil) HE
m/J mol−1 x (Oil) HE

m/J mol−1

0.0785 1401.7 0.6427 2809.3
0.1592 2236.5 0.7554 2149.3
0.2489 2846.0 0.8745 1193.1
0.3394 3202.5
0.4340 3297.4
0.5483 3232.7

a Standard uncertainties of temperature u(T) = 0.05 K, mole fraction u(x) = 0.0001 and molar excess enthalpies is
Ur(HE

m) = 0.03 (95% level of confidence).

Table 3. Excess enthalpies of the oil + n-pentanol system at 303.15 K a (J mol−1), x—mole fraction of
oil.

x (Oil) HE
m/J mol−1 x (Oil) HE

m/J mol−1

0.0790 1437.1 0.4367 3150.1
0.1614 2186.8 0.5379 2991.0
0.1620 2278.4 0.6426 2741.5
0.2446 2749.7 0.7560 2112.4
0.2488 2753.0 0.8742 1142.8
0.3377 3089.6

a Standard uncertainties of temperature u(T) = 0.05 K, mole fraction u(x) = 0.0001 and molar excess enthalpies is
Ur(HE

m) = 0.03 (95% level of confidence).
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Figure 1. Molar excess enthalpies for binary system sunflower oil–n-propanol (J mol−1). The
experimental solid circles (•) at 303.15 K were calculated by Redlich–Kister equation (. . .. . .) and NRTL
model (—); x—mole fraction of sunflower oil.
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Figure 2. Molar excess enthalpies for binary system sunflower oil–n-butanol (J mol−1). The exper-
imental solid circles (•) at 303.15 K were calculated by Redlich–Kister equation (. . .. . .) and NRTL
model (—); x—mole fraction of sunflower oil.
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Figure 3. Molar excess enthalpies for binary system sunflower oil–n-pentanol (J mol−1). The
experimental solid circles (•) at 303.15 K were calculated by Redlich–Kister equation (. . .. . .) and NRTL
model (—); x—mole fraction of sunflower oil.

3. Discussion

All three curves of the molar excess enthalpy for the oil–alcohol (n-propanol, n-butanol,
n-pentanol) pseudo-binary mixtures have a similar shape with a maximum of 3255.2 J/mole
for the n-propanol–oil blend, 3297.4 J/mole for the n-butanol–oil mixture and 3150.1 J/mole
for the n-pentanol–oil system. As these alcohols are completely miscible with sunflower oil,
the HE

m curves are continuous ones with molar excess enthalpy values remaining positive
throughout the entire concentration range. The positive values tend to be reliable as the
mixing process is expected to be exothermal.

It should be noted that the molar excess enthalpy values for the three systems are quite
similar. The curves are consequently near to each other, which means that the heat effect of
mixing tends to weakly depend on the number of carbon atoms in the alcohol molecule.
This effect may be explained in terms of the NRTL (non-random two-liquid) approach [41],
which assumes that the molar excess Gibbs energy for a binary solution is the sum of two
changes in residual Gibbs energy: of transferring molecules from the local cells in their
pure liquids to the corresponding cells in the solution. We may expect the same relation
to hold true for enthalpy on a qualitative level. Thus, we can consider the molar excess
enthalpy as the sum of the contribution that corresponds to transferring every component
from the pure liquid to the solution. As a result, if the contribution of the alcohol is much
lower than those of the oil components, or if they are comparable for every oil–alcohol
mixture, the difference in the corresponding contributions for different alcohols should not
considerably affect the total molar excess enthalpy of the systems.

We have conducted comparative data analyses. Unfortunately, there are no similar
studies in the literature, and the number of related studies is extremely limited. However,
we have identified several relevant works. For instance, in the study by Abbas and
Gmehling [42], data on excess enthalpies for binary alcohol–ketone systems were obtained.
The authors also provided data from the literature on excess enthalpies of alcohols such as
2-butanol and tret-butanol. Additionally, Domańska et al. [43] investigated phase equilibria
and excess molar enthalpies in binary systems involving pyrrole + hydrocarbon or an
alcohol. They presented experimental data on excess enthalpies in systems such as pyrrole
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+ 1-propanol, 1-butanol or 1-pentanol. Although the systems studied differ from ours, the
findings shed light on the thermochemical behavior of alcohol mixtures.

