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Abstract: Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordi-
nated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of
cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in
canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat
cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria
were initially shortened after the addition of TNF/zVAD and then their length was restored, and the
proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than
in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1)
and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on
TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the
knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable
for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with
Mdivi-1. The expression of TGFβ-activated kinase (TAK1), a negative regulator of RIP1 activity, was
upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity,
was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated
the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochon-
drial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through
the suppression of RIP1 activity.

Keywords: necroptosis; cardiomyocyte; mitochondrial fusion; RIP1; TAK1

1. Introduction

Necroptosis constitutes regulated cell death that has morphological characteristics of
necrosis, and it is triggered by receptor-interacting protein (RIP)1-dependent and -independent
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RIP3 activation and is essential for host defense against a number of DNA and RNA viruses,
including influenza A viruses [1–5]. Importantly, necroptosis serves as a fail-safe system
to mediate death in cells that are devoid of the caspase 8-mediated extrinsic apoptotic
pathway [3,6]. On the other hand, results of recent studies have shown that necroptosis
is a part of the mechanisms of inflammatory bowel disease, autoimmune diseases, and
ischemia/reperfusion injury [3,4,7]. RIP1 activation is a pivotal step leading to downstream
RIP3 activation in the canonical pathway of necroptosis induced by tumor necrosis factor-α
(TNFα) and interferon-γ, whereas viruses and dsDNA directly activate RIP3 [3]. There
has been much debate about the mechanism by which activated RIP3 induces necroptosis,
but mixed lineage kinase domain-like (MLKL), a pseudokinase that lacks two of the three
conserved catalytic residues in its kinase-like domain, is currently thought to be a primary
executor of necroptosis since the pharmacological suppression of MLKL activity via the
inhibition of disulfide bond formation between monomeric MLKL, as well as the genetic
deletion of MLKL, completely inhibits necroptosis regardless of whether necroptosis is
triggered by RIP1 activation [8,9].

Studies in the past decade have unveiled the detailed molecular mechanisms of the
process from RIP1 activation to the execution of necroptosis mediated by MLKL. MLKL that
is phosphorylated by RIP3 has been shown to translocate from the cytosol to the plasma
membrane, leading to necrosis through the perturbation of membrane integrity [3,10].
Thus, plasma membrane disruption mediated by MLKL activation is thought to be a
necessary event for the execution of necroptosis. In addition, RIP3 and MLKL undergo
nucleocytoplasmic shuttling, and the inhibition of nuclear MLKL translocation attenuates
TNFα-induced necroptosis [11–13]. Furthermore, the activation of canonical necroptotic
signaling induced by TNFα and caspase inhibition elicit translocation of the RIP3/MLKL
complex to the endoplasmic reticulum-mitochondria interface [14], suggesting the possible
involvement of mitochondria in canonical necroptosis. There are several lines of evidences
suggesting the crosstalk of TNFα receptor signaling and alterations to mitochondria dynam-
ics, a coordinated process of mitochondrial fission and fusion for regulating mitochondrial
homeostasis and cell fate [15,16]. TNFα has been shown to induce an increase in the protein
expression of dynamin-related protein 1 (Drp1), a large cytoplasmic GTPase that serves as
a fission promoter, and Drp1 phosphorylation at Ser616, leading to mitochondrial fragmen-
tation through promotion of the fission process in several cell lines, including the H9c2 rat
cardiomyoblasts [17–19]. Conversely, treatment with TNFα induces mitochondrial fusion
in neonatal mouse cardiomyocytes transfected with TNFα receptor 1 (TNFR1) through the
TNFR2-mediated upregulation of optic atrophy 1 (Opa1) [20]. Thus, two TNFα receptors,
TNFR1 and TNFR2, exert opposing effects on mitochondria dynamics. Therefore, changes
in mitochondrial dynamics and its regulatory protein expression are likely to modulate
TNFα-induced canonical necroptotic signaling.

In the present study, we used H9c2 cells, rat cardiomyoblasts, since our previous stud-
ies revealed that H9c2 cells possess a TNFα-induced canonical necroptotic program [9,13,21],
and we examined the impact of TNFα-induced necroptotic signaling on mitochondria
dynamics, if any, and whether the inhibition of fusion or fission modulates the extent
of necroptosis.

