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Abstract: Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the
body and are able to regulate membrane potential and intracellular calcium concentrations, thereby
playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising
that KCa channels have been implicated in various diseases, making them potential targets for
pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to
develop KCa channel-targeting drugs, including those for disorders of the central and peripheral
nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent
findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role
of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind
the delay in bringing these modulators to the pharmaceutical market and propose new strategies to
promote their application.
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1. Introduction

The relationship between calcium ions and potassium permeability in human ery-
throcytes was first recognized in 1958 when Gárdos found that the presence of calcium
increased potassium permeability [1]. Then, in 1972, Ca2+-activated K+ (KCa) currents were
reported in various types of neurons in mollusks, vertebrates, and humans [2,3]. Like other
potassium channels, KCa channels participate in the determination of resting potential
in living cells. However, because of their relationship with calcium, an important second
messenger, KCa channels also play an important role in controlling membrane excitability
and cell volume in non-excitable cells [4]. Based on their single-channel conductance,
KCa channels can be categorized into three main subfamilies: large- (BK; 200–300 pS),
intermediate- (IK; 30–40 pS), and small-conductance (SK; 4–14 pS) channels [5–7]. The
first subfamily comprises solely BK channels, also known as KCa1.1, Maxi-K, or Slo1.
The intermediate-conductance subfamily includes IK channels, alternatively referred to as
KCa3.1, SK4, or IK1. The final subfamily contains three members, SK1, SK2, and SK3, which
correspond to KCa2.1, KCa2.2, and KCa2.3, respectively [8]. BK channels open due to in-
creases in cytosolic free Ca2+ or membrane depolarization, whereas IK and SK channels are
activated only by intracellular free Ca2+ [9–11]. Significant differences exist between the BK,
IK, and SK channels in terms of Ca2+-binding affinities and sites. BK channels have a low
Ca2+-binding affinity of about 1–11 µM; however, IK and SK channels have high affinities
with Ca2+ of approximately 0.1–0.4 µM and 0.3–0.75 µM, respectively [12,13]. Calcium ions
directly open BK channels through the regulator of conductance of K+ (RCK) structural
domains and activate IK and SK channels through a calmodulin-binding domain [10,14,15].

Int. J. Mol. Sci. 2024, 25, 2965. https://doi.org/10.3390/ijms25052965 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25052965
https://doi.org/10.3390/ijms25052965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7738-8777
https://orcid.org/0000-0003-0359-3967
https://orcid.org/0000-0001-8300-6974
https://doi.org/10.3390/ijms25052965
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25052965?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 2965 2 of 33

Structurally, KCa channels are composed of a tetramer of α subunits [6,8,10]. The α

subunits of BK channels are encoded by KCNMA1 [16]. The α subunits of SK1, SK2, and
SK3 channels are encoded by KCNN1, KCNN2, and KCNN3, respectively. These genes
were first cloned in 1996 and show high homology in their transmembrane domains [17].
In 1997, KCNN4, which encodes the α subunits of IK channels, was cloned and found to
exhibit a 41–42% similarity at the amino acid level with SK channels [18]. Due to structural
similarities, IK channels are now classified in the same subfamily as SK channels [19]. The
properties of the KCa channels are listed in Table 1.

Table 1. Characteristics of KCa channels.

BK Channel IK Channel SK Channel (SK1, SK2, SK3)

Opening mechanism Voltage-dependent and
Ca2+-dependent Only Ca2+-dependent Only Ca2+-dependent

Conductance (pS) 200–300 30–40 4–14

Aliases KCa1.1, Maxi-K, Slo1 KCa3.1, SK4, IK1 KCa2.1, KCa2.2, KCa2.3

Ca2+-binding affinity (µM) 1–11 0.2–0.5 0.3–0.6

Ca2+-binding site RCK domain Calmodulin-binding domain Calmodulin-binding domain

Gene encoding
α-subunit (human) KCNMA1 KCNN4 KCNN1, KCNN2, KCNN3

The unique structure of KCa channels allows them to be activated by intracellular Ca2+

and induce membrane potential (in the case of BK channels), making them pivotal in the
repolarization and hyperpolarization of cellular membranes, as well as in the regulation
of cytosolic Ca2+, a secondary messenger. As a result, KCa channels play crucial roles in
fundamental physiological activities and have become attractive targets for interventions
for physiological disorders. Many KCa channel activators and inhibitors have been reported
in vitro, in vivo, and in clinical trials. In this review, we synthesize the available knowledge
regarding the structures, distributions, and biological functions of KCa channels and
their modulators in the context of potential therapeutic drugs. We also discuss important
recent advances in discovering the biological structure and opening mechanisms of KCa
channels, as well as their applications in modulator development. Finally, we elucidate
the challenges associated with applying these modulators in clinical practice and suggest
potential avenues for the further development of KCa channel-targeting therapeutics.

2. BK Channels
2.1. Structure of BK Channels

A BK channel is formed from a tetramer of α subunits that determines the structure of
the pore, either alone or with auxiliary BK-β (β1–β4) or BK-γ subunits (γ1–γ4) [20]. The
presence of auxiliary subunits varies depending on the tissue type [20].

2.1.1. α Subunits of BK Channels

BK channel α subunits include six transmembrane segments (S1–S6), an additional
hydrophobic transmembrane segment (S0) near the short external N-terminus, and four in-
tracellular hydrophobic segments (S7–S10) leading to the long C-terminus. Similar to
voltage-gated potassium (Kv) channels, the voltage-sensing domain (VSD) of BK channels
is structured through the assembly of S1–S4. S4, which harbors positively charged residues
(especially Arg213), functions as a voltage sensor [21]. The potassium-selective pore-gate
domain positioned at the center is formed by four pairs of S5 and S6 segments and encap-
sulated by the VSD. In contrast to Kv channels, BK channels contain an extra S0 segment
that plays an important role in the interaction between the α and β subunits. In addition,
this segment may interact with cross-membrane segments to change the channel’s voltage
sensor [22]. In the intracellular C-terminus, the regulators of conductance for K+ 1 and
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2 (RCK1 and RCK2, respectively) are structured from the S7–S10 segments. The RCK1
region contains Ca2+- and Mg2+-binding sites, whereas the RCK2 region contains a Ca2+

bowl, which includes a string of aspartate residues and plays a role similar to that of the
Ca2+-binding site of the RCK1 domain [23]. Four RCK1 and four RCK2 domains form
two parallel layers to create a “gating ring”, which acts as a Ca2+ sensor. The gating ring
regulates the opening of BK channels by changing its structure in response to Ca2+ [24,25].
The region from the C-terminus of S6 to the N-terminus of RCK1 is known as the C-linker
and acts as a pore gate. The BK α subunit structure is described in Figure 1.
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Figure 1. Schematic structure of a BK channel α subunit. VSD, voltage-sensing domain; PGD,
pore-gate domain; RCK, regulator of conductance for K+; NH2, amino terminus; COO−, carboxyl
terminus; S, segment.

The positions of the voltage sensors and Ca2+-binding site in the α subunit have been
determined; however, the mechanism by which these sensors activate the channel gate
remains unclear. Prior research demonstrated that voltage and Ca2+ sensors can function
independently to activate BK channels [11,26]. However, substantial evidence indicates that
an interaction between the two sensor components influences channel activation [27]. A
previous study showed that, in the presence or absence of intracellular Ca2+, decreasing or
increasing the length of C-linkers enhanced or reduced channel activity, respectively [28]. In
addition, a mechanical model was proposed in which the gating ring creates a passive force
on S6 through a C-linker without internal Ca2+ to regulate the voltage-dependent gating,
and the increasing intracellular Ca2+ levels modulate this force and open the channel [28].
These findings suggest the existence of interactions between the VSD, C-linker, and gating
ring region that impact the channel’s gating ability. In 2017, the cryo-EM structure of
a full-length BK channel from Aplysia californica was elucidated. Based on the structure
of BK channels in the presence and absence of Ca2+, the authors proposed an opening
mechanism [29,30]. Figure 2 depicts a model of BK channel opening through membrane
potential and intracellular Ca2+. In the absence of intracellular Ca2+, BK channels are closed
when the cell membrane is hyperpolarized. In the case of an increase in Ca2+ concentration
and a hyperpolarized membrane, Ca2+ binds to the Ca2+-binding site in the RCK1 domain.
This has two main consequences. First, it shortens the length of the C-linker, causing a
structural change in the S6 segment and pulling it outward from the central pore axis,
thereby opening the channel. Second, it causes the voltage sensors to move upward,
creating conditions conducive to pore opening. When the membrane is depolarized and the
intracellular Ca2+ concentration is low, the voltage sensors move upward, causing S4 and
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S5 to interact with RCK1. This interaction generates a force acting on S6 via the C-linker,
opening the BK channel. Simultaneously, changes in the RCK1 region create favorable
conditions for Ca2+ binding, thereby increasing the affinity of the sensors for Ca2+. In the
remaining cases, the BK channel opens through both aforementioned mechanisms. This
hypothesis explains how membrane voltage influences Ca2+ affinity and how Ca2+ binding
can induce the depolarization of voltage sensors [30].
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Ca2+. RCK, regulator of conductance for K+; S, segment.

