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Abstract: Osteoarthritis (OA) is a pathology of great impact worldwide. Its physiopathology is not
completely known, and it is usually diagnosed by imaging techniques performed at advanced stages
of the disease. The aim of this study was to evaluate early serum metabolome changes and identify
the main metabolites involved in an inflammatory OA animal model. This study was performed on
thirty rats. OA was induced in all animals by intra-articular injection of monoiodoacetate into the
knee joint. Blood samples were taken from all animals and analyzed by mass spectrometry before OA
induction and 28, 56, and 84 days following induction. Histological evaluation confirmed OA in all
samples. The results of this study allow the identification of several changes in 18 metabolites over
time, including organic acids, benzenoids, heterocyclic compounds, and lipids after 28 days, organic
acids after 56 days, and lipid classes after 84 days. We conclude that OA induces serological changes
in the serum metabolome, which could serve as potential biomarkers. However, it was not possible
to establish a relationship between the identified metabolites and the time at which the samples were
taken. Therefore, these findings should be confirmed in future OA studies.

Keywords: osteoarthritis (OA); metabolomics; liquid chromatography/mass spectrometry (LC/MS);
metabolic pathway; lipid molecules

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis and one of the most prevalent
diseases in middle-aged and older people. Knee osteoarthritis is one of the leading causes
of physical disability in adults [1–4]. Initially, it was seen as a disease in which only
mechanical degradation of the cartilage occurred, but nowadays, it is considered a very
complex disease involving different tissues [5,6]. Thus, alterations in the joint happen
at different levels, namely, in the metabolism and architecture of the subchondral bone
and in the morphology and metabolism of the articular cartilage, presenting periarticular
osteophytosis, inflammation, meniscus degeneration, and fibrosis of the synovial membrane
in different degrees. In addition, it is related to changes in other tissues, such as ligaments,
tendons, and the sand surrounding the musculature [6–10]. Changes in the morphometric
characteristics of the infrapatellar fat pad have also been observed, supporting an important
role in the pathogenesis and progression of OA [6,11].

The epidemiology of this disorder is complex and multifactorial, with genetic, bio-
logical, and biomechanical components [6,7,9,10]. The main risk factors are age, obesity,
sex, abnormal mechanical joint loading, altered joint morphology, and previous joint injury,
especially previous knee injuries [7,11–16].
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Despite its worldwide importance, there is no official treatment that cures, reverses,
or slows down the development of OA. This could be because its pathogenesis is not yet
fully understood [1,17]. For this reason, treatment of OA has traditionally consisted of
management of the primary cause, followed by treatment of pain, control of clinical signs,
and surgical intervention in some late stages [1,7,18].

For OA diagnosis, a new tool called metabolomics has emerged, and it might provide
more valuable information, given that current imaging techniques offer a late diagnosis
lacking information on the functional adaptation of cartilage. Metabolomics consists of
the study of small biological molecules in a system and holds great potential for early
diagnosis, monitoring therapies, and the understanding of the pathogenesis of many
diseases [1,3,4,7,19].

For this reason, it has become an ideal method for the identification of OA biomarkers
in a variety of biological samples. Different studies have reported several metabolites and
metabolic pathways that can be altered in OA, such as amino acid metabolism, fatty acid and
lipid metabolism, phospholipids, arginine, phosphatidylcholine, L-tryptophan, tyrosine,
carnitine, and arachidonic acid [1,2,4,10,20–25]. In order to identify biomarkers, one must go
to the metabolic pathways that affect amino acid metabolism. These include the biomarkers
branched-chain amino acids (BCAAs), arginine, and phospholipid metabolism related
to the conversion of phosphatidylcholine (PC) to lysophosphatidylcholine (lysoPC) [3].
In the study by Zhang et al., they associated six metabolites with knee OA: arginine,
sphingomyelin, and different PC [4].

This current study has been performed through non-targeted metabolome and gene
expression detection in samples obtained from rats using a monoiodoacetate (MIA)-induced
OA model. The main objective was to evaluate the serum metabolome and identify the
main altered metabolites in a patient with osteoarthritis of inflammatory origin. The
hypothesis of the present study was that metabolomics could allow for the detection of
changes in the serum metabolome in a patient with early osteoarthritis that have not yet
been described.

2. Results
2.1. Metabolomic Study

Blood samples were taken from all animals and analyzed by mass spectrometry before
OA induction (T0), 28 days (T28), 56 days (T56), and 84 days (T84) after OA induction.