2. Results
2.1. Time-Dependent Changes in Mitochondrial Morphology after the Induction of Necroptosis

The canonical necroptotic pathway was activated by TNFα and the caspase inhibitor
zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM), as we previously reported [13,21].
The release of LDH into the culture medium was increased in a time-dependent manner
after the addition of TNF/zVAD (Figure 1A), and the difference in LDH release between
TNF/zVAD-treated cells and vehicle-treated control cells reached statistical significance 1 h
after the addition of TNF/zVAD (20.1 ± 2.9% in TNF/zVAD-treated cells vs. 12.1 ± 0.6%
in vehicle-treated control cells).
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ng/mL; zVAD, 20 µM) in H9c2 cells. Culture media were collected at 4, 8, and 12 h after the addition 
of TNF/zVAD, and the extent of necroptosis was determined by quantifying lactate dehydrogenase 
(LDH) in the culture media. * p < 0.05 vs. baseline (0 h). n = 4 in each group. (B) Representative 
confocal images of H9c2 cells stained with MitoTracker Red (red) and Hoechst 33342 (blue). Images 
were acquired at baseline and 0, 4, 8, 12, and 24 h after the addition of TNF/zVAD. (C) Percentage 
of H9c2 cells containing predominantly (>50%) elongated mitochondria over a 24 h period post-
TNF/zVAD treatment. n = 4 experiments for each time point. 

Changes in mitochondrial morphology following the administration of TNF/zVAD 
were analyzed at different time points with a focus on morphologically living cells. After 
TNF/zVAD treatment, the percentage of cells containing predominantly elongated mito-
chondria was reduced, and the difference between the percentages of those cells before 
and after TNF/zVAD addition reached statistical significance 4 h after the addition of 
TNF/zVAD (8.0 ± 1.2% at 0 h vs. 4.3 ± 0.9% at 4 h, Figure 1B,C), suggesting the occurrence 
of mitochondrial fission induced by TNF/zVAD. This reduction in elongated mitochon-
dria was subsequently reversed at 8 h (9.3 ± 1.8%, Figure 1B,C) and significantly at 12 h 
and 24 h (16.3 ± 0.9% & 23.3 ± 2.4%, respectively, Figure 1B,C). 

2.2. Changes in Mitochondrial Fusion/Fission Proteins following the Addition of TNF/zVAD 
As the proportion of cells with elongated mitochondria changes throughout the dif-

ferent time points after exposure to TNF/ZVAD, we wanted to determine whether the 
profile of mitochondrial-shaping proteins is altered in line with the change in 

Figure 1. Time-dependent changes in mitochondrial morphology after the induction of necrop-
tosis. (A) Time course of necroptosis induced by treatment with TNFα and zVAD (TNF/zVAD;
TNFα, 50 ng/mL; zVAD, 20 µM) in H9c2 cells. Culture media were collected at 4, 8, and 12 h
after the addition of TNF/zVAD, and the extent of necroptosis was determined by quantifying
lactate dehydrogenase (LDH) in the culture media. * p < 0.05 vs. baseline (0 h). n = 4 in each
group. (B) Representative confocal images of H9c2 cells stained with MitoTracker Red (red) and
Hoechst 33342 (blue). Images were acquired at baseline and 0, 4, 8, 12, and 24 h after the addition of
TNF/zVAD. (C) Percentage of H9c2 cells containing predominantly (>50%) elongated mitochondria
over a 24 h period post-TNF/zVAD treatment. n = 4 experiments for each time point.

Changes in mitochondrial morphology following the administration of TNF/zVAD
were analyzed at different time points with a focus on morphologically living cells. After
TNF/zVAD treatment, the percentage of cells containing predominantly elongated mito-
chondria was reduced, and the difference between the percentages of those cells before
and after TNF/zVAD addition reached statistical significance 4 h after the addition of
TNF/zVAD (8.0 ± 1.2% at 0 h vs. 4.3 ± 0.9% at 4 h, Figure 1B,C), suggesting the occurrence
of mitochondrial fission induced by TNF/zVAD. This reduction in elongated mitochondria
was subsequently reversed at 8 h (9.3 ± 1.8%, Figure 1B,C) and significantly at 12 h and
24 h (16.3 ± 0.9% & 23.3 ± 2.4%, respectively, Figure 1B,C).

2.2. Changes in Mitochondrial Fusion/Fission Proteins following the Addition of TNF/zVAD

As the proportion of cells with elongated mitochondria changes throughout the dif-
ferent time points after exposure to TNF/ZVAD, we wanted to determine whether the
profile of mitochondrial-shaping proteins is altered in line with the change in mitochon-
drial morphology. Among the mitochondrial-fusion-regulatory proteins, treatment with
TNF/zVAD significantly increased the levels of mitofusin 1 (Mfn1), an isoform of GTPase
that is required for mitochondrial outer membrane fusion, at 4 h and 12 h after treatment
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by 1.67-and 1.94-fold, respectively, and also increased the level of mitofusin 2 (Mfn2) at
1 h after treatment by 1.27-fold (Figure 2), whereas levels of Opa1, a mitochondrial inner
membrane fusogen, remain unchanged. The mitochondrial fission regulatory proteins Drp1
and Fission 1 (Fis1) were not affected by TNF/zVAD treatment (Figure 2). In agreement
with our recent study [13], a modest increase in the MLKL level was found after TNF/zVAD
treatment (Figure 2).
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Figure 2. Changes in mitochondrial fusion/fission proteins following the addition of TNF/zVAD.
(A,B) Representative Western blots (A) and results of densitometric analyses (B) are shown. H9c2
cells were treated with a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD,
20 µM). Mfn = mitofusin, Opa1 = optic atrophy 1, Fis1 = fission 1, Drp1 = dynamin-related protein
1, RIP3 = receptor-interacting protein kinase 3, MLKL = mixed lineage kinase domain-like protein.
Vinculin was used as a loading control. n = 6 in each group. * p < 0.05 vs. vehicle at the same
time point.
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2.3. Role of Mitochondrial Fusion/Fission Proteins in Necroptosis