In addition to the intracellular Ca2+ concentration and membrane depolarization, BK
channels are further modulated by cytosolic Mg2+ and protons. Studies have indicated
that Mg2+ is involved in the interaction between the VSD and the cytosolic domain to open
BK channels [31,32]. Mg2+ binds to both the RCK1 domain (Glu374 and Glu399) and the
VSD (Asp99 and Asn172) and electrostatically interacts with transmembrane segment S4
(Arg213), leading to enhanced VSD activation [31,32]. In addition, experimentally, Mg2+

(10 mM) significantly increased the probability of BK channels opening when voltage
sensors were in an activated state but not when they were inactivated [33,34]. When in-
creasing holding potentials from −100 mV to 100 mV, Mg2+ increased opening rates in
closed BK channels and decreased closing rates in open BK channels [33]. Furthermore,
protons may also alter BK channel activity. The region responsible for proton sensing is
located within the RCK1 domain (His365 and His394) [35,36]. Reports on the effects of
H+ on BK channel activity are contradictory. One study showed that an increased intra-
cellular proton concentration inhibited BK currents in smooth muscle cells isolated from
small arteries in rat tails [37]. However, another study indicated that protons stimulated
BK channels in the absence of Ca2+ and Mg2+ [38]. The manner in which H+ increases
BK channel activation has been suggested to resemble the action of Ca2+ on the RCK1
domain [35]. Further research is needed to clarify the effect of intracellular protons on BK
channel activity. Additional regulatory regions within the C-terminal segment include
phosphorylation sites for c-AMP-dependent protein kinase (PKA) and protein kinase C
(PKC). The activation and inhibition of BK channels result from phosphorylation by PKA
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and PKC, respectively [39]. Therefore, metabolic elements contribute considerably to the
regulation of BK channel function.

2.1.2. Auxiliary Subunits: BK-β and BK-γ

The properties of BK channels are critically shaped by β subunits (β1–β4), which
are encoded by KCNMB1–4, thereby influencing the channels’ physiological roles across
various tissue types. Structurally, each β subunit includes two transmembrane helices
(TM1 and TM2), an extracellular loop, and intracellular C- and N-terminals, as depicted
in Figure 3A [40,41]. The TM2 helix connects to the C-terminal and is adjacent to the S0
segment, whereas the TM1 helix contacts the N-terminal and is close to the S1 and S2
segments of α subunits [42] (Figure 3B). Diversity in the structure and function of BK
channels is based on the richness of various auxiliary subunits. When each β or γ subunit
combines with an α subunit, it modulates the physiological characteristics of the BK channel
to varying degrees. The presence of the BK β1 subunit notably augments the sensitivity to
Ca2+, reduces voltage sensitivity, and induces the slowing of macroscopic kinetics [43,44].
The β2 subunit also apparently increases Ca2+ sensitivity but causes only a non-significant
decrease in voltage sensitivity [43,45]. Furthermore, the β2 subunit demonstrates the ability
to rapidly and fully inactivate the channel [43,45]. The β3 subunit has four distinct isoforms
(β3a–d) formed by alternative splicing, and each of the isoforms exhibits four variants
(V1–V4) [46]. The β3a subunit was found to increase sensitivity to voltage, while the
opposite effect was found for the β3b subunit [47]. Notably, three subunits (β3a–c) are able
to inactivate BK channels incompletely [41,47]. However, in the first study to determine
the precise effects of β3d subunits, co-transfection of the β3d subunit was shown not to
alter the kinetics of BKα [48]. The neuronal β4 subunit not only substantially retards the
kinetics of activation and deactivation but also diminishes perceived calcium sensitivity
under low intracellular Ca2+ concentrations while conversely heightening the perceived
sensitivity under elevated [Ca2+]i conditions [49]. It also decreases sensitivity to channel
blockers such as charybdotoxin (ChTx) and iberiotoxin (IbTX) [20,49].
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Figure 3. Schematic structure of β and γ subunits of BK channels. (A) Structure of β subunits.
(B) Arrangement of four α subunits and four β subunits viewed perpendicular to the pore axis. The
S5 and S6 segments of each α subunit are encapsulated by the VDS of the same α subunit. The TM1
helix is near the S1 and S2 segments, and the TM2 helix is next to the S0 segment. (C) Structure of the
γ subunits. NH2, amino terminus; COO−, carboxyl terminus; TM; transmembrane segment; LRR;
leucine-rich repeat.

Recently, the BK γ1–γ4 auxiliary subunits encoded by LRRC26, LRRC52, LRRC55,
and LRRC38, respectively, were identified. The γ subunit features a transmembrane seg-
ment accompanied by a substantial extracellular domain constructed from leucine-rich
repeat-containing (LRRC) protein, along with a shorter cytoplasmic C-terminal domain. In
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contrast to β subunits, γ subunits exert a non-significant influence on Ca2+ sensitivity and
inactivation kinetics. Nonetheless, the four γ subunits possess different modulatory magni-
tudes to shift the voltage dependence of BK channel activation leftwards by approximately
140 (γ1), 100 (γ2), 50 (γ3), and 20 mV (γ4), even without Ca2+ [50,51]. The structure of the
γ subunit is illustrated in Figure 3C.

Auxiliary subunits significantly impact the effects of modulators. Modulators interact
with and affect BK channels through the α subunit. However, β subunits can either
dramatically enhance or diminish the modulator’s effectiveness on BK channels. Each type
of β subunit has different effects and intensities on various regulators. In a previous study,
the affinity of ChTX for BK channels containing α and β1 subunits was more than 50 times
that for BK channels including only α subunits [52]. Conversely, the toxin association rates
of IbTX and ChTX to BK channels consisting of α and β4 subunits were 250–1000 times
less than that of channels with α subunits alone [53,54]. Similarly, the β2 subunits also
reduce the binding of ChTX to BK channels [40]. Understanding the influences of subunits
is therefore crucial for selecting regulators and their concentrations for specific applications.

2.2. Distribution and Physiology of BK Channels

Depending on BK channel expression in different subcellular locations, isoforms may
manifest distinct physiological and trafficking characteristics determined by auxiliary
subunits and alternative splicing [27]. The BK β1 subunit is expressed in vascular smooth
muscle in the bladder, kidney, and cerebral artery myocytes but is undetected in the
brain [55–59]. The β2 subunit is observed most abundantly in the pancreas, brain, ovaries,
kidneys, and spleen [40,57]. The β3 subunit isoforms are located in various organs such as
the brain, spleen, pancreas, placenta, heart, kidneys, and lungs [47,59,60]. The brain-specific
β4 subunit is predominantly expressed in neuronal tissue [59,61]. It has also been found in
smooth muscles of the kidneys and bladder [59,60].

Because of their functional characteristics and widespread expression, BK channels
play a pivotal role in the regulation of a diverse array of physiological processes. In the
central nervous system, BK channels play a role in regulating the membrane potential of
excitable cells, thereby affecting the timing, frequency, and propagation of action potentials
(APs) and influencing the release of neurotransmitters [57]. In the heart, BK channels
contribute to the repolarization phase of cardiac APs. Alterations in BK channel activ-
ity can affect the duration and regularity of heartbeats [62]. BK channels are normally
located in the plasma membrane of most cells, except in mature cardiomyocytes, where
they localize to the mitochondria [63]. BK channels participate in safeguarding the heart
against damage caused by ischemia/reperfusion and enhance the cardioprotective effects
of ischemic preconditioning [64]. In the smooth muscle cells of blood vessels, BK channel
activation hyperpolarizes the membrane potential, leading to a reduction in Ca2+ influx
and the relaxation of blood vessels [65]. This mechanism is critical for the regulation of
blood pressure and cerebral blood flow [66,67]. BK channels influence the excitability
and contractility of the urinary bladder smooth muscle (UBSM) by sustaining the resting
membrane potential and molding the repolarization phase of spontaneous APs, which
dictate the spontaneous rhythmic contractility of the UBSM [68]. In the respiratory system,
BK channels assist in controlling the tone of airway smooth muscles. The activation of BK
channels can lead to bronchodilation, facilitating airflow in the lungs [69]. Furthermore,
BK channels are associated with various potential physiological functions, including cell
metastasis and the activation/migration of non-excitable cells such as fibroblasts [70].