A paired analysis of serum metabolite results at T0, T28, T56, and T84 was performed.

2.1.1. T0 vs. T28 Paired Analysis

With the significant variables selected in the Volcano plot explained in material and
methods, an Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA)
multivariate analysis was carried out to detect the variables with the highest discriminant power.

Figure 1 shows how the model discriminates between the two times T0 and T28 in the
score plot obtained after this analysis.

The model diagnostics were adequate with R2Y = 0.994 and Q2Y = 0.967, and the
model is further validated with a p-value coefficient of variation (CV)-ANOVA < 0.001 and
a permutation test of 1000 iterations (Figure 2).

The variable importance in the projection plot (VIP Plot) was performed from the
model to select the most important discriminant variables.

From the VIP Plot, those variables with a low interaction coefficient (CI) (not including
0), which were among the first 30 variables ranked by discriminant order (VIP score), were
selected. Extracting each ion (m/z) from one of the quality control (QC) raw data and
checking the peak shape and retention time also verified each variable.

Table 1 shows the selected variables for identification using the human metabolome
database (HMDB) [26,27] and Metlin databases [28], as well as the mass spectrometry
(MS/MS) analyzed on the equipment.
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Figure 2. Permutation test (1000 iterations) Note:Orthogonal Projections to Latent Structures Discrim-
inant Analysis (OPLS-DA).

Table 1. Variables selected for identification at T0 vs. T28.

Variable (mz/rt) ESI VIP Score

377.1360487; 8.543 pos 5.547

103.0543706; 1.108 pos 4.738

395.1254806; 8.062 pos 4.337

166.0864745; 1.108 pos 4.189

120.0810237; 1.109 pos 3.800

220.1461317; 1.105 pos 2.808

171.9808059; 0.632 pos 2.491

1145.217439; 9.503 pos 2.402

352.3057184; 8.762 pos 2.314

529.3525685; 9.107 pos 2.292

148.0038081; 0.632 pos 2.127
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Table 1. Cont.

Variable (mz/rt) ESI VIP Score

1274.179758; 9.5 pos 2.112

335.2787707; 8.765 pos 2.046

1307.668417; 9.502 pos 1.990

1200.745803; 0.579 pos 1.957

541.3706018; 8.817 pos 1.926

1423.929102; 9.5 pos 1.921

1240.189772; 9.501 pos 1.905

1239.680395; 9.501 pos 1.890

1501.870123; 9.502 pos 1.877

1429.869007; 9.499 pos 1.860

126.0220994; 0.635 pos 1.695

1173.204232; 9.499 pos 1.584

1208.700279; 9.501 pos 1.575
Note: Positive (pos), electrospray ionization (ESI), and variable importance in projection score (VIP score).

Eight organic acids and derivatives, benzenoids, organoheterocyclic compounds, and
lipid molecule variables were selected. These include lactacystin (C15H24N2O7S) from the
carboxylic acid class and derivatives; Taurine (C2H7NO3S) from the organic sulfonic acids
class and derivatives; Styrene oxide (C8H8O) and Tyramine (C8H11NO) from the benzene
class and substituited derivatives; Setanaxib (C21H19ClN4O2) from the pyridines class and
derivatives; Norsalsolinol (C9H11NO2) from the tetrahydroisoquinolines class; Ganoderic
acid V (C32H48O6) from the prenol lipids class; and Ganglioside GM1 (C72H130N2O31) from
the class sphingolipids (Table 2).

Table 2. Biomarkers identified at T0 vs. T28.

Metabolites Theory (m/z)
(HMDB)

Observed
(m/z)

Observed
Retention

Time (min)

Sub Class
(HMDB) Class (HMDB) Superclass (HMDB)

Lactacystin 376.42 377.1360 8.543
Amino acids,
peptides, and

analogs

Carboxylic acid and
derivatives

Organic acids and
derivatives

Taurine 125.147
148.0038 0.632 Organosulfonic

acids and
derivatives

Organic sulfonic acids
and derivatives126.0220 0.635

Styrene
Oxide 120.151 103.0543 1.108 -- Benzene and substituted

derivatives Benzenoids
Tyramine 137.179 120.0810 1.109 Phenethylamines

Setanaxib 394.86 395.1254 8.062 Phenylpyridines Pyridines and
derivatives Organoheterocyclic

compounds
Norsalsolinol 165.1891 166.0864 1.108 -- Tetrahydroisoquinolines

Ganoderic
acid V 528.7199 529.3525 9.107 Triterpenoids Prenol lipids

Lipids and lipid-like
moleculesGanglioside

GM1
(d18:0/16:0)