To demonstrate the mechanistic link between TNF/zVAD-induced mitochondrial
fission and necroptosis, the effects of the siRNA-mediated knockdown of mitochondrial
fission proteins on TNF/zVAD-induced cell death were examined. siRNA-mediated Drp1
knockdown was confirmed based on Western blotting (Figure 3B) and the appearance of
large mitochondria with elongated and enlarged shapes (Figure 3C), and Drp1 knockdown
had no effects on TNF/zVAD-induced LDH release (Figure 3D). The experiments with Fis1
knockdown yielded similar results (Figure 4). The presence of different concentrations of
mdivi-1, a small molecule inhibitor of Drp1, throughout TNF/zVAD treatment also did not
cause any significant change to LDH release (Figure S1).
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Figure 3. Effect of dynamin-related protein 1 (Drp1) knockdown on TNF/zVAD-induced LDH
release. (A) Experimental protocol. Control siRNA and Drp1 siRNA were transfected into H9c2
cells 24 h before the addition of a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL;
zVAD, 20 µM). (B) Representative images of Western blots in H9c2 cells transfected with control or
Drp1 siRNA. Vinculin was used as a loading control. (C) Representative confocal images of H9c2
cells stained with MitoTracker Red (red) and Hoechst 33342 (blue). (D) Effects of Drp1 knockdown
on TNF/zVAD-induced LDH release. LDH release from the cells was determined at 18 h after the
addition of V or TNF/zVAD. n = 7 in each group. * p < 0.05 vs. V-treated cells transfected with
control siRNA.
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tain proper mitochondrial function mainly through the control of mitochondrial dynam-
ics, though distinct roles of each isoform in mitochondrial function have also been re-
ported [22]. In light of the purpose of this experiment, the double knockdown of Mfn1 and 
Mfn2 (Mfn1/2) was selected for subsequent experiments. The knockdown of Mfn1/2 suc-
cessfully induced mitochondrial fragmentation (Figure 5C) and significantly reduced 
TNF/zVAD-induced LDH release (Figure 5D). The significant attenuation of TNF/zVAD-
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Figure 4. Effect of fission 1 (Fis1) knockdown on TNF/zVAD-induced LDH release. (A) Experimental
protocol. Control siRNA and Fis1 siRNA were transfected into H9c2 cells 24 h before the addition of
a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). (B) Representative
images of Western blots in H9c2 cells transfected with control or Fis1 siRNA. Vinculin was used as a
loading control. (C) Representative confocal images of H9c2 cells stained with MitoTracker Red (red)
and Hoechst 33342 (blue). (D) Effects of Fis1 knockdown on TNF/zVAD-induced LDH release. LDH
release from the cells was determined at 18 h after the addition of V or TNF/zVAD. n = 7 in each
group. * p < 0.05 vs. V-treated cells transfected with control siRNA.

Next, the role of mitochondrial fusion proteins in necroptosis was examined. Mfn1
and Mfn2 contain homologous functional domains and complementarily work to maintain
proper mitochondrial function mainly through the control of mitochondrial dynamics,
though distinct roles of each isoform in mitochondrial function have also been reported [22].
In light of the purpose of this experiment, the double knockdown of Mfn1 and Mfn2
(Mfn1/2) was selected for subsequent experiments. The knockdown of Mfn1/2 successfully
induced mitochondrial fragmentation (Figure 5C) and significantly reduced TNF/zVAD-
induced LDH release (Figure 5D). The significant attenuation of TNF/zVAD-induced LDH
release was also recapitulated by the knockdown of Opa1 (Figure 6). These protective
effects of Mfn1/2 or Opa1 knockdown on TNF/zVAD-induced cell death were not reversed
by treatment with Mdivi-1 (Figure S2). Collectively, the results indicate that the knockdown
of mitochondrial fusion proteins is protective for TNF/zVAD-induced necroptosis possibly
through a mitochondrial fission-independent mechanism.
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2.4. Effects of Knockdown of Mitochondrial Fusion Proteins on Necroptotic Signaling