2.3. Modulators Targeting BK Channels
2.3.1. Neurological Diseases

Epilepsy is a neurological disorder characterized by recurrent and unprovoked seizures.
An epileptic seizure is triggered by abnormal synchronous and sustained firing of a group of
neurons [71]. Due to the constraining effect of BK channel activation on the depolarization-
induced bursting activity within neurons, it has been posited that a reduction in the
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functionality of BK channels may foster neuronal hyperexcitability, potentially culminating
in seizures [72]. Paradoxically, recent findings suggest that certain gain-of-function muta-
tions in BK channels are notably linked to human idiopathic generalized epilepsy, with a
particular emphasis on the absence of epilepsy [73,74]. Epilepsy is a threshold phenomenon.
Consequently, the optimal pharmaceutical intervention for epilepsy involves a drug that
induces only marginal alterations in the seizure threshold [75]. These findings suggest the
potential of BK channel modulators for clinical applications in epilepsy. Several BK channel
agonists and antagonists have been explored as novel drugs for epilepsy. Zonisamide, a BK
channel activator, has been used in combination with other medicines for the management
of partial-onset seizures (convulsions) in the clinical treatment of epilepsy since 2000 [76,77].
By modifying the fast inactivation threshold of voltage-dependent sodium (Nav) channels,
zonisamide diminishes prolonged, high-frequency, repetitive AP firing [78]. Additionally,
zonisamide exerts an inhibitory effect on low-threshold T-type calcium channels within
neurons, potentially impeding the propagation of seizure discharges among cellular net-
works [78]. However, the precise mechanism by which zonisamide exerts its anticonvulsant
effects via BK channels remains unclear. Compelling evidence suggests that resveratrol, a
phytoalexin naturally occurring in grapes and red wine, serves as an anticonvulsant agent
and holds promise as a highly efficacious approach for mitigating neural tissue damage,
potentially even preventing the onset of seizures when employed as a complementary com-
ponent in antiepileptic therapy [79]. Moreover, resveratrol has been shown to enhance the
opening activity and the current amplitude of BK channels while concurrently diminishing
the amplitude of Nav currents [80]. Given the fundamental roles of BK and Nav channels
in the initiation of seizures, these findings imply that the modulation of these channels by
resveratrol in cortical neurons likely constitutes a substantial contribution to its antiseizure
properties. Paxilline (PAX), a tremorgenic fungal alkaloid and BK channel blocker, has
exhibited noteworthy anticonvulsant efficacy, reducing seizure duration and intensity in
both picrotoxin and pentylenetetrazole seizure models [81,82]. In addition, IbTX, a specific
antagonist targeting BK channels purified from the Eastern Indian red scorpion Hottentotta
tamulus, inhibits burst activity in primary cultured neurons derived from the cerebral
cortex of mice [83]. A previous study indicated that PAX and IbTX successfully reversed
pilocarpine-induced alterations in the electrophysiological characteristics of granule cells in
an epileptic group [84]. However, their potential clinical utility in the treatment of epilepsy
has been hindered by concerns related to toxicity, which has precluded their inclusion in
clinical trials.

Several studies have reported the potential association between a reduction of BK
channel activities and Alzheimer’s disease (AD) [85,86]. Amyloid β (Aβ) aggregates were
noted to impair the BK channel activities in both the plasma membrane and mitochondria
in rodent neurons [87]. Interestingly, the presence of Aβ aggregates is a characteristic of
AD [88]. In addition, sulfatides, which are sulfated glycosphingolipids expressed in the
central and peripheral nervous systems, could activate BK channels [89]. A decrease in
sulfatide levels has been shown to be related to AD [90]. These findings suggested that
BK channel activators might be potential candidates for AD treatment. Isopimaric acid,
a toxin derived from conifers that opens the BK channel, recovered cognition in an AD
mouse model by improving non-spatial memory and synaptic transmission [86].

BMS-204352, a BK channel activator, exhibits positive effects on some neurological
disorders. Fragile X syndrome (FXS) is a genetic form of intellectual disability and autism
characterized by the inhibition of transcription of FMR1, the gene responsible for encoding
the fragile X mental retardation (FMR) protein [91]. BMS-204352 has been shown to restore
the glutamate balance within the hippocampus, rectify impairments in social recognition
and social interaction, and improve spatial memory [91]. In 2018, Carreno-Munoz et al.
showed that BMS-204352 reverses sensory hypersensitivity and prevents the emergence
of behavioral abnormalities in Fmr1-knockout mice [92]. These results provide additional
support for the theory that BK channels are a molecular target of therapeutic drugs for FXS.
Another application of BMS-204352 in improving neurological function is the restoration of
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impaired habits due to medical conditions. Research suggests that BK channels contribute
to habituation via synaptic plasticity [93]. A previous experimental study showed the
beneficial effect of BMS-204352 on neuronal ischemia in rats [94]. Interestingly, BMS-204352
was used in a clinical trial called MaxiPost [95]. In phase II of the clinical trial, patients
with acute stroke were administered the drug within 48 h of the onset of stroke symp-
toms. The results indicated no significant difference in adverse effects between the control
and treatment groups [95]. However, phase III clinical trials involving 1978 patients at
200 centers worldwide yielded unfavorable outcomes. BMS-204352 did not demonstrate
superior efficacy to the placebo in stroke treatment [95]. In 2019, a randomized, double-
blind, placebo-controlled, cross-over study found that BMS-204352-activated BK channel
activities cause headache and dilate arteries inside and outside the brain in healthy persons.
This finding suggested that BK channels might be involved in the pathophysiology of
headaches in humans [96].

2.3.2. Cardiovascular Disorders

Several studies have reported that BK channels are promising therapeutic targets in
heart rate-related disorders. Recently, the inhibition of BK channels was demonstrated to
reduce heart rate both in vitro and in vivo [62,97,98]. In a study by Imlach and colleagues,
heart rate was reduced by 70%, 60%, and 42% relative to baseline values using PAX
(5 µM), loliterm B (1 µM), and IbTX (0.23 µM), respectively [62]. The mechanism of heart
rate reduction due to BK channel inhibition has not yet been elucidated. BK channel
inhibitors were reported to reduce heart rate both in vivo and in isolated hearts [62]. This
suggests that heart rate reduction might occur due to direct effects on the heart rather than
indirect effects on other pathways in the cardiovascular system by BK channel antagonists.
Despite their low mRNA expression throughout the heart, BK channels may be expressed
to a small degree in certain cell types in the heart [99]. BK channels were reported to
be expressed in coronary arterioles; however, potent vasoconstrictors were not shown
to significantly affect heart rate in isolated hearts [100]. Therefore, the inhibition of BK
channels in coronary arterioles may not be the main mechanism of heart rate reduction.
Another study showed that BK channels regulate the firing rate of the sinoatrial (SA)
node, which contains specialized cardiomyocytes known as pacemaker cells [97]. BK
channel inhibitors prolong the diastolic depolarization phase of the SA cell AP, leading
to bradycardia and decreased heart rate [97]. To examine whether plasma membrane BK
channels or mitochondrial BK (mitoBK) channels are involved in reducing heart rate, PAX
(cell membrane permeable) and IbTX (cell membrane impermeable) were used [62,97,98].
However, the published results were inconsistent. One study showed that both PAX
and IbTX reduced heart rate, whereas another study reported that only PAX exerted this
effect [97,98]. Therefore, comprehensive and in-depth studies should be conducted to
clarify the exact mechanism of the heart rate-lowering effect of BK channel inhibitors.

