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Abstract: Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by
both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry
proteins, nucleic acids, and various compounds, which are then released. While Gram-positive
bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan
cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their
significant role in bacterial physiology and disease progression. This review explores the current
understanding of MVs in Gram-positive bacteria, including the characterization of their content and
functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to
enhance our comprehension of Gram-positive bacterial EVs.

Keywords: Gram-positive bacteria; membrane vesicles; host–pathogen interactions

1. Introduction

The fundamental process of secreting cellular components across the plasma membrane
is a universal occurrence in all life forms, facilitating interactions between organisms and
their surroundings. This mechanism is achieved through the release of vesicles—spherical,
nanosized structures derived from the lipid membranes of the cell surface [1–3]. Recently,
there has been increased attention on extracellular vesicles (EVs) [4–6]. Originally discovered
in eukaryotes, EVs from the plasma membrane carry proteins, nucleic acids, and lipids, cate-
gorized mainly into exosomes, microvesicles, and apoptotic bodies by size [7,8]. Subsequently,
EVs were identified in prokaryotes, including bacteria [1,9]. Bacteria are classified into Gram-
negative or Gram-positive based on membrane structure, with Gram-negative bacteria having
two membrane layers separated by the periplasm. In contrast, Gram-positive bacteria possess
a distinct membrane structure consisting of one membrane and a thicker layer of peptidogly-
can. In Gram-negative bacteria, EVs are termed outer membrane vesicles (OMVs), while in
Gram-positive bacteria, they are referred to as membrane vesicles (MVs) [10,11]. Both OMVs
and MVs constitute subclasses of microbial EVs. Extensive research has been conducted on
OMVs to elucidate their functions [12–14]. Questions about the relatively low production of
vesicles in Gram-positive bacteria were prevalent in the past. However, over the last decade,
substantial research has been dedicated to understanding the role of Gram-positive MVs [15].
Observations have indicated the presence of MVs in both pathogenic and nonpathogenic
Gram-positive bacteria across diverse growth conditions and environments, suggesting the
universal and widespread nature of MV secretion [16–19]. Depending on the packaged cargo,
EVs have been implicated in pathogenesis, antibiotic resistance, stress response, intercellular
competition, and nucleic acid transfer. The increase in studies on Gram-positive bacteria, such
as Staphylococcus aureus, Bacillus anthracis, and Streptococcus mutans, has revealed that MVs in
Gram-positive bacteria exhibit a 20- to 400-nm bilayer spherical structure [20–22]. This review
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explores the current understanding of the characterization of the content and functions of
MVs in Gram-positive bacteria, as well as their interactions with host and bacterial cells.

2. Vesiculogenesis

The formation of membrane vesicles is well-documented in archaeal, Gram-negative,
and mammalian cells, yet understanding MV biogenesis in Gram-positive bacteria, with
their peptidoglycan-rich structure, has been challenging [1,23]. Various models for OMV
biogenesis have been proposed, with genetic and biochemical analyses shedding light
on the process [24,25]. Despite the relatively recent exploration of MVs in Gram-positive
bacteria, with fewer studies compared to their Gram-negative counterparts, only a limited
number of investigations have identified genetic factors responsible for vesicle forma-
tion [23,26]. Two hypotheses have been proposed to elucidate the mechanism of MVs
crossing the barrier of the peptidoglycan. One suggestion has posited that MVs may be
propelled through pores in the cell wall by turgor pressure, driven by budding from the
cell membrane. Alternatively, it has been proposed that the peptidoglycan may undergo
localized degradation, either due to enzymes associated with EVs or released alongside
them [1]. MV release appears to initiate with the budding of the cytoplasmic membrane,
with a hypotonic environment being pivotal for vesiculogenesis [27] (Figure 1). Lipidomic
studies have revealed similarities between MVs and cytoplasmic membranes. However,
variations in fatty acids and phospholipid content suggest that vesicle budding may occur
in specific lipid-enriched membrane domains [22,28]. Recently, nanopods or nanotubes,
filamentous structures facilitating cell-to-cell transfer and associated with EVs, have gained
attention in bacterial research [29]. These structures, resembling eukaryotic ‘tunneling
nanotubes’, were initially observed in hyperthermophilic bacteria and later identified in
various bacteria, including Firmicutes, Myxobacteria, and Proteobacteria [30–33]. Nan-
otubes can bridge neighboring cells, promoting communication and facilitating molecular
exchange [30]. Notably, some nanotubes contain a calcineurin-like protein, YmdB, essential
for their formation and intercellular molecular exchange in B. subtilis [33].