1519.7974 1501.8701 9.502 Glycosphingolipids Sphingolipids

Note: The human metabolome database (HMDB). All metabolites belong to the kingdom of organic compounds.
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2.1.2. T0 vs. T56 Paired Analysis

In this case, the significant variables were only five variables, which were selected to
build the OPLS-DA model, whose score plot is presented in Figure 3.
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As can be seen in the graph, samples 1, 4, 8, and 11 seem to form a cluster between
them, which indicates that there are other variables not considered, apart from time, that
may be influencing the results (intra-group variability).

Despite this, the VIP plot is constructed to order the variables by discriminant power
and select the most important ones to identify them. Out of six variables, one of them was
discarded because the confidence interval of the VIP score was too high, and another one
because the chromatographic peak was not verified with the retention time.

Table 3 shows an abridgment of the results obtained for the four variables
finally obtained.

Table 3. Variables selected for identification at T0 vs. T56.

Variable (mz/rt) ESI VIP Score

203.2846; 6.00 neg 1.41

231.0456; 1.12 neg 0.66

279.0362; 0.80 neg 0.39

251.1023; 4.46 pos 0.12
Note: Positive (pos), negative (neg), electrospray ionization (ESI), and variable importance in projection score
(VIP score).

The identification results of the selected variables were three organic acids and deriva-
tives, including gamma-Glutamylcysteine (C8H14N2O5S), tyrosyl-Serine (C12H16N2O5),
and acetyl citrate (C8H10O8) from the carboxylic acid class and derivatives (Table 4).

Table 4. Biomarkers identified at T0 vs. T56.

Metabolites Theory (m/z)
(HMDB)

Observed
(m/z)

Observed
Retention

Time (min)
Sub Class (HMDB) Class

(HMDB)
Superclass
(HMDB)

gamma-Glutamylcysteine 250.272 231.0456 1.12 Amino acids,
peptides, and analogs Carboxylic

acid and
derivatives

Organic
acids and

derivatives

Tyrosyl-Serine 268.2658 251.1023 4.46

Acetyl citrate 234.16 279.0362 0.80 Tetracarboxylic acids
and derivatives

Note: The human metabolome database (MHDB). All metabolites belong to the kingdom of organic compounds.
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2.1.3. T0 vs. T84 Paired Analysis

With the significant variables selected in the previous analysis, to detect the variables
with the greatest discriminating power, an OPLS-DA multivariate analysis was carried out.

Figure 4 shows how the model discriminates between the two times T0 and T84 in the
score plot obtained after this analysis. The sample of animal 8 (T84) must be considered as
it differs from the rest of the samples in that group.
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Figure 5. Permutation test (1000 iterations).

From the VIP Plot, those variables with a low CI (not including 0) and which were
among the first 30 variables ranked by discriminant order (VIP score) were selected. Extract-
ing each ion (m/z) in one of the QC raw data and checking the peak shape and retention
time also verified each variable.

Table 5 presents the variables finally selected for identification using the human
metabolome database (HMDB) [26,27] and Metlin databases [28], as well as the mass
spectrometry (MS/MS) analyzed on the equipment.
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Table 5. Variables selected for identification at T0 vs. T84.

Variable (mz/rt) ESI VIP Score

595.4212; 9.168 pos 2.269

573.4081; 9.183 pos 2.266

551.3949; 9.198 pos 2.232

617.4344; 9.154 pos 2.226

529.3819; 9.213 pos 2.139

639.4473; 9.141 pos 2.118

661.4605; 9.126 pos 2.019

507.3685; 9.229 pos 2.001

683.4734; 9.113 pos 1.87

485.3556; 9.245 pos 1.822

705.4863; 9.100 pos 1.662

463.3419; 9.260 pos 1.548

820.5975; 9.294 pos 1.427

727.4989; 9.087 pos 1.34

274.2747; 7.486 pos 1.326

437.2907; 7.905 neg 1.775

391.2852; 7.905 neg 1.822

391.2125; 6.377 neg 1.715
Note: Positive (pos), negative (neg), electrospray ionization (ESI), and variable importance in projection score
(VIP score).