In contrast with their distribution in other cell types, BK channels are predominantly
located within the mitochondrial membrane in adult cardiomyocytes [63]. Several BK
channel activators have been developed to improve cardiovascular function and protect
against the consequences of cardiac events [64]. In addition to its potential role in pre-
venting seizures by activating BK channels, resveratrol has been studied in the context
of cardiovascular protection. Resveratrol improves endothelial function and protects the
cardiovascular system by reducing the concentration of endothelin 1 (ET-1), a vasocon-
strictor that promotes the hardening of blood vessel cells and stimulates the production
of reactive oxygen species (ROS), and increasing the concentration of endothelial NO, a
vasodilator that regulates vascular tone, blood pressure, and hemodynamics [101]. Notably,
a recent study demonstrated the ability of resveratrol to increase the production of endothe-
lial NO, leading to vasodilation primarily by opening BK channels in the endothelium
rather than those in smooth muscle cells [102]. NS1619, a benzimidazole derivative, has
been shown to dilate blood vessels through the same intrinsic endothelial BK channels as
resveratrol [102]. MitoBK channel activity increases K+ conductance and enhances mito-
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chondrial respiratory function by decreasing the generation of ROS and reducing harmful
intra-mitochondrial calcium build-up [103]. These processes safeguard the heart against
ischemia/reperfusion injury [104]. Several studies have shown that NS1619 protects the
heart from ischemia/reperfusion injury in mouse, rabbit, and canine models [105–107].
Nonetheless, there is evidence that NS1619 is nonselective. At a high concentration (ap-
proximately 100 µM), NS1619 inhibited L-type Ca2+ channel activity in rat cardiac muscle
cells and Kv channels [108,109]. In addition, NS1619 released Ca2+ from internal stores and
decreased Ca2+ accumulation by the sarcoplasmic reticulum by inhibiting SERCA in H9C2
cells (a cell model similar to cardiomyocytes) [110]. The nonselective effects of NS1619 on
cardiomyocytes need to be further investigated to clarify whether it affects the therapeutic
potential of this compound. Another agonist that has been studied is NS11021, which
demonstrates higher efficacy and specificity than NS1619 [111]. NS11021 increases the chan-
nel opening probability by shifting the activation curve of the channel to the left without
changing the conductance of the individual channels [111]. Similar to NS1619, NS11021
enhances K+ uptake and respiration in the mitochondria, thereby extending the survival of
cardiac cells under conditions of local ischemia [103]. However, NS11021 (10 µM) did not
appear to exert an influence on several cloned Kv channels and endogenous L-type Na+

and T-type Ca2+ channels in guinea pig cardiomyocytes [111].

2.3.3. Cancers

BK channels have been reported to participate in cell cycle progression, cell prolifera-
tion, and cancer metastasis [112–114]. Therefore, BK channel modulators are an attractive
potential treatment for cancer. Interestingly, both agonists and antagonists of BK channels
have been indicated as anti-cancer agents.

One study reported that NS1619, a BK channel activator, inhibited the migration of
glioma cells independently of intracellular calcium [115]. NS1619 (IC50 = 31.1 µM) was
shown to inhibit cell proliferation and induce apoptosis in A2780 cells (an ovarian cancer
cell line) [36]. In another study, although KCNMA1 was overexpressed in triple-negative
breast cancer cells when compared to levels in normal breast cells, most BK channels were
closed [116]. In a xenograft mice model, treatment with BMS-191011, another BK channel
activator, resulted in tumor growth retardation without inducing cardiotoxicity [116].

In neuroblastoma cells, IbTX (0.4 µM) and PAX (50 µM) were reported to induce
G1/G2 accumulation and contraction, AKT1pser473 dephosphorylation, and a reduction in
cell size. Furthermore, PAX exhibited antiproliferative effects and induced early apoptosis
via its action in the nuclear membrane [112]. Past studies showed that BK channels were
involved in the migration of glioblastoma cells and that the inhibition of BK channels using
PAX (2 µM) and IbTX (100 nM) markedly inhibited cell migration [113,117]. In addition, BK
channels were also associated with hypoxia-induced migration and cisplatin resistance in
human glioblastoma cells [118,119]. BK channel activities, but not BK channel expression,
increased in U87-MG cells under hypoxia, and blocking BK channels using PAX inhibited
hypoxia-induced migration and cisplatin resistance [118,119]. BK channels have been
reported to be associated with breast cancer cell proliferation, migration, and invasion [120].
Penitrem A, a selective BK channel blocker, was demonstrated to reduce breast cancer
cell proliferation and invasion through the Wnt/beta-catenin pathway [114,120,121]. Both
IbTX- and tetraethylammonium-mediated inhibition of BK channels led to decreases in cell
proliferation, migration, and invasion in hepatocellular carcinoma cells [122]. In ovarian
cancer stem cells, trimebutine maleate dramatically suppressed tumor growth in vivo and
in vitro through the Wnt/β-catenin, Notch, and Hedgehog pathways by blocking both
BK channels and voltage-gated calcium channels [123]. The characteristics and effects of
various BK channel modulators are summarized in Table 2.
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3. IK Channels
3.1. Structure of IK and SK Channels

Previously, because of differences in conductivity, it was thought that IK and SK
channels did not belong to the same subfamily. After their genetic similarity was elucidated
by cloning, IK channels were classified into the KCNN or SK subfamily as KCNN4 or SK4.
Because of the significant similarity among the genes encoding the SK and IK channels, the
overall topology of these channels is similar. In this section, we outline the structures of IK
and SK channels.

Each channel is formed from a four-fold symmetrical tetramer, and each subunit
features a common architecture comprising six transmembrane segments (S1–S6) [6,17,125].
The ion channel pore is composed of transmembrane helices S5 and S6 and encircled by
membrane-embedded helices S1–S4 originating from the same subunit [19]. This con-
figuration is similar to that of BK channels but diverges from the arrangement found in
domain-swapped Kv1–Kv7 channels, wherein helices S1–S4 engage with a neighboring
pore domain [19,29]. The S4–S5 linker in the SK and IK channels is distinct from that in the
BK channel. In SK and IK channels, it comprises two α-helices (S45A and S45B) as opposed
to the shorter turn configuration observed in BK channels [19,29]. Activation of these chan-
nels occurs in response to low intracellular Ca2+ concentrations (0.1–0.7 µM), facilitated
by a mechanism involving the presence of a calmodulin-binding domain (CaMBD) within
the channel’s protein structure [15,126]. Each calmodulin molecule is linked to a single
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subunit, and each calmodulin lobe has a specific role: the C-lobe binds to the CaMBD in a
one-to-one ratio independently of Ca2+, whereas the N-lobe associates with the S4–S5 linker
in response to Ca2+ levels [19]. The structures of each subunit are shown in Figure 4A.
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Figure 4. Schematic structure of IK and SK channels and their opening mechanism. (A) Structure of
IK and SK channels. (B) Opening mechanism proposed by Schumacher et al. [127] (C–E) Opening
mechanism proposed by Lee and Mackinnon [19]. CaM, calmodulin; CaMBD, calmodulin-binding
domain; NH2, amino terminus; COO−, carboxyl terminus; S, segment.

In 2001, a CaMBD/Ca2+/calmodulin complex with a crystal structure of the SK2
channel and a resolution of 1.60 angstroms was published. The findings demonstrated
that the CaMBD/calmodulin complex of each subunit exists in a monomeric state in the
absence of Ca2+ [127]. In the activation state, the binding of Ca2+ to the N-lobes compels
the CaMBD/calmodulin monomers to form a structural configuration called the “dimer-of-
dimers” structure. This rearrangement pulls the bundle-crossed helices of the pore, opening
the channel, as shown in Figure 4B [127]. However, the two-fold symmetry proposed by
this dimer-of-dimers configuration is difficult to match to the four-fold symmetry observed
in channel pore structures [128]. In 2018, full-length cryo-EM structures of a human
SK4–calmodulin channel complex in both the activated and closed states were revealed [19].
Based on this evidence, a model of SK and IK channel activation was proposed, as shown in
Figure 4C–E. In the absence of Ca2+, the channel is closed, the C-lobe of calmodulin binds
to the channel, and the N-lobe interacts weakly with the channel, exhibiting structural
flexibility. When the Ca2+ concentration reaches the activation threshold, Ca2+ binds to
the N-lobe, inducing a conformational change that enhances the interaction between the
N-lobe and the S45A helix in the S4–S5 linker. Consequently, S45A is displaced away from
the channel, leading to a shift in the S45B helix away from the pore axis. This alteration
results in a structural change in S6, causing S6 to tilt outward from the channel pore axis,
thereby permitting the opening of the channel pore [19]. This hypothesis addresses the
long-standing question regarding the gating symmetry of KCa channels.