In Staphylococcus aureus, a link between MV formation and the production of Phenol-
Soluble Modulins (PSMs) has been established, enhancing membrane fluidity [27,34]. Follow-
ing their production, MVs actively contribute to the weakening of peptidoglycan cross-links,
with S. aureus utilizing autolysin to create pores for MV release [23]. Several Gram-positive
species, including Group A Streptococci and Bacillus subtilis, exhibit the up-regulation of genes
like spo0A and spf, and the transcription factor σB, contributing to MV production [9,24]. Rath
et al. demonstrated that Mycobacterium tuberculosis promotes MV formation by acting on
virR gene expression, strongly stimulating the immune system [35]. Environmental factors,
including surfactin and serum albumin, disrupt Gram-positive bacterial MVs, indicating
host–bacteria interactions [9,36]. The release of MVs involves the facilitation of cell wall
pores after their packaging at the cytoplasmic level. Holes in the peptidoglycan layer may
be associated with prophage-encoded endolysin, compromising cell structural integrity and
causing cytoplasmic content to be released as MVs [37]. Prophages, transmitted from the
parental strain to its daughter cells under favorable environmental conditions, can induce
the expression of lytic genes during stressful situations. This promotes the assembly of new
phages that lyse the bacterial host cell, concurrently leading to the dumping of EVs into
the extracellular space [19]. Proteomic analyses of MVs have detected penicillin-binding
proteins (PBPs) and autolysins, suggesting that cell wall modification plays a pivotal role in
vesicle release. Antibiotic treatment, specifically with β-lactam antibiotics, reduces peptido-
glycan cross-linking, thereby increasing MV release [38]. While Gram-positive bacteria may
share mechanisms with their Gram-negative counterparts, involving explosive cell lysis and
prophage-derived endolysins under stress conditions [19,37], the specifics of MV release at
division septa, as observed in Gram-negative bacteria, remain unproven for Gram-positive
bacteria [39]. Membrane fluidity and peptidoglycan cross-linking have emerged as critical
determinants of vesicle release in Gram-positive bacteria, providing insights into the dynamic
processes underlying MV biogenesis in these organisms.
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3. Composition of Membrane Vesicles

Despite decades of observation of OMVs in Gram-negative organisms, the precise
mechanism behind their production remains incompletely understood. The enrichment or
depletion of EV content compared to the cell suggests a regulated process. Gram-positive
EVs display a diverse composition encompassing fatty acids, phospholipids, cytoplasmic
and membrane-associated proteins, virulence factors, lipid acids, peptidoglycans, DNA,
and sRNA. Omics technologies facilitate assigning specific roles to vesicles based on their
content [39,40]. This sorting mechanism reflects differences in EV protein and nucleic acid
compositions [41]. The presence of a protein core in EVs suggests a conserved sorting
mechanism guiding protein packaging [42]. The sorting of proteins, lipids, and nucleic
acids is lipoprotein-dependent, using molecular charge to determine EV composition.
Evidence suggests molecules intercept the curvature caused by EV blubbing, guiding their
direction and insertion into EVs.