The identification results of the selected variables were seven lipid molecules, includ-
ing ginsenoside Rh1 (C36H62O9) and theasapogenol A (C30H50O6) from the prenol lipids
class; phosphatidic acid (C37H71O8P) from the glycerophospholipids class; polyporusterone
F (C28H46O5), brassinolides (C27H46O6), ursodeoxycholic acid (C24H40O4) from the steroids
class and steroid derivatives; and 10-hydroperoxy-H4-neuroprostane (C22H32O6) related to
prostaglandins and from the fatty acyls class (Table 6).

Table 6. Biomarkers identified at T0 vs. T84.

Metabolites Theory (m/z)
(HMDB)

Observed
(m/z)

Observed
Retention

Time (min)
Sub Class (HMDB) Class (HMDB) Superclass

(HMDB)

Ginsenoside Rh1 638.8721 639.4473 9.141
Triterpenoids Prenol lipids

Lipids and
lipid-like
molecules

Theasapogenol A 506.7144 507.3685 9.229

Phosphatidic acid 674.941 705.4863 9.100 Glycerophosphates Glycerophospholipids

Ursodeoxycholic acid 392.572 437.2907 7.905 Bile acids, alcohols,
and derivatives Steroids and steroid

derivatives
Polyporusterone F 462.6618

463.3419 9.260
Brassinolides 480.6771 Steroid lactones

10-Hydroperoxy-H4-
neuroprostane 392.492 391.2125 6.377 Eicosanoids Fatty acyls

Note: The human metabolome database (MHDB). All metabolites belong to the kingdom of organic compounds.

From the results obtained, it can be concluded that there are differences between the
times T0 and T84.
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In the discriminant analysis, we observed intra-group variability, which indicates
that there are other variables not contemplated in the study, in addition to time, that are
influencing the distribution of metabolites.

2.2. Histologic Study

As expected, all rats developed degenerative and inflammatory changes associated
with OA after the MIA injection. This occurred at every time point after 28, 56, and 84 days
(Figures 6 and 7).
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Histologic signs of osteoarthritis were observed microscopically in all OA-induced
samples. The main alterations presented were the reduction in the cartilage stain intensity
and the presence of an irregular cell density along the samples (Table 7) (Figures 8 and 9).

Table 7. Histological OARSI score system.

Microscopic OARSI Score

Stain Structure Chondrocyte Density Cluster Formation

0 1 2 3 4 5 0 1 2 3 4 5 6 9 0 1 2 3 4 0 1 2 3

28 1 2 0 6 2 1 0 6 3 0 2 0 0 1 5 5 1 0 1 10 1 1 0

56 3 5 2 1 1 0 3 2 0 2 3 0 1 1 4 0 2 3 2 4 6 1 1

84 0 3 3 3 1 2 0 1 1 2 5 1 2 0 2 2 3 4 1 5 7 0 0

Note: OARSI score uses four different variables for cartilage evaluation. This table represents the frequency of
different variable scores in three different study periods. Stain (0–6), Structure (0–10), Chondrocyte density (0–4),
Cluster formation (0–3).
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Figure 8. Graphical representation of the microscopic values evaluated as a function of survival time
for osteoarthritic specimens, following OARSI scale values. Note: The color represents the number of
times each value appears.
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3. Discussion

OA induced in rats by intra-articular MIA produces changes in the serum metabolome,
as observed in the results of the study described herein. Furthermore, these variations are
associated with the time elapsed since the induction of OA.

The pathophysiology of the OA complex remains unknown nowadays, so it was de-
cided to investigate metabolomics as an advanced diagnostic method to see whether it could
provide further insights into the disease. This technique allows us to observe the progress
at a biochemical level and monitor the evolution of the treatment [4,10,17,19]. In addition,
as the study period was relatively short, we needed a sampling technique that would allow
us to make an early diagnosis compared to other techniques, such as radiography or MRI,
where the diagnosis is made in more advanced stages of the disease [1,7,10,29,30]. The
usefulness of an adequate OA model was verified by histological examinations.

Metabolomics is supported by several studies in which significant differences in
serum metabolites were observed between healthy rats and OA rats, as observed in this
study [1,2,10,17,19,20]. In the study by Chen et al. in rats with OA, plasma samples were
analyzed by metabolomics, and it was shown that density labeling mass spectrometry, the
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same technique used in this study, had a high sensitivity for detecting metabolites in rat
plasma [1].

On the other hand, one of the factors to consider was the use of serum to analyze the
metabolites present in the animal. The study carried out by Zhang et al. compared blood
and synovial fluid (SF), observing how the range of metabolites varied considerably, and
out of 168, only 8 were consistently related. This study suggests that metabolic changes
are joint-specific and other inflammatory processes may influence the concentration of
metabolites in serum [4], as does the study carried out by Guma et al., which states that
there is a fairly modest correlation between plasma and SF [19].