The mechanisms by which the knockdown of Mfn1/2 and Opa1 affords protec-
tion from TNF/zVAD-induced necroptosis were examined. TNF/zVAD induced the
phosphorylation of RIP1 at Ser166 (Figure 7), a residue that positively regulates RIP1
activity, as shown in our previous study [9]. Both Mfn1/2 knockdown and Opa1 knock-
down reduced TNF/zVAD-induced RIP1 phosphorylation, but the suppression of RIP3
expression was found only with Mfn1/2 knockdown (Figure 7), indicating that the
alteration in the pathway from TNF receptor activation to RIP1 phosphorylation is a
primary mechanism of the suppression of necroptosis mediated by the knockdown of
mitochondrial fusion proteins.
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Figure 5. Effect of mitofusin 1/2 (Mfn1/2) knockdown on TNF/zVAD-induced LDH release.
(A) Experimental protocol. Control siRNA and Mfn siRNAs were transfected into H9c2 cells 24 h
before the addition of a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM).
(B) Representative images of Western blots in H9c2 cells transfected with control siRNA or Mfn
siRNAs. Vinculin was used as a loading control. (C) Representative confocal images of H9c2 cells
stained with MitoTracker Red (red) and Hoechst 33342 (blue). (D) Effects of Mfn1/2 knockdown
on TNF/zVAD-induced LDH release. LDH release from the cells was determined at 18 h after the
addition of V or TNF/zVAD. n= 6 in each group. * p < 0.05 vs. V-treated cells transfected with control
siRNA. † p < 0.05 vs. TNF/zVAD-treated cells transfected with control siRNA.



Int. J. Mol. Sci. 2024, 25, 2905 8 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 6. Effect of optic atrophy−1 (Opa1) knockdown on TNF/zVAD-induced LDH release. (A) Ex-
perimental protocol. Control siRNA and Opa1 siRNA were transfected into H9c2 cells 24 h before 
the addition of a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). (B) 
Representative images of Western blots in H9c2 cells transfected with control or Opa1 siRNA. Vin-
culin was used as a loading control. (C) Representative confocal images of H9c2 cells stained with 
MitoTracker Red (red) and Hoechst 33342 (blue). (D) Effects of Opa1 knockdown on TNF/zVAD-
induced LDH release. LDH release from the cells was determined at 18 h after the addition of V or 
TNF/zVAD. n = 7 in each group. * p < 0.05 vs. V-treated cells transfected with control siRNA. † p < 
0.05 vs. TNF/zVAD-treated cells transfected with control siRNA. 

2.4. Effects of Knockdown of Mitochondrial Fusion Proteins on Necroptotic Signaling 
The mechanisms by which the knockdown of Mfn1/2 and Opa1 affords protection 

from TNF/zVAD-induced necroptosis were examined. TNF/zVAD induced the phosphor-
ylation of RIP1 at Ser166 (Figure 7), a residue that positively regulates RIP1 activity, as 
shown in our previous study [9]. Both Mfn1/2 knockdown and Opa1 knockdown reduced 
TNF/zVAD-induced RIP1 phosphorylation, but the suppression of RIP3 expression was 
found only with Mfn1/2 knockdown (Figure 7), indicating that the alteration in the path-
way from TNF receptor activation to RIP1 phosphorylation is a primary mechanism of the 
suppression of necroptosis mediated by the knockdown of mitochondrial fusion proteins. 

Figure 6. Effect of optic atrophy-1 (Opa1) knockdown on TNF/zVAD-induced LDH release.
(A) Experimental protocol. Control siRNA and Opa1 siRNA were transfected into H9c2 cells 24 h
before the addition of a vehicle (V) or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD,
20 µM). (B) Representative images of Western blots in H9c2 cells transfected with control or Opa1
siRNA. Vinculin was used as a loading control. (C) Representative confocal images of H9c2 cells
stained with MitoTracker Red (red) and Hoechst 33342 (blue). (D) Effects of Opa1 knockdown on
TNF/zVAD-induced LDH release. LDH release from the cells was determined at 18 h after the
addition of V or TNF/zVAD. n = 7 in each group. * p < 0.05 vs. V-treated cells transfected with control
siRNA. † p < 0.05 vs. TNF/zVAD-treated cells transfected with control siRNA.