3.2. Distribution and Physiology of IK Channels

IK channels are primarily expressed in blood cells, various immune cells, and secre-
tory epithelial cells. In red blood cells, these channels fulfill a function related to volume
regulation, whereas, in lymphocytes, they contribute to the generation of hyperpolariza-
tion, a crucial requirement for mitosis and subsequent lymphocyte proliferation [18,129].
In addition to their presence in red blood cells, IK channels are widely observed in
various types of leukocytes, including T cells, B cells, mast cells, macrophages, and
microglia [18,130–132]. IK channels promote T-cell activation and proliferation. Higher ex-
pression of IK channels has been observed in activated T cells than in resting T cells [18,133].
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The primary function of IK channels in immune cells is to hyperpolarize the cellular mem-
brane and establish the driving force required for calcium entry, which is essential for
processes such as cell activation, cell proliferation, and cytokine production [134]. IK
channels play a pivotal role in B-cell proliferation and migration. Notably, channel activity
increases during the differentiation of activated naïve B cells into memory B cells [130].
Research suggests that the function of IK channels in macrophages is intricately linked
with the NF-κB and STAT signaling pathways. In one study, inhibition of these IK channels
using TRAM-34 led to the downregulation of NF-κB and STAT3 signaling and hindered
the transition of macrophages to their proinflammatory M1 phenotype. Moreover, it re-
duced the levels of inflammatory factors, including interleukin-1 (IL-1), IL-6, TNF-α, and
monocyte chemoattractant protein-1 (MCP-1) [135]. In mast cells, IK channel activation
serves to uphold elevated levels of intracellular free Ca2+. This activation further facilitates
IgE-dependent histamine release and governs the secretory response of mast cells [131].
In addition, IK channels are distributed in secretory epithelial cells of the lungs, colon,
pancreas, and salivary glands [136–138]. Within the secretory epithelia of the lungs and
digestive system, IK channels collaborate with the Na–K–2Cl co-transporter to enable the
secretion of chloride (Cl−) and fluids [136,137]. In the central nervous system, IK channels
are mainly located in the microglia (immune cells) and endothelial cells. Microglial IK
channels control several functions, such as respiratory burst, proliferation, migration, and
nitric oxide production via lipopolysaccharides [139,140]. In pyramidal neurons, the role
of IK channels in the slow after-hyperpolarization (sAHP) phase remains controversial.
Some researchers, including Brian King, have demonstrated that Ca2+-dependent sAHP is
mediated by IK channels [141,142]. It was shown that IK channel agonists (DC-EBIO and
SKA-31) increased sAHP, and antagonists (TRAM-34 and senicapoc) reduced sAHP in CA1
pyramidal cells [141,142]. In addition, the synaptically evoked sAHP was decreased in IK
knockout mice [141]. However, Kang Wang and colleagues found that TRAM-34 had no
significant effect on sAHP or the excitability of CA1 pyramidal neurons [143]. Furthermore,
they observed no change in the feature of sAHP current in IK knockout mice [143]. This
evidence suggests that IK channels do not mediate sAHP in pyramidal neurons. A review
article comparing King and Wang’s studies failed to elucidate the reasons for the dramatic
difference in their results [144]. Clarifying the role of IK channels in sAHP is crucial for
promoting the development of pharmacological tools for the treatment of diseases related
to sAHP. Furthermore, IK channels were reported to be expressed in C2C12 myoblasts and
related to myogenic differentiation [145–147]. DCEBIO, an agonist of IK and SK channels,
enhanced myogenic differentiation in C2C12 cells; this effect was inhibited by TRAM-34 (an
inhibitor of IK channels) but not by apamin (an inhibitor of SK channels) [147]. Therefore,
IK channels may regulate the muscle differentiation process.

3.3. Modulators Targeting IK Channels
3.3.1. Blood Cell Disorders

Owing to the crucial role of IK channels in the physiological activities of red and white
blood cells, the regulation of IK channels is a potential target for the treatment of patho-
logical conditions. Senicapoc (ICA-17043) was developed from the structural framework
of clotrimazole (an antifungal drug) and entered clinical trials with the goal of treating
sickle cell anemia [148]. Senicapoc selectively blocks IK channels, reduces red blood cell
dehydration and hemolysis, and increases hemoglobin concentration in sickle cell disease.
A phase III double-blind, randomized, placebo-controlled study was conducted to deter-
mine the safety and clinical efficacy of senicapoc in 145 patients who received the drug and
144 patients who received a placebo for 52 weeks. The primary endpoint was the difference
in the rate of acute sickle cell-related pain crises between the treatment and placebo groups.
The acute pains associated with sickle cell disease were specifically defined and were
independently and blindly assessed by a committee of five physicians who were experts
in sickle cell disease. The acute pain rates were calculated by dividing the total number
of qualifying pains recorded by the total number of months in which patients received
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senicapoc or the placebo. Secondary endpoints were differences in the following factors
between groups: (1) number of months from the beginning of treatment until the first, sec-
ond, and third onset of pain; (2) hematological parameters such as indirect bilirubin, lactate
dehydrogenase, reticulocyte and dense erythrocyte counts, hemoglobin, hematocrit, and
red blood cell counts. Patients in the treatment group exhibited significantly higher hemat-
ocrit and hemoglobin levels and lower density and reticulocyte counts than those in the
placebo group. However, the unblinded data monitoring committee terminated this study
prematurely and concluded that no discernible effects were observed. Despite achieving
the desired biological outcomes, treatment did not reduce clinical pain, a primary efficacy
endpoint. No significant difference in the incidence of sickle cell attacks was observed
between the two groups. Serious side effects were similar between the two groups. In addi-
tion, nausea and urinary tract infections occurred more frequently in the senicapoc group
than in the placebo group [149]. Although the results from phase III clinical trials in sickle
cell anemia were not sufficient to bring senicapoc to the pharmaceutical market, phase I, II,
and III clinical studies have demonstrated that senicapoc is a safe and well-tolerated drug
candidate in humans and exhibits biological activity at the doses administered. Therefore,
senicapoc has been studied as a potential treatment for other medical conditions. Based
on the results of previous studies, senicapoc has been used in clinical trials to treat allergic
asthma. In phase II of a clinical trial, senicapoc treatment attenuated elevated airway
resistance and decreased exhaled NO, a marker of inflammation [150]. However, in the
second proof-of-concept phase II trial examining the effects of senicapoc on patients with
exercise-induced asthma, no significant improvement in lung function was observed after
four weeks of treatment [150]. Recently, senicapoc was used as a target in drug repurposing
for the treatment of hemolytic anemia and xerocytosis, a rare hereditary condition caused
by a gain-of-function IK channel mutant [151]. In 2021, an explanatory proof-of-concept
study on senicapoc was performed in patients with familial dehydration stomatocytosis
induced by a V282M mutation in the IK channel. The study is expected to conclude in
March 2024 [152].

Various studies have shown that some pore-blocking inhibitors of IK channels im-
proved pathological conditions in immune-related diseases such as asthma, allergic rhini-
tis, inflammatory bowel disease, and rheumatoid arthritis [153–156]. TRAM-34, a well-
known IK inhibitor, reduced inflammation in ovalbumin-induced asthma and allergic
rhinitis [153,154]. TRAM-34 was designed based on the structure of clotrimazole, and an
imidazole group was replaced with a pyrazole group to avoid affecting cytochrome P450
(CYP) activity [157]. However, TRAM-34 was shown to have no inhibitory effect on the
human CYP3A4 isoform and was reported to inhibit other CYP isoforms such as human
CYP2B6 and CYP2C19 [157]. Currently, TRAM-34 is not used in clinical trials. Nevertheless,
because of its highly selective inhibitory properties against IK channels, TRAM-34 is still
commonly used in vitro and in vivo to determine the critical role of IK channels in many
diseases. In a mouse model of ovalbumin-induced allergic rhinitis, injection of TRAM-34
into the nasal cavity reduced sneezing, nose rubbing, epithelial cell proliferation, eosinophil
infiltration, and the expression of IK channels in the nasal mucosa [154]. In addition, in
synovial fibroblasts from patients with rheumatoid arthritis, blockage of the IK channel
by TRAM-34 diminished cell proliferation and the secretion of proinflammatory cytokines
such as IL-6, IL-8, and MCP-1 [156]. Another IK channel inhibitor, NS6180, has been studied
in animal models of inflammatory bowel disease. NS6180 inhibited IK channel expression
in human, rat, and mouse red blood cells and decreased the levels of cytokines such as
IL-2, IL-4, TNF-α, and IFN-γ. NS6180 was demonstrated to be as effective as sulfasalazine,
a standard treatment for inflammatory bowel disease, in reducing colitis and improving
weight gain [155].