Thus, as discussed in several articles, it is necessary to know which metabolites are
altered for a better understanding of the joint status [3,19,31,32]. Regarding the metabolites
found in this study, they differ depending on whether the sample has been collected at T28,
T56, or T84. Different benzenoids, organoheterocyclic compounds, organic acids, and lipid
molecules were detected at T28, whereas only organic acids were observed at T56, and at
T84, they were mainly lipid molecules.

The differential benzenoid classes found in this study were benzene and substituted
derivatives. The organoheterocyclic compound classes found in this study were tetrahy-
droisoquinolines, pyridines, and derivatives. Previous studies had not observed any
association of these metabolites with OA.

Likewise, differences in organic acids and derivatives were detected at T0 vs. T28 and
T0 vs. T56. The main organic acid classes found in this study were carboxylic acids and
derivatives (T28 and T56) and organic sulfonic acids and derivatives (T28). The organic
sulfonic acid detected in the analysis at T0 vs. T28 was taurine. This result correlates with
other studies where taurine metabolism was found to be one of the metabolic pathways
most involved in OA, as taurine is implicated in the pathophysiology of OA, correlating
with subchondral bone sclerosis and playing a vital regulatory role [21,29,30,33–35]. An-
derson et al. observed that elevated taurine in OA could indicate increased subchondral
bone sclerosis [35]. Yang et al. showed that taurine levels in sclerotic subchondral bone
were positively regulated [30]. Taken together, these studies in synovial fluid revealed that
altered taurine metabolism in subchondral bone has a direct correlation with subchondral
bone sclerosis in osteoarthritis. In this study, taurine was analyzed from blood samples, so
this metabolite could be used as an early biomarker of subchondral bone sclerosis in OA,
but further blood studies are required to confirm this hypothesis.

Within the organic acid group, we have also detected carboxylic acids at T28 and T56,
just as Swank et al. detected hippurate carboxylic acid in urine after 18 months of OA
progression [21]. Within this group, we found that at T56, the metabolite acetyl citrate
was detected. With regard to this metabolite, different studies have detected the presence
of citrate in urine and synovial fluid related to OA [35–37]. Citrate is an intermediate
in the tricarboxylic acid cycle, and its increase indicates an OA-related alteration in the
cycle [33,35–38]. Therefore, it would be interesting to further investigate the presence of
acetyl citrate in the blood as a biomarker of OA.

Lipid molecules were found at T0 vs. T28 and T0 vs. T84. These possible biomark-
ers were related to the findings of several studies, where there is an alteration of lipid
metabolism associated with OA due to its pro-inflammatory properties [22–24,39,40]. Kosin-
ska et al. detected alterations at the level of phospholipids and sphingolipids at different
stages of the disease in synovial fluid [41–43]. Thus, understanding the relationship be-
tween OA and lipid molecule analysis may be helpful in future treatments [5].

The main lipid classes in which differences were found in this study are sphingolipids
at T28, prenol lipids at T28 and T84, and glycerophospholipids, steroids, and fatty acyls at
T84. These data are consistent with the study by Pousinis et al. that describes the presence
of glycerophospholipids, sphingolipids, and fatty acyls in plasma from rats subjected to an
OA model for 112 days [40].

With regard to prenol lipids, their most biologically relevant classes are fat-soluble
vitamins (vitamins E, A, and K) [44]. Neogi et al. observed an association between low
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plasma levels of vitamin K and an increased prevalence of OA manifestations in the hand
and knee. They found the relationship because vitamin K supports calcium homeostasis
and facilitates bone mineralization [45–47]. Regarding vitamin E, different studies have
demonstrated its potent anti-inflammatory properties as well as its role in the prevention
and regulation of the progression of age-related diseases [48,49]. Therefore, further research
on the relationship between OA and prenol lipids would be desirable.

Sphingolipids detected at T28 had been previously detected in other studies and
were related to subchondral bone sclerosis in OA. This fact suggests that sphingolipids
play an important regulatory role in the pathological process of sclerotic subchondral
bone [24,30,40,42]. Tootsi et al. found changes in serum sphingolipid levels in humans with
OA, confirming their involvement in the pathogenesis of OA [24]. Kosinska et al. found
that sphingolipids could alter synovial inflammation and repair responses in damaged
joints [42]. Thus, it would be interesting to use sphingolipids as blood biomarkers for OA.