We also investigated whether the enhanced activity of endogenous necroptosis sup-
pressors upstream of RIP1 is involved in the protective mechanism of the knockdown of
mitochondrial fusion proteins. Consistent with our earlier findings [9], TNF/zVAD-induced
LDH release was aggravated by the addition of 5z7—a TAK1 inhibitor (Figure 8)—and it
tended to be exaggerated by the addition of TPCA-1—an IKKα/β inhibitor—and BV6—an
inhibitor of cellular inhibitor of apoptosis proteins 1 (Figures 8 and S3). The addition of 5z7,
but not the addition of TPCA-1 or BV6, partly canceled the Mfn1/2 knockdown-mediated
protection from TNF/zVAD-induced cell death (Figures 8 and S3). Similar results were
obtained when 5z7 was administered in experiments with Opa1 knockdown (Figure 8). The
expression of TAK1, a negative regulator of RIP1 activity, was similarly upregulated after
the knockdown of Mfn1/2 and Opa1 (Figure 9), indicating that increased expression of
TAK1 mediated by the knockdown of mitochondrial fusion proteins attenuates TNF/zVAD-
induced necroptotic signaling. The knockdown of Mfn1/2 and Opa1 did not affect the
TAK1 mRNA level (Figure 9), suggesting that post-translational mechanisms are responsi-
ble for the enhancement of TAK1 protein expression. As mitochondrial biogenesis has been
associated with the prevention of mitochondrial dysfunction and regulation of necroptosis,
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we also assessed the level of PGC-1α as a predictor of mitochondrial biogenesis. In line with
the increase in the proportion of cells with predominantly fragmented mitochondria, we
also observed an increase in the PGC-1α level in cells with Mfn1/2 knockdown. However,
we detected no changes in PGC-1α expression following Opa1 knockdown (Figure S4).
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Figure 7. Effect of mitochondrial fusion-regulating protein knockdown on TNF/zVAD-induced
necroptotic signaling. (A,C) Representative Western blots for proteins regulating necroptotic path-
ways are shown. The siRNAs were transfected into H9c2 cells 24 h before the addition of a vehicle (V)
or TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). Mfn = mitofusin, Opa1 = optic
atrophy-1, RIP1 = receptor-interacting protein kinase 1, RIP3 = receptor-interacting protein kinase
1, MLKL = mixed lineage kinase domain-like protein. Vinculin was used as a loading control.
(B,D) Results of densitometric analyses are shown. n = 6 in each group. * p < 0.05 vs. cells transfected
with control siRNA (0 h). † p < 0.05 vs. TNF/zVAD-treated cells transfected with control siRNA at
the same time point.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Effects of inhibitors of endogenous necroptosis suppressors upstream of RIP1 on the pro-
tection afforded by the knockdown of mitochondrial fusion-regulating protein. (A,B) Effects of 5z7, 
a TGFβ-activated kinase (TAK1) inhibitor, on protection from TNF/zVAD-induced cell death medi-
ated by the knockdown of Mfn1/2 and Opa1. The experimental protocol (A) and results of quanti-
tative analyses (B,C) are shown. The siRNAs were transfected into H9c2 cells 24 h before the addi-
tion of TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). Mfn = mitofusin, Opa1 = 
optic atrophy−1. n = 8 in each group. * p < 0.05 vs. cells transfected with control siRNA (0 h). † p < 
0.05 vs. cells transfected with control siRNA and treated with similar concentrations of inhibitors. ‡ 
p < 0.05 vs. cells transfected with Mfn1/2 or Opa1 siRNA (0 h). 

Figure 8. Cont.



Int. J. Mol. Sci. 2024, 25, 2905 10 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Effects of inhibitors of endogenous necroptosis suppressors upstream of RIP1 on the pro-
tection afforded by the knockdown of mitochondrial fusion-regulating protein. (A,B) Effects of 5z7, 
a TGFβ-activated kinase (TAK1) inhibitor, on protection from TNF/zVAD-induced cell death medi-
ated by the knockdown of Mfn1/2 and Opa1. The experimental protocol (A) and results of quanti-
tative analyses (B,C) are shown. The siRNAs were transfected into H9c2 cells 24 h before the addi-
tion of TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). Mfn = mitofusin, Opa1 = 
optic atrophy−1. n = 8 in each group. * p < 0.05 vs. cells transfected with control siRNA (0 h). † p < 
0.05 vs. cells transfected with control siRNA and treated with similar concentrations of inhibitors. ‡ 
p < 0.05 vs. cells transfected with Mfn1/2 or Opa1 siRNA (0 h). 

Figure 8. Effects of inhibitors of endogenous necroptosis suppressors upstream of RIP1 on the
protection afforded by the knockdown of mitochondrial fusion-regulating protein. (A,B) Effects of
5z7, a TGFβ-activated kinase (TAK1) inhibitor, on protection from TNF/zVAD-induced cell death
mediated by the knockdown of Mfn1/2 and Opa1. The experimental protocol (A) and results of
quantitative analyses (B,C) are shown. The siRNAs were transfected into H9c2 cells 24 h before
the addition of TNFα and zVAD (TNF/zVAD; TNFα, 50 ng/mL; zVAD, 20 µM). Mfn = mitofusin,
Opa1 = optic atrophy-1. n = 8 in each group. * p < 0.05 vs. cells transfected with control siRNA
(0 h). † p < 0.05 vs. cells transfected with control siRNA and treated with similar concentrations of
inhibitors. ‡ p < 0.05 vs. cells transfected with Mfn1/2 or Opa1 siRNA (0 h).
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Figure 9. Effects of the knockdown of mitochondrial fusion-regulating protein on TAK1 expression.
(A,B) Effects of the knockdown of Mfn1/2 (A) and Opa1 (B) on TAK1 protein levels. Representative
Western blots and results of densitometric analyses are shown. The siRNAs were transfected into
H9c2 cells, and cell lysates were collected 24 h after the transfection of siRNAs. Mfn = mitofusin,
Opa1 = optic atrophy-1, TAK1 = transforming growth factor-β-activated kinase 1. Vinculin was
used as a loading control. n = 4 in each group. * p < 0.05 vs. cells transfected with control siRNA.
(C,D) Effects of the knockdown of Mfn1/2 (C) and Opa1 (D) on TAK1 mRNA levels.