3.3.2. Cancer

TRAM-34 has been used to study the association between cancer and IK channels.
Many studies have indicated that IK channels promote cancer progression by influencing
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cancer cell proliferation, cell cycle progression, invasion, metastasis, and resistance [158–161].
A previous study indicated that TRAM-34 significantly decreased the proliferation, migration,
and invasion of human endometrial carcinoma cells [158]. Another study showed that IK inhi-
bition using TRAM-34 suppressed cell proliferation, migration, and epithelial–mesenchymal
transition in triple-negative breast cancer cells [159]. Additionally, TRAM-34 inhibited
epithelial–mesenchymal transition and metastasis by increasing E-cadherin expression and
decreasing Snail expression in colorectal cancer [162]. Furthermore, the activation of IK
channels leads to the hyperpolarization of cell membrane potential, which promotes the
G1/S transition in the cell cycle [163]. Hence, the inhibition of IK channels by TRAM-34
arrests the cell cycle at the G0/G1 phase, thereby preventing the growth of endometrial
tumors [160]. In addition, TRAM-34 inhibits colorectal cancer progression by inhibiting
the secretion of cytokines such as IL-6 and IL-8 by tumor-associated macrophages [164].
TRAM-34 was shown to inhibit migration and invasion induced by CXCL12 and fetal calf
serum in glioblastoma cells by inhibiting IK channels [165,166]. Furthermore, TRAM-34 de-
creased the motility of glioblastoma-derived cancer stem cells, indicating that IK channels
are expressed in cancer stem cells deriving from glioblastoma, even though they are not
present in tissues from normal neuro and glial cells [167]. Notably, a study reported that
TRAM-34 reduced radiation-induced invasiveness in glioblastoma through IK channel in-
hibition [168]. IK channels may be involved in the metastasis and invasion of glioblastoma
cells by modulating cell volume [169]. Hypotonia-induced cell swelling promoted Ca2+ in-
flux through mechanosensitive channels, leading to IK channel opening and the recovery of
initial cell volume [169]. Other studies indicated that the combination of the IK channel and
Orai/STIM channel activities generates Ca2+ oscillations, which might induce glioblastoma
mobility [170–172]. However, the effects of TRAM-34 on cancer cells have been inconsistent.
In breast cancer cell line MCF-7, a low concentration (3–10 µM) of TRAM-34 increased cell
proliferation, but a higher concentration (20–100 µM) yielded the opposite result [173]. In
addition to inhibiting IK channels, TRAM-34 directly interacted with estrogen receptors
in a manner similar to 17β-estradiol, thereby enhancing progesterone receptor mRNA
expression, reducing estrogen receptor α mRNA expression, and inhibiting the binding of
estrogen to its receptor, leading to increased breast cancer cell proliferation [173]. Based on
this finding, the use of TRAM-34 as well as other IK channel inhibitors in the treatment of
breast cancer should be evaluated with extreme caution. In addition, TRAM-34 (10 µM)
unexpectedly enhanced the migration and invasion of pancreatic cancer cells [174].

Furthermore, senicapoc suppressed the growth of intrahepatic cholangiocarcinoma
cells in a xenograft model in nude mice [175]. Because of its safety and good tolerability,
senicapoc is a potential candidate for cancer treatment.

Therapeutic resistance poses a significant challenge in cancer treatment. Some evi-
dence suggests that 1-ethyl-2-benzimidazolinone (1-EBIO), a nonselective activator of IK
channels, promotes the apoptosis of cisplatin-resistant cancer cells [161]. Pillozzi et al.
discovered that IK channels affect cisplatin uptake by drug-resistant cancer cells. There-
fore, the activation of the IK channel by SKA-31 enhances cisplatin uptake, subsequently
promoting apoptosis and inhibiting the proliferation of colorectal cancer cells. This study
also indicated that E4031, an inhibitor of Kv11.1, upregulated the expression of IK channels
and acted synergistically with cisplatin, similar to SKA-31. The combination of cisplatin,
SKA-31, and E4031 yielded maximal effectiveness [176]. Furthermore, in combination
with cisplatin, riluzole, a medicine capable of activating IK channels and inhibiting the
Kv11.1 channel, overcame drug resistance in colorectal cancer cells [176]. Riluzole has
been approved for the clinical treatment of amyotrophic lateral sclerosis in many countries,
making it readily available to patients [177]. This combination of drugs holds significant
promise for the treatment of drug-resistant cancers. Further clinical studies are required to
determine its efficacy precisely.
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3.3.3. Neurological Diseases

TRAM-34 and senicapoc exhibit protective effects on the nervous system by reducing
damage and attenuating the impairment of function caused by neurological disorders.
Blockade of the IK channel using TRAM-34 decreased the symptoms of autoimmune en-
cephalomyelitis in a mouse model of multiple sclerosis [178]. Another study reported that
TRAM-34 reduced the activation of microglia/macrophages, leading to a reduction in neu-
roinflammation related to ischemia/reperfusion stroke [179]. In addition, the inhibition of
IK channels with TRAM-34 reduced astrogliosis and microglia activity and improved mem-
ory deficits, suggesting that IK channel inhibition may be a promising therapeutic strategy
for the treatment of AD [180]. Jin et al. demonstrated the potential of senicapoc in the
treatment of AD. Senicapoc can penetrate the brain even when administered orally, decreas-
ing neuroinflammation, reducing the cerebral amyloid load, and improving hippocampal
neuroplasticity [181]. These results, combined with the safety evidence in phases I and II of
previous clinical trials, support the use of senicapoc in clinical AD treatment. Additionally,
in mice with peripheral nerve injuries, senicapoc significantly reduced tactile allodynia
without affecting motor activity [182]. In 2022, a clinical trial involving 55 patients lasting
52 weeks was initiated to study the mechanism of action of senicapoc in mild or prodromal
AD. This study is expected to end in June 2025 [183]. Table 3 presents an overview of the
properties and impacts of IK channel modulators.

Table 3. Summary of potential modulators of IK channels.

Modulator/Drug Structure Characteristics of
Modulator/Drug

Effects on Diseases or
Disorders References

Senicapoc
(ICA-107043)
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4. SK Channels
4.1. Distribution and Physiology of SK Channels

SK channels are broadly expressed, primarily in the central and peripheral nervous
systems and the cardiovascular system [184]. Among the SK channels in the human brain,
SK3 is the most highly expressed, followed by SK2 and SK1 [179]. The distributions of
SK1, SK2, and SK3 channels in the central nervous system are different. SK1 channels are
primarily distributed in the neocortex. Both SK1 and SK2 channels are highly co-expressed
in the CA1–3 layers of the hippocampus, thalamic reticular nucleus, cerebellum, and brain
stem. SK3 channels are expressed in the midbrain and hypothalamus [177–179]. The
functioning of SK channels in neurons located in the midbrain and cerebellum plays a role
in coordinating muscle movements and facilitating movement [184]. In pyramidal neurons
of the hippocampus and amygdala, SK channels modulate the excitatory postsynaptic
potential, and the inhibition of SK channels increases long-term potentiation that enhances
learning and memory [185].

In neurons, SK currents are responsible for generating the medium phase of AHP,
which constitutes the second phase of AHP following an AP. They play a crucial role in
regulating intrinsic neuronal excitability and controlling spike firing rates [186]. In addition,
Ca2+ influx-induced SK channel activation modulates the frequency of AP discharges,
leading to the regulation of dendritic excitability. SK currents are typically activated by
Ca2+ entering the neurons through voltage-gated calcium channels, which are activated
during an AP. However, they can also functionally couple with postsynaptic calcium
sources, including N-methyl D-aspartate and nicotinic acetylcholine receptors. Addition-
ally, SK currents can be influenced by calcium released from intracellular ryanodine or
IP3 receptors [187]. This functional coupling to various calcium sources allows SK chan-
nels to fine-tune neuronal excitability and synaptic transmission in response to different
signaling pathways and neuronal activity patterns. SK channels also play an important
role in regulating synaptic transmission [188]. SK channels have been shown to inhibit
postsynaptic potentials in dopaminergic neurons in the ventral tegmental area and substan-
tia nigra [188] and to mediate inhibitory postsynaptic conductance in auditory outer hair
cells. This occurs after activation by calcium influx through calcium-permeable nicotinic
acetylcholine receptors [189]. Furthermore, recent studies have shown that SK channels
play a role in shunting fast excitatory synaptic transmission in the lateral amygdala and
hippocampal pyramidal neurons [190]. SK channels are involved in regulating synaptic
plasticity, a fundamental process underlying learning and memory. Therefore, SK channels
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may participate in the regulation of learning and memory. Indeed, the blockade of SK
channels using apamin in rats resulted in enhanced learning performance in an object
recognition task [191]. Additionally, apamin was found to decrease spatial navigation
deficits induced by medial septum and hippocampal lesions in mice in the Morris water
maze spatial memory task [185].