Phospholipids are molecules associated with inflammation and increased cartilage
damage at the synovial fluid level and may be associated with the pathogenesis of OA [41].
The glycerophospholipids form the essential lipid bilayer of all biological membranes, and
changes in glycerophospholipid concentrations and composition are associated with OA
development, as shown in a multitude of studies [4,22,24,40,50]. Therefore, changes in the
concentration of lipid molecules, more specifically glycerophospholipids, may indicate a
risk of OA.

The biomarker ursodeoxycholic acid detected in this study belongs to the class of
steroids, superclass lipids, and lipid-like molecules (HMDB). Ursodeoxycholic acid is a
naturally occurring dihydroxy hydrophilic bile acid, and Moon et al. demonstrated that
this bile acid has a preventive potential as a treatment in a model of induced OA by
reducing pain and ameliorating cartilage destruction [51]. On the other hand, Carlson et al.
detected metabolites from steroid hormone biosynthesis in the synovial fluid of people
with rheumatoid arthritis [52]. No studies have been found on the detection of alterations
in ursodeoxycholic acid at the metabolomic level in animals with OA, so this metabolite
should be considered in future investigations.

4-Hydroperoxy-H4-neuroprostane, also known as 14-H4-NeuroP, is a member of
the class fatty acyls, superclass lipids, and lipid-like molecules and the direct parent of
prostaglandins and related compounds (HMDB) [26]. Similarly, in the study by Zhao et al.,
it was observed that serum levels of prostaglandin estradiol2 were significantly increased in
the OA group. In addition, several metabolites of the class fatty acyls and superclass lipids,
such as aminobutyric acid, stearic acid, or L-carnitine, were increased [10]. Attur et al.
examined plasma lipid prostaglandin E2 (PGE2) and found PGE2 elevated in symptomatic
knee OA patients [53]. Similarly, Gierman et al. associated changes in PGE2 levels with
the development of OA [54]. On the other hand, the study by Shi et al. and Pausinis
et al. also shows changes in arachidonic acid or linoleic acid, metabolites within the same
classification [2,40]. Regarding acylcarnitines of the fatty acyls class, several studies have
shown changes in their concentration in the serum of animal models with OA [50,55]. Thus,
changes in prostaglandin concentrations or fatty acyls could indicate the presence of OA.

There are some limitations to this study. Firstly, the sample size was small and did
not allow strong validation of these potential biomarkers. Therefore, a larger sample size
would be necessary in future research. Secondly, only blood samples were used, and in
the future, it would be interesting to correlate serum with synovial fluid measurements
to better understand the observed metabolic changes. Thirdly, the possible relationship
between OA and arthritic diseases and whether these biomarkers are useful or not for
identifying other forms of arthritis were not explored. Fourthly, variables other than time
were not considered, and there is intra-group variability in these results; for this reason,
other variables will need to be considered in the future. Lastly, it should be considered that
the identified metabolites in this study should be directly evaluated in subsequent targeted
studies, aiming to confirm or rule out their role in the modification of serum metabolomes
in an inflammatory model of osteoarthritis.
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4. Materials and Methods
4.1. Experimental Model
4.1.1. Experimental Design

A prospective, experimental, randomized, and double-blinded study was designed.
This study was conducted at the Hospital Universitari i Politècnic La Fe, within the animal
facility of the Instituto de Investigación Sanitaria La Fe (IISLaFe), Valencia, Spain. This
experimental study was approved by the Ethics and Animal Welfare Committee of the
Hospital Universitari i Politècnic La Fe and authorized by the Valencian Government with
2017/VSC/PEA/00177 type 2 code, in accordance with the provisions of Article 31 of Royal
Decree 51/2013.

4.1.2. Experimental Trial

To carry out the study, thirty female ten-week-old Wistar rats weighing around 250 g
entered the study. The rats were housed in individual cages with ad libitum access to
food in an environment with a room temperature of 24–25 ◦C, a relative humidity of
60%, and a 14 h light–10 h dark cycle. All rats were randomly divided into three groups
depending on their survival time (28, 56, and 84 days). Out of ten animals in each group, the
metabolomic study was performed in six animals, and histological analysis was performed
in four animals.