Works [44–46] are more relevant to our study. González et al. [44] investigated en-
thalpies of mixing in binary systems of alcohols and n-alkanes with corn oil. In particular,
they present experimental data on excess enthalpies in methanol, ethanol, propanol-1,
propanol-2, butanol-1 and butanol-2 + corn oil systems. In Figure 1 of the study [44], data
are presented illustrating a trend of increasing excess enthalpies with the elongation of
the carbon chain in alcohols. However, it is noteworthy that, in the systems of 1-propanol
and 1-butanol + corn oil, the thermal effects are very similar, and the dependence curves
lie closely to each other. Similar results are observed in the current investigation. These
primary alcohols (1-propanol, 1-butanol) exhibit similar polarity and consequently yield
comparable values of mixing enthalpies. For shorter alcohols like methanol and ethanol,
the polarity values are higher due to the significant induction effect in ethanol compared
to methanol, which varies as the length of the hydrocarbon chain increases. However, the
contribution of each subsequent carbon atom decreases. Similar conclusions are drawn by
the authors in another publication [45]. Belting et al. [46] provide data on mixing enthalpies
in binary systems of methanol and ethanol + sunflower oil. It is noteworthy to highlight the
interesting findings of this study regarding the mixing enthalpies in the ethanol + sunflower
oil system as this system exhibits limited solubility between its components, and the results
are obtained across the entire concentration range. The authors mention that they did not
observe stratification in this system at higher temperatures. Additionally, the authors of
the article drew attention to how variations in experimental temperature influence thermal
effects, which we can also observe from the experimental results (the mixing enthalpy
values measured at other temperatures are higher than the rest of the dataset). Comparison
graphs for the data from the literature and experimental results of the current study are
presented in Figure 4.
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Figure 4. Molar excess enthalpies for binary systems: sunflower oil–n-propanol (•), sunflower oil–n-
butanol (■), sunflower oil–n-pentanol (▲) experimental data at 303.15 K vs. sunflower oil–methanol
(+) (353.15 K) [46], sunflower oil–ethanol (×) (353.15 K) [46], corn oil–methanol (3) (298.15 K) [44],
corn oil–ethanol (#) (298.15 K) [44], corn oil–n-propanol (△) (298.15 K) [44], corn oil–n-butanol (□)
(298.15 K) [44] (J mol−1).

Both the NRTL equation and Redlich–Kister equation were shown to be in sufficient
agreement with the obtained values, which is why they could be used for the data cor-
relation and interpolation. In general, the Redlich–Kister equation with the exponential
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switching function was found to give a better result than the NRTL equation. At the
same time, the chosen Redlich–Kister equation uses more adjustable parameters for data
correlation.

4. Materials and Methods
4.1. Materials

For the investigation, n-propanol, n-butanol and n-pentanol provided by Vekton (Saint
Petersburg, Russia) were taken. Preliminary purification of alcohols was carried out by
drying over molecular sieves (zeolites with a pore diameter of 3 Å). The purity of dried
reagents was checked by gas chromatography (GC) method using “CHROMATEC CRYS-
TAL 5000.2” (Yoshkar Ola, Russia) chromatograph with a thermal conductivity detector
(TCD) equipped with a Hayesep Q 80/100 packed column (3 m × 2 mm). The standard
uncertainty of GC analysis is ±0.005 mole fraction. The final purities of chemicals are
presented in Table 4. The sunflower oil used in this study was from a local commercial
supplier (Saint Petersburg, Russia, GOST 1129-2013).

Table 4. The purities of the used chemicals.

Substance Symbolic
Name Source Purity, Mole

Fraction
Purification

Method
Analysis

Technique

71-23-8 n-Propanol PrOH Vekton (Russia) 0.998 b Drying GC a

71-36-3 n-Butanol BuOH Vekton (Russia) 0.995 b Drying GC a

71-41-0 n-Pentanol AmOH Vekton (Russia) 0.997 b Drying GC a

8001-21-6 Sunflower seed oil - Local commercial supplier - - -
a Gas chromatography. b Standard uncertainties of mole fraction u(x) = 0.005.