3. Discussion

The findings from this study are as follows: (i) in line with LDH release, TNF/zVAD
also induces an increase in the proportion of cells with predominantly elongated mito-
chondria probably due to the increased level of Mfn1; (ii) siRNA-mediated knockdown of
the mitochondrial fusion-regulating proteins reduces TNF/zVAD-induced LDH release;
(iii) Mfn1/2 knockdown reduces RIP1-Ser166 phosphorylation and increases levels of TAK1
(Figure 10).
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Figure 10. Proposed mechanism by which the downregulation of mitochondrial fusion protein
expression affords protection from canonical necroptosis. (A) TNFα-induced canonical necroptotic
pathway. (B) The downregulation of mitochondrial fusion protein expression affords protection from
canonical necroptosis through a reduction in RIP1-Ser166 phosphorylation mediated by enhanced
TAK1 expression. RIP1 = receptor-interacting protein kinase 1, FADD = Fas-associated death domain,
TAK1 = transforming growth factor-b-activated kinase 1, RIP3 = receptor-interacting protein kinase 3,
MLKL = mixed lineage kinase domain-like protein, Mfn = mitofusin, Opa1 = optic atrophy 1.
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Crosstalk between mitochondrial fission and regulated cell death has been reported.
Drp1-dependent mitochondrial fragmentation is thought to be associated with outer mem-
brane permeabilization, which precedes caspase-3 activation for the execution of apoptosis
in a wide range of organisms, including mammals [23]. Although cell death induced
by ischemia/reperfusion (hypoxia/reoxygenation), primarily mediated by mitochondria
permeability transition pore (mPTP) opening, was prevented by the pharmacological short-
term inhibition of fission mediated by Mdivi-1 in cultured cardiomyocytes and in vivo
animal models [24,25], Drp1 ablation also provoked mPTP opening, leading to necrosis in
cardiomyocytes and mouse embryonic fibroblasts (MEFs) [26,27]. Conflicting results also
exist regarding the relationship between fission and necroptosis [28]. Results of a pioneer-
ing study by Wang Z et al. showed that Drp1 dephosphorylation at Ser637, an inhibitory
phosphorylation site, mediated by the mitochondrial protein phosphatase PGAM5, leading
to increased mitochondrial fission, plays a pivotal role in the execution of necroptosis, as
indicated by results showing that Drp1 knockdown attenuates necroptosis in HeLa and
HT-29 cells, i.e., human cancer cells [29]. However, the protective effect of Drp1 knock-
down on necroptosis was not recapitulated in subsequent studies in which L929 cells,
mouse fibroblast cells, and MEFs were used [30,31]. In the present study, TNFα-induced
canonical necroptotic signaling induced mitochondrial fragmentation together with a slight
enhancement of Drp1-Ser616 phosphorylation in H9c2 cardiomyoblasts at the time when
a significant increase in LDH release in the culture medium was found (Figures 1 and 2).
However, the pharmacological inhibition of Drp1 activity mediated by Mdivi-1, as well as
genetic manipulation via Drp1 or Fis1 knockdown, had no effects on TNF/zVAD-induced
LDH release. These conflicting results are not easily reconciled, but differences in cell types,
e.g., human cell line vs. rodent-derived cells, may be an explanation for the conflicting
results, as shown by the species differences in the molecular mechanisms of RIP3-mediated
MLKL activation [32,33]. Nevertheless, the involvement of mitochondria in the process
from RIP1 activation to the execution of necroptosis has been questioned based on the
results of vigorous analyses, including a study in which cells that were nearly devoid of
mitochondria underwent necroptosis [28,34].