Osteoarthritis was induced in all 30 subjects by intra-articular infiltration of 0.4 mg
of monoiodoacetate (Sodium iodoacetate®, Sigma Aldrich, Saint Louis, MO, USA) into
the right knee. All animals were sedated with buprenorphine (0.03 mg/kg) (Buprex®,
Indivior, Dublin, Ireland), ketamine (65 mg/kg) (Ketolar®, Pfizer, Madrid, Spain), and
medetomidine (0.01 mg/kg) (Sedator®, Dechra, Bladel, The Netherlands) intraperitoneally.

Once each subgroup reached its survival times, rats were sacrificed. Thereafter, all
right and left stifles were photographed for macroscopic analysis. Subsequently, the
knees of four aleatory subjects from each subgroup were assigned for histological study
and the other six for metabolome serum study. Blood samples were obtained from each
group at day 0 (before MIA infiltration) and just before euthanasia (28, 56, and 84 days
after MIA infiltration). All animals were fasted for 12 h prior to sampling. Euthanasia was
performed under sedation (described above) and a subsequent CO2 chamber (concentration
70–100% CO2).

4.2. Obtaining the Metabolomic Results
4.2.1. Sample Preparation

Serum sample preparation was performed following the protocols established in the
analytical unit, as detailed below. First, 50 µL of serum, plus 150 µL of acetonitrile (ACN)
and 0.1% formic acid (FA) (cold) vortexed for 30 min at −20 ◦C, were collected. The sample
was centrifuged for 10 min at 4 ◦C and 13,000× g; the supernatant extract was collected in
an Eppendorf tube and stored at −80 ◦C. Subsequently, 20 µL of the extract was collected
and placed in a 96-well plate for liquid chromatography–quadrupole time-of-flight-6550
(LC-QTOF-6550); 100 µL of FM (Agµa 0.1% FA) + 10 µL of MIX internal standard (ISTD)
(20 µM) was added. Once the plate was prepared, 5 µL of each sample was taken, and
the QC was prepared. The reagent blank was prepared using the same blood collection
tube used in the water study and following the same preparation procedure as the serum
samples (looking for artifacts in the tube, reagents, and other materials).

4.2.2. Sample Analysis

Figure 10 depicts the protocol that was followed to perform the analysis of the samples.
To avoid intrabatch variability, as well as to ensure the quality and reproducibility of

the analysis, we proceeded as follows: First, a random injection order. Subsequently, an
analysis of at least five quality control conditions (QCcond) at the beginning of the sequence
was performed on the condition column and equipment (these data were not used in the
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multivariate analysis of the data). Finally, an analysis of a quality control pool (QCpool) is
performed for every 5–7 samples.
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4.2.3. Ultra-Performance Liquid Chromatography, Time-of-Flight, Mass Spectrometry
(UPLC-ToF-MS) Method

For analysis, liquid chromatography equipment was used coupled to a time-of-flight
mass spectrometer. Standard procedures of the Analytical Unit lay down the chromato-
graphic and mass spectrometric conditions, summarized below: mode positive and nega-
tive electrospray ionization (ESI); range m/z: 100–1700 Da; UPLC column: Acquity UPLC
BEH C18 (100 × 2.1 mm, 1.7 µm); injection volume (Vinj): 5 µL; column temperature: 45 ◦C;
autosampler temperature 4 ◦C; flow rate: 500 µL/min; mobile phase A = H2O (0.1% v/v
HCOOH); mobile phase B = CH3CN (0.1% v/v HCOOH).

4.3. Data Analysis of Metabolomic Results
4.3.1. Pre-Processing of the Metabolome Data

Before performing the multivariate analysis of the data, pre-processing of the acquired
data was required. This pre-processing consists of a series of processes such as filtering,
molecular feature detection, peak alignment and clustering, and data normalization. Based
on the results obtained in this study, several parameters were selected for each treatment.
R statistical software (https://www.r-project.org/) and the XCMS library were used to
carry out the data pre-processing.

At the end of the processing, we obtained two tables of “molecular features” with all
the variables extracted and normalized: a table in negative mode (9712 molecular features:
m/z and Rt) and a table in positive mode (4045 molecular features: m/z and Rt). Data
analysis was performed from these tables.

4.3.2. Analysis of the Quality of the Metabolome Results
Evaluation of the Response of Internal Standards

To detect possible problems in the injection or in the preparation of the samples, the
variability of the internal standards, as well as intra-batch variability, was assessed for each
sequence. The control chart of reserpine and leucine-enkephalin (leuEnk) used as internal
standards (STDI) for the positive ESI mode is attached in Figure 11 as an example.
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No tendency in the response of these patterns is observed throughout the sequence,
thus assuming low intra-batch variability and correct analysis.