4.2. Solubility Measurements

Before conducting the molar excess enthalpy measurements, the investigation of the
solubility of binary alcohol–oil systems was carried out. The measurements were performed
by the titration method using “cloud point” technique [47]. The analysis showed that n-
propanol–oil, n-butanol–oil and n-pentanol–oil systems remain homogeneous throughout
the entire concentration range.

4.3. The Kinetics of the Transesterification Reaction Investigation

The kinetics of this reaction were studied to ensure that no chemical reaction (trans-
esterification) occurred between the oil components and alcohols during the experiment.
To confirm the accuracy of the measured excess enthalpies in the sunflower oil–alcohol
(n-propanol, n-butanol, n-pentanol) systems, it was necessary to exclude the influence of
interfering factors on the measurement results, primarily chemical reactions.

Based on general chemical considerations, it can be assumed that transesterification
reactions of triglyceride with alcohols, leading to the formation of diglyceride and esters
of fatty acid in accordance with Figure S7, may potentially occur. Moreover, nucleophilic
addition of an alcohol to the double bond of unsaturated fatty acids and other reactions
involving minor components of sunflower oil can possibly take place in the investigated
systems.

Although the mentioned reactions usually take place under catalytic conditions, we
decided to conduct the experiment to demonstrate that these reactions do not occur sig-
nificantly in the investigated mixtures, and, in this case, their presence did not affect the
course of the experiment.

To achieve this, solutions of 200 mg of sunflower oil in 2 mL of each investigated
alcohol (n-propanol, n-butanol, n-pentanol) were prepared. The alcohol was taken in a
significant excess to maximize the acceleration of possible chemical reactions. NMR spectra
were recorded on 1H nuclei (with accumulation) for each of these mixtures. After that,
the mixtures were kept at a temperature of 60 ◦C for 4 h. The experimental temperature
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significantly exceeded the temperature of excess enthalpy measurements to maximize
the acceleration of possible chemical reactions. After cooling the mixtures to ambient
temperature, NMR spectra were recorded again on 1H nuclei (with accumulation).

A detailed comparison of the spectra of the mixtures before and after heating was
carried out for each alcohol. Particular attention was given to the region of 3.7–4.5 ppm,
where the appearance of a signal from the CH2 group corresponded to formation of the
ester of alcohol and fatty acid (the second product in Figure 4) or addition products.

Figure S1 shows the comparison of the spectra of the sunflower oil solution in n-
propanol before heating (spectrum B) and after heating (spectrum A). The positions of
the n-propanol signals are indicated (they exceed the scale in this case), as well as their
13C satellites, the intensity of which is significant due to the large excess of alcohol. The
integrals of the characteristic signals of the components of sunflower oil are indicated. It
was revealed that the spectra were identical within the experimental error, and there were
no new signals in the region of 3.7–4.5 ppm. Similar results were observed for the solutions
of sunflower oil in n-butanol and n-pentanol.

Figure S2 shows the comparison of the spectra of heated solutions of sunflower oil in
n-butanol (spectrum A) and n-pentanol (B) with pure oil (spectrum C). Spectra A and B
showed intense signals from various groups in the alcohol molecule and their 13C satellites.
Spectrum C indicates the positions of characteristic groups: CH2-glyc, CH-glyc–protons of
the glycerol residue, CH-unsat–protons near double bonds and CH2-linoleic–protons of
the CH2 group in the linoleic acid residue, which are located between double bonds and
the CH3 end terminal group of fatty acid residues. It was demonstrated that there were
no new signals of noticeable intensity in the spectra of the solutions except the signals of
triglyceride and alcohol.

The 1H NMR spectra of the mixtures before and after heating were found to be
identical. No new signals, distortions of the shape or changes of integral values of existing
signals were observed. Considering that the temperature and heating time significantly
exceeded those during the measurement of the excess enthalpies, it can be concluded that
negligible chemical transformations took place, and the resulting changes in values did
not exceed the instrument’s error range. Thus, the excess enthalpies of sunflower oil with
alcohols, namely n-propanol, n-butanol and n-pentanol, were accurately measured without
the systematic error introduced by chemical reaction.