3.1. Protein Cargo

Proteomic analysis has demonstrated variation in protein content among bacteria within
the same genus [43,44]. The complex protein arrangement within vesicles includes membrane-
associated and lumen-protected proteins [45]. Clinical strains of S. aureus exhibit diverse
cytotoxic profiles, yet a conserved core composition includes surface proteins, transporter
proteins, and PBPs [20]. Comparable findings occur in other Gram-positive bacteria like M.
tuberculosis, Streptococcus pneumoniae, and Bacillus anthracis [9,22,46,47]. MVs have a bilayer
structure with a central lumen, leading to intricate protein organization [48]. Moreover,
protein distribution in MVs reflects their origin: the majority of membrane-associated proteins
in MVs come from the cytoplasmic membrane, while those in the lumen are cytoplasmic
proteins packaged during vesiculogenesis [41]. Some studies have focused on the fact that
the MV proteome can include not only proteins from the MV lumen and membrane but also
proteins associated with the MV surface [18]. Functional analysis has revealed a prevalence of
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metabolism-associated proteins in MVs [22,49]. The role of these non-virulence-associated
proteins in MVs remains unclear [45,46]. Proteomic analyses of Gram-positive bacterial MVs
highlight lipoprotein enrichment [9,49]. Lipoproteins, being Toll-like receptor 2 (TLR2) ligands,
play a pivotal role in host immune responses to bacterial infection [50,51]. The presence of
lipoproteins significantly affects the host immune response to MVs, influencing various
aspects of bacterial growth, immune activation, and virulence [52,53].

3.2. Genetic Cargo

Previous studies have shown that genetic materials were present in MVs isolated from
Gram-positive bacteria [54,55]. With the continuous development of vesicle studies, it
has been assessed that DNA of either chromosomal, plasmid, or phage origin and RNA
(including mRNA, rRNA, sRNA, and tRNA) are carried through MVs [56,57]. These vesicles
protect genetic material cargo from the degradation process through several molecules
able to counteract extracellular nucleases [58,59]. A recent study on Streptomyces coelicolor
showed that the DNA content carried by its MVs represents the entire chromosome of the
bacterium [60]. Numerous studies have reported the association of DNA with bacterial
MVs produced by Firmicutes. In Ruminococcus spp. strain YE71, the DNA in MVs was
associated with short chromosomal fragments resistant to digestion, indicating differences
in restriction/modification patterns compared to those in chromosomal DNA [61].

The majority of RNA in bacterial EVs tends to be relatively short and resistant to
RNase treatment. For instance, miRNAs in Streptococcus sanguinis MVs are protected from
degradation, ensuring safe transport to host cells [58]. In Group A Streptococcus EVs, Resch
et al. observed the presence of many mRNA species, some of which were specifically
enriched [24]. This suggests that EVs might induce the production of new proteins in recip-
ient cells. These findings have significant implications for lateral gene transfer, potentially
contributing to the spread of antibiotic resistance and virulence genes, as well as broader
implications for bacterial evolution. Nevertheless, the specific mechanisms underlying the
involvement of DNA and RNA remain unclear, warranting further investigation.

3.3. Virulence Factor Cargo

The exploration of cargo in pathogenic Gram-positive bacterial MVs has revealed
the inclusion or association of virulence factors, suggesting a pivotal role in pathological
conditions. Some of the MV protein cargo identified in Firmicutes encompasses enzymes
engaged in peptidoglycan degradation, antibiotic degradation, and virulence factors (e.g.,
anthrolysin, anthrax toxin components, coagulases, hemolysins, and lipases). Wang et al.
reported that macrophages activate their NLRP3 inflammasome when exposed to EV release
containing pore-forming toxins and lipoproteins [62]. The polyketide toxin mycolactone, an
important virulence factor of M. ulcerans, has been found in purified vesicles extracted from
the abundant extracellular matrix that the bacteria use to infect humans, causing Buruli
ulcer [63]. Similarly, MVs detected and purified from Staphylococcus aureus strains have been
shown to contain biologically active toxins such as α- and γ-hemolysins, which disrupt
eukaryotic cell membranes by pore formation, as well as exhibit superantigens (SEQ, SSaA1,
and SSaA2) that can elicit proinflammatory mediators and cytotoxicity [20,23,64]. Analyses
on Listeria monocytogenes MVs have revealed enrichment in proteins crucial for survival
and virulence, including the hemolysin listeriolysin O [65]. MVs generated by Group A
Streptococcus unveiled a set of 195 proteins in the EV proteome, including both distinctive
proteins and those selectively enriched within the EVs [24].