A salient finding in the present study is the favorable effect of the downregulation
of mitochondrial fusion protein expression on necroptosis. Although Mfn isoforms have
different functions, the loss of each Mfn isoform does not necessarily show an obvious
phenotype since the Mfn isoforms complementarily work to maintain proper mitochondrial
function [22,35]. In addition, a study by Kawalec et al. showed that expression levels of
mitochondria biogenesis-regulating genes, including PGC-1α, were increased in Mfn2-null
MEFs in comparison to the levels in wild-type MEFs, leading to the preservation of mi-
tochondrial respiration and mitochondrial DNA content [36]. In contrast, the combined
deletion of Mfn1/2 led to severe functional defects with mitochondrial dysfunction. In-
deed, a conditional Mfn1/2 deletion in mouse hearts and MEFs induced mitochondrial
fragmentation evoked by unopposed fission together with the dissipation of mitochon-
drial membrane potential, respiratory impairment, and mitochondrial ROS production,
but evidence of apoptosis and necrosis was not found in cardiomyocytes of conditional
Mfn1/2-deletion mice [26], suggesting the existence of compensatory mechanisms to main-
tain cell survival. In the present study, the upregulation of PGC-1α protein expression
was also found in H9c2 cells transfected with Mfn1/2 siRNA, but this was not the case for
cells transfected with Opa1 siRNA. In contrast, the knockdown of Mfn1/2 and knockdown
of Opa1 similarly reduced RIP1 activation as shown by reduced RIP1-Ser166 phospho-
rylation and increased protein expression levels of TAK1, a protein that functions as a
molecular switch to activate the TNFα-induced NFκB pro-survival pathway together with
the suppression of necroptosis in cardiomyocytes and MEFs [37]. The results of an earlier
study by Li et al. showed that TNFR1 activation induces the association of TAK1 with
RIP1 and activates the IκB kinase-NFκB pro-survival pathway [37]. In the condition in
which TAK1 activity is inhibited, RIP1 dissociates from TAK1, leading to the binding of
RIP1 to caspase-8 and the Fas-associated death domain, which triggers the necroptotic
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pathway through RIP1 activation [37]. These earlier findings in cardiomyocytes and MEFs
were supported by the results of the present study: pharmacological TAK1 inhibition
mitigated the protection afforded by the knockdown of Mfn1/2 and Opa1. Importantly,
TAK1 has been shown to play pivotal roles in the preservation of mitochondrial function:
increased mitochondrial reactive oxygen species and mitochondrial dysfunction, leading to
skeletal muscle atrophy, in inducible skeletal muscle-specific TAK1 knockout mice were
reported [38,39]. Thus, the upregulation of TAK1 expression mediated by the knockdown
of mitochondrial fusion-regulating proteins seems to serve as a compensatory pathway
for protecting cells from necroptosis and maintaining mitochondrial function. Although
mitochondria seem to be dispensable for the execution of necroptosis [28,34], alterations in
necroptotic signaling mediated by disturbances of mitochondrial function may play a role
in the pathophysiology of various diseases in which mitochondrial dysfunction is involved.
Further detailed investigations are needed to demonstrate whether the modulation of
mitochondrial morphology and the mitochondrial fusion proteins at specific time points
also changes canonical necroptotic signaling in vivo.

There are several limitations in the present study. First, the exact role of the shift
in mitochondrial morphology from a predominantly fragmented phenotype during ini-
tial TNF/zVAD treatment to a predominantly elongated phenotype following prolonged
TNF/zVAD exposure remains unknown. Whether promoting mitochondrial fission re-
verses necroptotic signaling and LDH release remains to be investigated. In addition, the
quantitative determination of mitochondrial size/length by using unbiased approaches,
such as machine learning, are needed to confirm the results of this study. Second, although
this study focused on the association between necroptosis and mitochondria dynamics,
the treatment with TNF/zVAD may also modulate mitochondrial function through alter-
ations in mitochondrial dynamics, independent of its effects on necroptosis. Third, the
mechanism by which downregulation of the expression of mitochondrial fusion proteins
contributes to an increase in TAK1 expression remains unclear. Since the knockdown of
Mfn1/2 and Opa1 had no effect on TAK1 mRNA levels, post-transcriptional modifications
and protein-protein interactions may play a role. Fourth, considering the partial block
of protection afforded by Mfn1/2 and Opa1 knockdown mediated by TAK1 inhibition,
further detailed investigations are needed to demonstrate the underlying mechanism: Mfn2
ablation-induced upregulation of the glycolytic pathway and mTORC2-Akt signaling are
possible candidates [40–43]. Fifth, there are conflicting results about the significance of
TAK1 in the cardiomyocytes subjected to pathological stress: TAK1 activation is a promoter
of pressure overload-induced cardiac dysfunction, whereas TAK1 ablation is detrimental for
a pressure-overloaded heart through the enhancement of necroptotic signaling [37,44,45].
Thus, the significance of increased TAK1 expression mediated by the ablation of mitochon-
drial fusion-regulating proteins in cardiomyocytes is likely to be context-dependent. Finally,
further studies are needed to determine whether the results of the present study can be
extrapolated to adult cardiomyocytes, though H9c2 cells have similarities to neonatal and
adult cardiomyocytes [9].

4. Materials and Methods
4.1. Chemical Compounds

TNFα, Mdivi-1, TPCA-1, and 5z7 from Sigma Aldrich (St. Louis, MO, USA), Z-Val-
Ala-DL-Asp-fluoromethylketone (zVAD) from Promega (Madison, WI, USA), and BV6
from ApexBio Technology (Houston, TX, USA) were used. siRNA was purchased from
Dharmacon (Lafayette, CO, USA).

4.2. Cell Culture and Transfection

H9c2 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in
DMEM (4.5 g/L glucose) supplemented with 10% fetal bovine serum and antibiotics. The
knockdown of Drp1, Fis1, Mfn1, Mfn2, and Opa1 was performed based on the transfection
of siRNA against rat Drp1 (M-088074-01-0005), rat Fis1 (M-080846-01-0005), rat Mfn1 (M-
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099253-01-0005), rat Mfn2 (M-094723-01-0005), and rat Opa1 (M-086996-01-0005) using
LipofectamineTM RNAiMAX (Thermo Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol.