In a normal heart, the SK1 and SK2 channels are primarily located in the atria, whereas
the SK3 channel is found in the atria and ventricles [192]. SK channels play an important
role in regulating AP duration through a negative feedback system [193]. When intra-
cellular Ca2+ increases due to the opening of L-type Ca2+ channels or Ca2+ release from
the sarcoplasmic reticulum, SK channels are activated [194]. Moreover, the opening of
SK channels repolarizes cardiomyocytes, leading to the closure of L-type Ca2+ channels
and the completion of an AP [193]. A longer AP leads to a longer Ca2+ influx, thereby
increasing SK channel activation and resulting in a shorter AP duration [193]. Indeed,
a prolonged AP duration was observed in the atria of SK2-null mice compared to that
in control mice, and a decreased AP duration was observed in mice overexpressing SK2
channels [195]. In addition, differences in the distribution of SK channels in the atria and
ventricles represent a potential target for the treatment of atrial-selective arrhythmias. SK
channels regulate AP duration in the atria; therefore, they play an important role in the
pathophysiology of atrial fibrillation (AF). AF is a condition characterized by an irregular
and often very rapid heart rhythm. An increase in SK channel activity shortens AP dura-
tion and leads to atrial tachypacing. On the contrary, the downregulation of SK channel
activity prolongs AP duration, resulting in reduced AF frequency. Interestingly, evidence
for both over- and under-expression of SK channels has been provided in models of AF.
In a burst-paced rabbit model, the expression of SK2 mRNA and protein was increased in
the left atrium [196]. In a dog model, an increase in SK1 and SK2 protein levels and SK2
mRNA expression, but not SK1 mRNA expression, was reported [197]. Posttranslational
modifications or altered membrane trafficking of SK1 channels were suggested as the cause
of SK1 overexpression [197]. In a dopachrome tautomerase-induces AF model in mice,
the mRNA and protein levels of SK1 and SK3 were high [198]. In contrast, a decrease in
SK1–3 channel expression was noted in patients presenting AF and heart failure (HF) [199].
In one study, SK2 mRNA expression in the atrial tissue of patients with AF was lower than
that in the healthy group [200]. Inconsistencies in the levels of SK channel mRNA and pro-
tein may be due to the stage or duration of AF, the pathogenesis model, and differences in
atrial tissue among species [193,201]. SK channels might be initially upregulated and then
downregulated due to extensive structural and electrical remodeling in the atrium [193,201].
Therefore, SK channel antagonists might be potential candidates for the treatment of AF
onset before SK channel expression is downregulated [193]. SK channels are implicated in
HF through their role in ventricular tachyarrhythmias [193]. Under normal conditions, SK
channels play a negligible role in ventricular tissue. However, SK channels are dramatically
upregulated under HF conditions, as observed in a tachycardia-induced HF model in
rabbits and in ventricular myocytes isolated from end-stage HF patients [202–204]. In
addition, apamin (an inhibitor of SK channels) showed significant prolongation in AP
duration in failing ventricles but no significant effect in normal ventricles [202,205]. Hence,
SK channel inhibitors seem to be promising for HF treatment. However, adjusting heart
rate under HF conditions is very complicated, so the use of SK channel modulators for
HF treatment must be considered [205]. SK channels are related to hypertension through
negatively modulated intracellular Ca2+ concentration and aldosterone secretion [206].
Apamin, a well-known selective SK channel blocker derived from bee venom, inhibits SK
channels and increases Ca2+ and aldosterone levels, resulting in hypertension. Consistently,
DCEBIO, which antagonized the actions of apamin, showed the opposite effects [206].
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4.2. Modulators Targeting SK Channels
4.2.1. Neurological Diseases

As shown above, both SK channel upregulation and downregulation may be involved
in correcting nervous system imbalances. Therefore, SK channel agonists and antago-
nists have been investigated as potential therapeutic agents for neurological disorders.
Several studies have suggested that 1-EBIO, a nonselective activator of SK channels, re-
duces acoustically evoked seizures in both male and female genetically epilepsy-prone
rats [207]. In addition, 1-EBIO suppressed epileptiform activity in an acute hippocampal
slice model [208]. 1-EBIO also decreased seizure probability and increased the threshold
for pentylenetetrazole-induced seizures in mice [209]. DCEBIO, a derivative of 1-EBIO,
modulates fear extinction memory by upregulating the SK potassium channels in the in-
fralimbic cortex [210]. Another SK channel activator, NS309, has been reported to exert
a neuroprotective effect through SK channels. In a rat model of traumatic brain injury,
NS309 significantly decreased brain edema, alleviated deficits in neurological function, and
attenuated neuronal apoptosis [211]. This neuroprotective effect was mediated through
anti-inflammatory and immunomodulatory mechanisms [211]. In addition, activation
of SK channels by NS309 confers a protective effect on human dopaminergic neurons,
ameliorating the dopaminergic cell depletion that predisposes patients to Parkinson’s
disease [212]. Apamin has been shown to have a positive effect on learning and memory
in vitro. Blocking SK channels using apamin increases the excitability of hippocampal neu-
rons and induces synaptic plasticity, which is thought to underlie memory formation [213].
Additionally, researchers have suggested that apamin may enhance object recognition
memory, improve the retrieval of extinction memories, and enhance cognitive function
when memory declines [210,214,215].

Some medicines licensed for the treatment of neurological diseases have been reported
to be associated with SK channel regulation. Chlorzoxazone (CZX) was approved by the
Food and Drug Administration as a muscle relaxer to treat pain during muscle spasms [216].
Although the precise mechanism of action of CZX has not been completely clarified, evi-
dence suggests that it triggers SK2 channel activation [217,218]. One study suggested that
CZX may positively modulate SK channels, leading to reduced neuronal activity [219].
In addition, CZX was proposed as a new therapy for episodic ataxia type 2, an inherited
movement disorder caused by mutations in the gene encoding the CaV2.1 α1 subunit [220].
As mentioned above, riluzole has been approved for the treatment of amyotrophic lateral
sclerosis in most nations [177]. The precise biochemical target of riluzole in motor neuron
disease remains uncertain; however, the pharmacological targets of riluzole include SK
channels [221]. Based on its ability to activate SK channels, riluzole has been shown to be ef-
fective in ameliorating disease-related loss-of-function defects in an animal model of spinal
muscular atrophy and inhibiting pain behavior in a mouse model of joint pain [221,222].
Positive outcomes associated with riluzole have also been documented in the treatment of
spinocerebellar ataxia type 2, a condition characterized by abnormal firing patterns and the
eventual death of Purkinje cells [223]. The effect of riluzole appears to be mediated by the
activation of the SK2 channel, which is highly expressed in Purkinje cells [224].

4.2.2. Cardiovascular Diseases

Since SK channels, especially SK1 and SK2, are chiefly expressed in the atrium, they
are considered potential targets for AF and arrhythmia treatment. The SK channel inhibitor
N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) showed antiarrhythmic properties
by inhibiting SK channels directly and Nav channel indirectly [225]. ICA extends the AP
duration and transfers the resting membrane potential to more depolarized potentials, re-
sulting in the slowing of conduction and a reduction in excitability [225]. Furthermore, the
combination of ICA and dofetilide (a class III antiarrhythmic agent that blocks potassium
current) or amiodarone (an antiarrhythmic medication and potassium blocker) at a sub-
efficacious dose showed a protective effect against AF and reduced the risk of ventricular
arrhythmias [226,227]. Other combinations of ICA and flecainide (a drug for abnormally
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high heart rate treatment and a fast sodium current blocker) or ranolazine (a medication
for treating heart-related chest pain and a late sodium current inhibitor) at sub-efficacious
concentrations have been studied to examine the synergistic effects of AF treatment [228].
Positive outcomes have been documented, with a reduction in AF duration in a pig heart
model [228]. AP14145, a negative modulator of SK2 and SK3, extended the atrial effective re-
fractory period without acute triggers in the central nervous system of mice [229]. AP14145
was also suggested to potentially cure vernakalant-resistant AF in a pig model [230]. Ad-
ditionally, in an experimental porcine model simulating obstructive respiratory events,
AP14145 successfully mitigated the abbreviated atrial effective refractory period associ-
ated with intermittent negative airway pressure exposure, reduced the susceptibility to
AF, and maintained ventricular electrophysiological function [231]. In addition, apamin,
NS8593 (a Ca2+-desensitizing modulator), and UCL1684 (an SK channel blocker) have been
studied in various AF models [232]. While apamin showed no antiarrhythmic effect, the
two remaining substances yielded a dramatic prolongation of the atrial effective refractory
period and a reduction in AF [232,233]. The role of SK channels in regulating heart rate
has been only partially explored. Modulators of SK channels appear to both terminate
and induce arrhythmias. Additional research is imperative to formulate medications and
evaluate the impact of these pharmaceutical agents on the susceptibility to arrhythmias.
Finding a balanced impact range is crucial. The combination of SK channel modulators
with recognized antiarrhythmic medication has shown positive results and is a potential
direction. Information regarding SK channel modulators is presented in Table 4.