4. Membrane Vesicle in Host–Pathogen Interactions

The role of vesicles in host–bacteria interactions is significantly determined by the
cargo packaged during vesiculogenesis. The inclusion of toxins, siderophores, immune
evasion proteins, adhesins, and antibiotic resistance proteins strongly suggests MVs’ in-
volvement in virulence (Figure 2). Pathogenic bacteria can use MVs as a mechanism to
deliver virulence factors to eukaryotic host cells. For instance, S. aureus MVs harbor su-
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perantigens, including T-cell-activating enterotoxin SeQ, lipase, immune evasion proteins
(e.g., protein A and SbI), toxins such as PSMs, and bicomponent pore-forming toxins like
alpha-toxin, LukSF-PV, and LukAB. MV-associated alpha-toxin from S. aureus significantly
impacts certain diseases like atopic dermatitis more than its soluble forms [66]. Both forms
induce keratinocyte death, but only MV-associated alpha-toxin provokes keratinocyte
necrosis and eosinophilic infiltration specific to atopic dermatitis in mice [66]. Addition-
ally, they may carry β-lactamase, which degrades β-lactam antibiotics, and staphopain
A (a papain-like cysteine protease), contributing to extracellular matrix degradation and
promoting tissue invasion [42,49,67]. Similarly, EVs from L. monocytogenes encapsulate the
pore-forming toxin listeriolysin O, aiding the bacterium in escaping host vacuoles [25].
Notably, the cytosolic pore-forming toxin pneumolysin in S. pneumoniae lacks export signal
sequences and is exclusively released into host cells through MV secretion, underscoring
the pivotal role of MVs in S. pneumoniae virulence [47]. MVs enriched with extracellular-
matrix-degrading enzymes from Group B streptococcus (GBS) play a role in disrupting
physical barriers and causing host cell death. In mice, GBS-MV treatment led to colla-
gen fragmentation, immune cell infiltration, and membrane integrity loss, resulting in
preterm birth [28]. The heightened effectiveness of MV-associated toxins may be explained
by their encapsulation within MVs. This allows toxins to be delivered at concentrated
levels, avoiding dilution over a distance and providing protection from immune system
clearance, including antibodies and protease activity. The differential impact of associ-
ated and soluble forms of toxins, whether MV-associated or soluble, is likely attributed to
their distinct delivery mechanisms. The entry of membrane vesicles into eukaryotic host
cells is a finely tuned process, involving various mechanisms tailored to the vesicle type
recipient cell (Figure 3). The treatment of THP-1 cells or monocyte-derived macrophages
with dynamin-dependent endocytosis prevents S. aureus MV internalization, hindering
pore-forming toxin delivery [62]. Methyl-β-cyclodextrins abolished the internalization of
EV-associated protein A from S. aureus inside human laryngeal carcinoma cells, potentially
demonstrating that EVs fuse with cholesterol-rich domains of host cell membranes [64].
In P. acnes, clathrin-dependent endocytosis is the major route for MV internalization in
human epidermal keratinocyte cells, with the specific receptor remaining unidentified [68].
Additional entry modes are probable, considering diverse routes described for OMVs,
influenced by vesicle size and infected cell type [69].
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5. Membrane Vesicles in Inter-Bacterial Interactions