4.3. Experimental Protocols and Cell Death Assay

H9c2 cells were treated with a combination of 50 ng/mL TNFα and 20 µM zVAD
(TNF/zVAD) or a vehicle through the addition of them to the culture medium [9,13,21].
Inhibitors, i.e., 5z7 (50 nM), TPCA1 (0.10~0.25 µM), BV6 (0.3~1.0 µM), and Mdivi-1
(10~50 µM), were added to the culture medium at the same time that the cells received
TNF/zVAD or a vehicle. The siRNAs were transfected into H9c2 cells 24 h before the
addition of TNF/zVAD. The extent of LDH release from cells, a marker of necrosis, was de-
termined by measuring the activity of lactate dehydrogenase (LDH) in the culture medium
and LDH activity after freeze-thawing of the cells at the end of experiments according to
the manufacturer’s protocol (CytoTox 96 Non-Radioactive Cytotoxicity assay kit, Promega,
Madison, WI, USA). The percentage of LDH activity in the culture medium to LDH activity
after freeze-thawing of the cells, i.e., total cellular LDH activity, served as an index of
TNF/zVAD-induced necroptosis, as we previously reported [9,13,21].

4.4. Western Blotting

Whole cell lysates were obtained through homogenization in ice-cold CHAPS buffer
containing 20 mM HEPES (pH 7.5), 120 mM NaCl, 1 mM EDTA, 50 mM NaF, 0.3% CHAPS,
0.5 mM Na3VO4, and protease/protease inhibitor cocktails. Western blotting was per-
formed as previously reported [9,13,21]. Antibodies used were as follows: phospho-Drp1
(Ser616), phospho-Drp1 (Ser637), and Drp1, phospho-RIP1 (Ser166), and RIP1, RIP3, and
TAK1 (1:1000, Cell Signaling Technology, Beverly, MA, USA); Mfn1/2 and Mfn2 (1:1000, Ab-
cam, Cambridge, UK); MLKL and PGC1α (1:1000, Merck Millipore, Damstadt, Germany);
Fis1 (1:1000, Gene Tex, Irvine, CA, USA); Opa1 (1:1000, BD Biosciences, San Jose, CA, USA);
and vinculin (1:5000, Sigma Aldrich, St Louis, MO, USA).

4.5. Fluorescence Microscopy Analysis

Mitochondrial morphology was assessed as previously reported with modifications [24].
Cells, after the treatment or transfection with siRNAs, were stained with 1 µM MitoTracker
Red (Invitrogen, Waltham, MA, USA) for 15 min to stain mitochondria. Nuclear stain-
ing with Hoechst 33342 (Invitrogen, Waltham, MA, USA) was then performed. Eighty
randomly chosen cells per group were designated as either containing predominantly
(>50%) elongated or predominantly (>50%) fragmented mitochondria, as we previously
reported [24].

4.6. mRNA Quantification

The isolation of total RNA from cells was performed by using an RNeasy Mini Kit
(Qiagen, Valencia, CA, USA), followed by the synthesis of first-strand cDNA by using a
SuperScript VILOTM cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA).
DNA amplification was performed in a StepOneTM system (Thermo Fisher Scientific,
Waltham, MA, USA) by using Go Taq qPCR Master Mix (Promega, Madison, WI, USA) and
oligonucleotide primers for rat TAK1 (Rn01437012_m1, Thermo Fisher Scientific, Waltham,
MA, USA) and rat β-actin (Rn00667869, Thermo Fisher Scientific, Waltham, MA, USA).

4.7. Statistical Analysis

Data are presented as the means ± standard error of the mean. Results were analyzed
using an unpaired t-test for comparisons between two groups. One-way analysis of variance
(ANOVA) was used to detect significant differences when more than 2 groups were present.
When ANOVA indicated a significant overall difference, multiple comparisons of the
groups were performed by performing a Tukey post hoc test. A difference was considered
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to be statistically significant when the p-value was less than 0.05. All of the statistical
analyses were performed with JMP Pro15 software (SAS Institute, Cary, NC, USA).

5. Conclusions

Activation of the canonical necroptotic pathway is associated with a change in mi-
tochondrial dynamics, starting with an initial fragmentation followed by subsequent
elongation. The Mdivi-1-mediated pharmacological inhibition of Drp1 activity, as well as
genetic manipulation via Drp1 or Fis1 knockdown, has no effects on the extent of canonical
necroptosis. Conversely, the genetic downregulation of mitochondrial fusion protein ex-
pression affords protection from canonical necroptosis through a reduction in RIP1-Ser166
phosphorylation mediated by enhanced TAK1 expression in H9c2 cardiomyoblasts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25052905/s1.
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