QC Evaluation

Before proceeding to the QC evaluation, the data were adjusted for the area of the
internal standard LeuEnk in positive mode and reserpine in negative mode.

For the positive and negative mode sequences, the coefficients of variation (CV%) of
the QCpool are calculated, and those variables with a CV ≥ 30% are removed. In this way,
analytical variability is eliminated, and the remaining variables are considered to come
from possible biological/metabolic variability.

4.4. Histological Evaluation

Following the sacrifice, the left and right stifles were dissected. A craniolateral ap-
proach of the skin and dissection of the soft tissues around the femur and tibia were
performed. A 1.5 cm osteotomy proximal to the femoral trochlea and distal to the tibial
plateau was conducted to retrieve the stifles. Once the stifle was isolated, periarticular soft
tissues were meticulously dissected to retrieve the biological samples. After removing all
the stifle soft tissue, direct visualization of the joint was performed to score the samples
following the macroscopic scale described by Laverty et al. [56].

Once anatomical samples were retrieved and after macroscopical evaluation had
been performed, femoral condyle samples were extracted and fixed in formaldehyde at
4%. Following fixation and decalcification with ethylenediaminetetraacetic acid (EDTA)
(Osteodec®, LABOLAN, Navarra, Spain), paraffin inclusion and 4 µm longitudinal section
cuts using a microtome were performed. Sections were obtained from three different
anatomical zones: the lateral condyle, the femoral trochlea, and the medial condyle. Sam-
ples were stained using hematoxylin and eosin and Masson’s Trichrome stain. Following
staining, slides were digitalized for evaluation using a specific slide viewer software (Case-
Viewer 2.2®, 3DHISTECH Ltd., Budapest, Hungary).

Lastly, microscopic evaluation was conducted using the Osteoarthritis Research Society
International (OARSI) semi-quantitative scale described by Laverty et al. to evaluate matrix
stain, cartilage structure, chondrocyte density, and cluster formation [56]. On top of this,
researchers added an additional parameter resulting from the addition of the results of all
measured variables as a total score of them altogether. The structure of subchondral bone
was evaluated using semi-quantitative scales from OARSI described by Gerwin et al. [57].

Analysis of the Histological Results

A descriptive analysis was performed for the histologic variables. The data avail-
able were obtained from semi-quantitative scales and are presented graphically in bar
charts using heat maps, which show the frequency of the values for every study period
(Figures 7 and 8).

4.5. Statistical Analysis
T0 vs. T28, T0 vs. T56, T0 vs. T84 Paired Analysis

For the selection of significant variables (significant differences between T0 and T28;
T0 and T56; T0 and T84), a Volcano plot combining a fold change (FC) method with a t-test
was performed. With this data analysis, the aim was to obtain an overview and to select
those potentially significant variables capable of discriminating between the conditions or
categories of the study.

The paired analysis was performed using a script developed in the Analytical Unit
with R software. Figure 12 shows the Volcano plot obtained between T0 and T28. Figure 13
shows the Volcano plot obtained between T0 and T56. Figure 14 shows the Volcano plot
obtained between T0 and T84. Note that both the FC and the p-value are on a logarithmic
scale (log10). Variables were selected (in red) with a threshold of FC = 2 and a t-test
p-value < 0.05.
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Based on the results obtained in this study, it can be concluded that metabolomics is 

a promising tool to better understand the pathogenesis of OA, as MIA-induced osteoar-
thritis resulted in changes in the serum metabolome of rats. Furthermore, it can be ob-
served how the metabolites that may be involved in these changes differ according to the 
time elapsed since the induction of osteoarthritis. Eighteen potential biomarkers were 
identified, predominantly from the lipid molecules, organic acids, benzenoids, and orga-
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5. Conclusions

Based on the results obtained in this study, it can be concluded that metabolomics is a
promising tool to better understand the pathogenesis of OA, as MIA-induced osteoarthritis
resulted in changes in the serum metabolome of rats. Furthermore, it can be observed
how the metabolites that may be involved in these changes differ according to the time
elapsed since the induction of osteoarthritis. Eighteen potential biomarkers were identified,
predominantly from the lipid molecules, organic acids, benzenoids, and organoheterocyclic
compounds classes. The lack of data on the functions of most of these metabolites helps
to focus on the aim of future studies and highlights the need for further clinical studies in
knee OA.
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