Vesicle-mediated interactions among bacteria have been extensively explored in Gram-
negative bacteria [70], particularly focusing on resistance gene transfer, bactericidal activi-
ties, and long-distance signaling within bacterial populations. Initially believed to be lim-
ited by thicker cell walls [1], MV-mediated processes in Gram-positive bacteria have gained
attention, challenging prior assumptions. Well-known horizontal gene transfer (HGT)
mechanisms, such as transformation, transduction, and conjugation, coexist with the pro-
posed concept of “vesiduction”, which employs EVs in prokaryotes for the transfer of genes
related to antibiotic resistance, virulence, and metabolic factors [55,71]. Recent studies,
particularly in clinically significant species like Staphylococcus aureus [49] and Enterococcus
spp. [72], have demonstrated the presence of MV-mediated mechanisms in Gram-positive
bacteria. For instance, Lee et al. revealed the transfer of β-lactam antibiotic resistance
from methicillin-resistant S. aureus ST541 to susceptible E. coli RC85 through MVs [73].
Contrary to previous beliefs, intracellular and extracellular DNA has been identified in
Gram-positive bacteria, including Streptococcus mutans and Clostridium perfringens [21,56],
challenging assumptions about MV-mediated genetic material transfer [74]. Despite uncer-
tainties regarding determinant composition, MVs represent a potential strategy to mitigate
the dissemination of multidrug-resistant (MDR) bacteria. Streptomyces has been found to
frequently produce antimicrobial vesicles containing diverse compounds such as actino-
mycins, anthracyclines, candicidin, and actinorhodin, which exhibit diverse antibacterial
and antifungal activity [75]. These antimicrobial-containing vesicles achieve direct delivery
of their cargo to other microbes via membrane fusion, suggesting an alternative and broad
delivery system for antimicrobial specialized metabolites with significant implications
for interbacterial communication and new clinical strategies against antibiotic resistance.
Additionally, vesicular inter-bacterial interactions extend to bactericidal activities, with
Gram-positive vesicles commonly housing cell-wall-degrading enzymes [76]. MVs labeled
with the lipophilic probe R18 from B. subtilis exhibit fusion capabilities with other B. sub-
tilis cells, showcasing their broad interaction potential [77]. Lactobacillus acidophilus MVs
seamlessly merge with membranes of Lactobacillus delbrueckii and E. coli, accompanied
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by the growth inhibition of target cells due to the presence of bacteriocins [78]. Further
potential roles of MVs in inter-bacterial interactions could be represented by long-distance
signaling within bacterial populations [79,80], as showed in research on Gram-negative
bacteria. Specifically, studies on Pseudomonas aeruginosa have shown the use of its extracel-
lular vesicles to transport PQS, a quorum sensing molecule. These vesicular PQS molecules
can then directly interact with other bacteria through LPS [81]. The delivery of quorum
sensing molecules embedded in MVs could specifically activate the recipient cells, leading
to heterogenous gene activation within a bacterial population [81]. However, this aspect
remains underexplored in the literature for Gram-positive bacteria; future studies have
the potential to elucidate not only the transfer of resistance determinants but also the
fundamental knowledge about the ways microbial communities interacts.