4.4. Molar Mass of Sunflower Oil

To enhance the visual representation of results and enable a more precise analysis of
the substances investigated in this study, we scrutinized the sunflower oil to determine its
molecular mass. The mean molecular mass of the oil under study was determined by means
of electrospray ionization mass spectroscopy (ESI-MS). The advantage of this method is the
use of the so-called “soft ionization” technique. The forming of pseudo molecular ions in
ESI-MS allows the structure of the initial molecule to be saved without significant oxidation,
fragmentation, etc. ESI-MS is a common practice method for the study of a rather wide
range of compounds with molecular mass 1–7 kDa [48]. The obtained mass spectrum of
the oil studied in this work is presented in the Figure S3. From the most valuable signals of
the spectra, with respect to the contribution (ratio) each of them, the mean molar mass of
the oil under consideration was estimated to be equal to 1138 g/mol.

4.5. Molar Excess Enthalpy Measurements

In the experiment, an isothermal calorimeter Setaram C80 (Caluire, France) was
utilized. The temperature measurement accuracy was ±0.1 K, sensitivity was 30 µV/mW,
signal resolution was 0.1 µW and noise level was 1 µW. Calibration was performed using
the Joule effect, and temperature calibration was carried out using standard samples.

Membrane mixing cells, consisting of two parts separated by a thin aluminum mem-
brane, were employed for measuring the heat of mixing. The weighing method on Sartorius
MSU225S (Goettingen, Germany) balances with an accuracy of ±0.1 mg was used to deter-
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mine the substance quantities. In the process of the experiment, substances were mixed
using a reversible mechanism, ensuring complete mixing without additional thermal im-
pact. Each experimental mixture was studied in two cells alternately. Additional details of
the methodology can be found in references [37,49]. After the experiment, the used samples
were kept for 24 h at 303.15 K. During this time, no phase separation of the solutions
occurred, indicating that there were no reaction or phase processes in them.

Calorimetric signal stabilization was conducted before the start of the experiment,
after which the components were mixed, and the thermal effect was recorded. The process
concluded when the signal stabilized for 30 min. To account for the membrane rupture
effect, a blank drop of the rod was performed. Examples of obtained thermograms are
presented in Figures S4–S6. The heat effects were calculated by integrating the peaks of the
heat flow signal over time in the Calisto program.

4.6. Calculation
4.6.1. Redlich–Kister

Obtained experimental data were correlated with use of the improved Redlich–Kister
equation [50,51] in order to check their values for thermodynamic correspondence.

HE = xAxB

(
S

N

∑
i=0

ai(xA − xB)
i + (1 − S)

M

∑
i=0

bi(xA − xB)
i

)
(1)

where xA, xB are the molar fractions of components A and B, ai and bi are the adjustable
parameters, N and M are the polynomial degree and S is the switching function. The
improved formula of the Redlich–Kister equation with exponential switching function was
found to correlate all experimental data in the best way.

S = exp(−γxa) (2)

The simulation results are shown in Figures 1–3.
To characterize the best description of the Redlich–Kister equation by a polynomial

for a set of experimental points, the standard deviation parameter was used.

σ(HE) =

√√√√√ n
∑

i=1

(
HE

calc,i − HE
exp,i

)2

n − N
(3)

where n is the number of experimental points, N is the number of coefficients of the
polynomial. The average calculation error was estimated using the following formula:

ARD(%) =
100
n ∑n

i=1

∣∣∣HE
calc,i − HE

exp,i

∣∣∣∣∣∣HE
exp,i

∣∣∣ (4)

Parameters of these equations, average relative deviation (ARD) and standard devia-
tion (σ

(
HE)) are presented in Table 5.

4.6.2. Non-Random Two-Liquid Model

The NRTL model [41] was used to approximate experimental results on the enthalpies
of mixing binary systems as follows:

HE = x1x2

[
G21∆g21(x1 + x2G21 − x1τ21α12)

(x1 + x2G21)
2 +

G12∆g12(x2 + x1G12 − x2τ12α12)

(x1 + x2G21)
2

]
, (5)
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where

G12 = exp(−α12τ12), G21 = exp(−α12τ21), τ12 =
∆g12

RT
, τ21 =

∆g21

RT
, G12 = exp

∆g12

RT
, (6)

where ∆g12 = g12 − g22 and ∆g21 = g21 − g11 are adjustable binary parameters, and α12 is
the non-randomness parameter.