Table 4. Summary of potential modulators of SK channels.
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KCa channels are widely distributed in the body and play various physiological and
pathological roles. Numerous studies on KCa channel activators and inhibitors have been
conducted in vitro, in vivo, and in clinical trials to identify novel pharmaceutical therapies.
However, endeavors to develop KCa channel-targeting drugs have not yet translated to
the widespread clinical application of KCa channel modulators. In this section, we discuss
reasons for the limited progress in the therapeutic development of KCa channel modulators
and propose novel strategies to advance this field.

There are several reasons why few KCa channel modulators have been introduced
to the pharmaceutical market. First, some modulators have not demonstrated significant
efficacy in clinical treatment. As described earlier, BMS-204352, a BK channel agonist,
successfully passed through phase II of a clinical trial; however, it did not show superior
efficacy when compared with a placebo in the treatment of acute stroke in a phase III
clinical trial [95]. Senicapoc (ICA-17043), an IK channel antagonist, significantly improved
biological outcomes in patients with sickle cell disease in a phase III clinical trial but did not
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alleviate clinical pain. Additionally, more frequent side effects such as nausea and infection
were observed in the treatment group than in the control group. Consequently, this clinical
trial was prematurely terminated [149]. Secondly, due to their potent pharmacological prop-
erties, which can pose serious risks to patients, modulators like PAX, IbTX, and apamin have
not been used despite their high selectivity. PAX was reported to cause tremors that lasted
for several hours in mice with an ED50 of 25 mg/kg of body weight [234]. It was less toxic
than other tremor-inducing drugs, with an LD50 of 150 mg/kg in mice [234]. PAX induced
shorter and less serious tremors than loliterm B in mice and other vertebrates [235–238].
IbTX was purified from the Eastern Indian red scorpion Hottentotta tamulus. This scorpion’s
toxin could simultaneously inhibit K+ channels and activate Na+ channels, and a prolonged
effect causes the release of a large amount of catecholamines, leading to vasoconstriction
and increased blood pressure [239,240]. In some severe cases, IbTX induces pulmonary
edema, tachycardia, and myocardial failure [239,240]. Apamin is a small peptide (18 amino
acids) that can pass through the blood–brain barrier [241,242]. However, some evidence
has suggested the neurotoxicity of apamin. Apamin treatment led to unconstrained polysy-
naptic spinal reflexes in cats [243]. In addition, the injection of apamin induced convulsions
and long-lasting spinal spasticity in mice [243,244]. It also caused tremors, ataxia, and
dramatic hemorrhage in the lungs in mice [244]. Recently, lethal dose values of apamin
in mice have been investigated: the LD50 for intravenous and intracerebral administra-
tion are approximately 4 mg/kg and 1.8 µg/kg body weight, respectively [245]. To our
knowledge, the toxicity of PAX, IbTX, and apamin in humans remains unknown. This has
hindered investigators and physicians from using these substances clinically. Researchers
have made efforts to synthesize small-molecule substances that are both highly selective
and have low toxicity based on the structures of these modulators. However, the lack of
three-dimensional structural information on these modulators in the resting and active
states, along with structural changes upon interactions with other molecules, pose signifi-
cant challenges to the design of novel modulators. Finally, several modulators may exhibit
unintended effects. For example, modulators could induce off-target effects, leading to
serious adverse events. TRAM-34, an IK channel antagonist, inhibited the activites of some
human CYP isoforms, including CYP2B6 and CYP2C19, with IC50 values of 0.9 µM and
1.8 µM, respectively [157]. In addition, TRAM-34 stimulated and inhibited human CYP3A4
activities when using different substrates (7-benzyloxy-4-[trifluoromethyl]coumarin and
dibenzyl fluorescein) [157]. The induction or inhibition of CYP enzymes not only affects
the metabolism of TRAM-34 itself but also creates potential CYP-related drug–drug in-
teractions [157]. In a clinical trial, BMS-204352 induced headaches and the dilation of
intracerebral and extracerebral arteries [96]. In this study, healthy volunteers received an
intravenous infusion of 0.05 mg BMS-204352 per minute or a placebo for two different
days [96]. BMS-204352 significantly increased the number of people with headaches, their
headache intensity, and the diameter of the superficial temporal artery and peripheral
artery [96]. Based on this finding, attention must be paid to side effects related to headaches
and arterial dilation when using BMS-204352 in clinical practice.

Despite these challenges, new tactics for applying KCa channel modulators in clinical
treatments are being researched and published. First, licensed drugs or modulators that
previously failed in clinical trials have been repurposed for other indications. Trimebutine
maleate is an approved medicine with antimuscarinic and weak mu-opioid agonist effects
and is used for the treatment of irritable bowel syndrome and gastroesophageal reflux
disease [246]. Recently, trimebutine maleate was studied for the treatment of ovarian cancer
and has shown positive results in preventing ovarian cancer recurrence and drug resistance
both in vivo and in vitro via BK channel inhibition [123]. Furthermore, following its failure
in sickle cell anemia treatment trials, senicapoc is currently undergoing clinical trials for
the treatment of dehydrated stomatocytosis and AD [152,183].

Additionally, KCa channel modulators can be combined with approved medicines to
potentially lower the required dosages, limit side effects, and overcome drug resistance.
For example, Kirchhoff et al. combined ICA with amiodarone or dofetilide to treat AF [226].
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Amiodarone is commonly used for AF prevention; however, at therapeutic doses, it can
cause serious side effects such as pulmonary fibrosis, thyroid dysfunction, and neurological
disorders and may lead to prolonged QT intervals [247]. Dofetilide is a class III antiarrhyth-
mic drug that is considered an alternative to amiodarone in high-risk patients with AF.
However, dofetilide is known to prolong the QT interval, which can increase the risk of
torsades de pointes arrhythmias, which are potentially fatal [248]. The drug combination
yielded relatively promising results, even when concentrations lower than the therapeutic
doses of each individual drug were used. The combination of ICA and amiodarone reduced
AF duration, and the combination of ICA and dofetilide reduced AF duration without
prolonging the QT interval [226]. Another study showed that combining cisplatin with
SKA-31 (an IK channel activator) and E4031 (a Kv11.1 channel inhibitor) promoted apopto-
sis and inhibited proliferation in cisplatin-resistant colorectal cancer cells. The activation of
IK channels and inhibition of Kv11.1 channels led to increased IK channel activities and
enhanced cisplatin uptake by cells. Indeed, the combination of cisplatin and riluzole, which
could activate IK channels and inhibit Kv11.1 channels, also overcame cisplatin resistance
in colorectal cancer. Further studies should be conducted to investigate whether riluzole
treats cisplatin-resistant conditions in other cancers. Moreover, riluzole is an approved
medication; therefore, it has the potential to be applied to clinical treatment [176].

Finally, efforts to identify novel KCa channel modulators are ongoing through the
screening of existing compounds. Screening has been performed through two major
approaches: (1) high-throughput screening and (2) in silico screening. High-throughput
screening uses various assays such as ligand binding, 86Rb+ flux, voltage-sensitive dye,
and Tl+ flux assays [249]. Given the advances in the structural discovery of KCa channels,
in silico screening also has great potential for novel drug discovery. Recently, an allosteric
modulator of BK channels named BC5 was discovered using in silico screening [250]. BC5
was found to meet the following criteria: (1) it interacts with the interface of the intracellular
tail and VSD, and (2) it opens BK channels through a Ca2+-dependent pathway [250].
Interestingly, BC5 activated the channel in the absence of Ca2+, but Ca2+ binding inhibited
the effect of BC5 [250]. Further modification of the BC5 chemical structure may reveal new
compounds with stronger allosteric activation activities on BK channels.

6. Conclusions

KCa channels are potential therapeutic targets due to their diverse and essential roles in
various pathological conditions. Therefore, KCa channel modulators have been extensively
studied despite the challenges in their clinical implementation. Over the past two decades,
remarkable advancements have been made in the development of compounds targeting
KCa channels for treatment. However, more efforts are still needed to bring Kca channel
modulators into clinical practices. Currently, drug repositioning for new indications is a
time- and cost-saving strategy that aligns well with the diverse physiological roles of KCa
channels. Coordinating drugs that have common targets and synergistic effects to reduce
dosage and toxicity is also an attractive option. Furthermore, the design and development
of new modulators are promising due to the newly discovered cryo-EM structures of
KCa channels.
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