Table 5. Fitting parameters ak for Equations (1) and (2) for binary mixtures of sunflower oil–alcohols
with ARD and standard deviations, σ (HE

m, J mol−1).

Oil + n-Propanol Oil + n-Butanol Oil + n-Pentanol

a0 22,278.57 24,733 25,455.93
a1 −89.89 −97.49 −90.94
b0 10,854.76 13,109.95 12,252.04
b1 −995.00 −2888.47 −1972.92
γ 4.01 11.22 8.09

ARD (%) 0.8 0.5 1.4
σ, J mol−1 34 26 42

When finding the coefficients of the equation, the objective function, OF, was mini-
mized as follows:

OF =
n

∑
i=1

(
HE

calc,i − HE
exp,i

HE
exp,i

)2

(7)

where the summation is over all i data points.
Parameters of the NRTL model and ARD values (calculated with Equation (4)) are

given in Table 6 and plotted in Figures 1–3.

Table 6. Binary interaction parameters of the NRTL model for binary mixtures of sunflower oil–
alcohols.

Oil(1) +
n-Propanol(2) Oil(1) + n-Butanol(2) Oil(1) +

n-Pentanol(2)

∆g12 6002.02 7250.13 48,841.79
∆g21 −7979.14 −7862.53 28,104.44
αij −0.14 −0.11 0.06

ARD (%) 3 3 3

Both the Redlich–Kister and the NRTL equations have been found to correlate experi-
mental data on the molar excess enthalpy with sufficient accuracy. The average relative
deviation of the calculations (0.8%–1.4% for the Redlich–Kister equation and 3% for the
NRTL equation) tends to be similar to the experimental uncertainty. It can be seen that the
used form of the Redlich–Kister equation fits the experimental values more precisely due
to the fact that it contains more adjustable parameters.

5. Conclusions

This study investigated the thermochemical properties of biofuel components, focus-
ing on the potential of alcohols (n-propanol, n-butanol, n-pentanol) as “green” alternatives
blended with sunflower oil. Calorimetric analysis at 303.15 K allowed for the experimental
determination of excess enthalpies in pseudo-binary mixtures. Despite structural differ-
ences in alcohols, molar excess enthalpy values display uniformity. The similarity in molar
excess enthalpy values across the different alcohol blends implies weak dependence on the
number of carbon atoms in the alcohol molecule. Thus, the peak values of excess enthalpies
for systems of sunflower oil with n-propanol, n-butanol and n-pentanol were, respectively,
3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich–Kister equa-
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tions exhibited agreement with the obtained values. The Redlich–Kister equation with an
exponential switching function provides better results, although it employs more adjustable
parameters for data correlation. To ensure the accuracy of excess enthalpy measurements,
the study confirmed the chemical stability of the sunflower oil–alcohol systems. NMR spec-
tra comparisons before and after heating demonstrated the absence of significant chemical
transformations during the experimental period. Due to a lack of reported data on measur-
ing excess enthalpies for such systems in the literature, direct comparisons with existing
results are limited. The study contributes valuable insights into the physico-chemical prop-
erties of alcohol–oil systems, particularly in terms of thermodynamics and thermochemistry.
This work lays the foundation for further research on the physico-chemical properties of
alcohol–oil systems. For a comprehensive picture of the behavior of oil–alcohol systems,
it is necessary to carry out more investigations, covering the entire temperature range of
293.15 K–323.15 K. Such conditions correspond to the principles of energy-saving chemical
technologies. In addition, studies are also required on, in particular, the excess enthalpies
for mixtures of ethanol–sunflower oil and hexanol–sunflower oil under various conditions.
The results of these studies will make it possible to evaluate the patterns of behavior of the
alcohol mixtures that are so important for use in bioenergy as additives to biodiesel since
they increase its energy efficiency and improve its technical properties while making the
fuel more environmentally friendly.
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//www.mdpi.com/article/10.3390/ijms25063244/s1.
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