6. Immune Regulation of MVs

The growing recognition of the role of MVs in host immune regulation is attributed to
their content, which encompasses various immune-related molecules readily accepted by
host cells [82]. These molecules, including lipoproteins and toxins, stimulate both innate
and adaptive immunity through pattern recognition receptors (PRRs) [83]. MVs from Gram-
positive bacteria, whether pathogenic or nonpathogenic, contribute to innate immunity
involving key molecules like macrophages, dendritic cells, and Toll-like TLR2 [56,64,84].
The evolutionary costs of microbial MV immunogenicity must be balanced against the ben-
efits to the microorganism from EV emission [85]. Additionally, MVs released by infected
cells carry microbial molecules, potentially influencing the immune response indirectly [86].
Gram-positive bacterial EVs induce innate immune responses; for instance, MVs from
Clostridium perfringens trigger the release of IL-6 through the TLR2 signaling pathway [56].
Staphylococcus aureus expresses co-stimulatory molecules via the TLR2 pathway, leading to
the production of inflammatory proteins like tumor necrosis factor, IL-6, and IL-12, and
releases EVs containing DNA, RNA, and peptidoglycans. These EVs are recognized by
PRRs such as TLR7, TLR8, TLR9, and NOD2, ultimately undergoing autophagosomal
degradation [64,87,88]. MVs from Streptococcus suis activate the nuclear factor kappa B
signaling pathway, inducing the secretion of pro-inflammatory cytokines [84]. Filifactor
alocis EVs elevate the secretion of various molecules in Thp-1 cells and oral keratinocyte cell
lines [89]. Nonpathogenic bacteria, like Lactobacillus sakei subsp. sakei NBRC15893, show
increased immunoglobulin A production through TLR2 signaling [90]. The cell wall compo-
nents of Gram-positive bacteria, rich in TLR2 ligands, suggest that MVs may collaboratively
exert innate immunomodulatory effects via TLR2 [91–94]. Lipoproteins within MVs play a
role in immunomodulatory responses across various Gram-positive bacteria [90,95]. The
TLR2-dependent pathway is crucial for the proinflammatory effect of EVs, with other path-
ways likely contributing. In the case of Gram-negative bacteria, various pathways leading
to proinflammatory cytokine production, including TLR-4 and TLR-8 activation, the recog-
nition of OMV-associated LPS and RNA, and NOD1 interaction with peptidoglycan, have
been described [69,96]. Pseudomonas aeruginosa OMVs carrying sRNA52320 modulate the
immune response by downregulating genes in the LPS-stimulated MAPK signaling path-
way [97], suggesting potential interkingdom communication facilitated by RNA molecules
in bacterial vesicles. It is probable that some of these mechanisms are shared and additional
unique activation pathways exist for Gram-positive EVs. Additionally, anti-inflammatory
potential has been predominantly observed in nonpathogenic species like Lactobacillus
paracasei, demonstrating an in vivo impact against colitis [98]. EVs from other Lactobacilli
spp. also dampen proinflammatory responses [99]. Surprisingly, EVs from the pathogenic
bacterium M. tuberculosis exhibit anti-inflammatory activity by inhibiting CD4 T cell activa-
tion during macrophage infection [100]. Furthermore, MVs play a crucial role in adaptive
immunity, with MVs from Streptococcus pneumoniae inducing specific antibodies [44], and
S. aureus stimulating Th1, Th17, and Th2 cells, along with IgG antibody responses [87],
suggesting the effective vaccination efficacy of MVs in Gram-positive bacteria.
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7. Clinical Applications

Exploring bacterial MVs highlights their potential positive contributions to disease
diagnosis and treatment. Current clinical applications of the utilization of MVs from
Gram-positive bacteria have emerged as a promising therapy in several fields. Firstly, the
immunity and stability of MVs highlight their potential as vaccine candidates. This is
corroborated by evidence for major clinical Gram-positive pathogens. Choi et al. proposed
how active immunization through S. aureus MVs induces an adaptive immunity of antibody
and T cell responses. In particular, data showed that S. aureus MVs effectively protect
against lethality and pneumonia induced by S. aureus infection, mainly via IFN-γ-producing
Th1 cellular response rather than B-cell-mediated antibody response in mice [87]. Findings
on Streptococcus pneumoniae revealed that extracellular MVs derived from S. pneumoniae
BAA-255 effectively protected mice without causing significant side effects. Furthermore,
the study identified specific immunogenic proteins present in these MVs. The results
indicated that MVs, being more immunogenic than an equivalent bacterial cell extract,
hold significant promise as potential vaccine antigens [101]. Moreover, Prados-Rosales
et al. showed how MVs are highly immunogenic without adjuvants and elicit immune
responses comparable to those achieved with BCG in protection against Mycobacterium
tuberculosis [102]. To date, only one vaccine has been developed using OMVs for Neisseria
meningitidis serogroup B: the MeNZB OMV vaccine. This vaccine was designed to provide
broader protection against multiple strains of meningococcal B, reflecting advancements in
vaccine technology to enhance its effectiveness [103]. However, further research should
be carried out to pave the way for proper newly updated immunization therapies in
Gram-positive bacteria.

Another clinically impactful theme is cancer therapy and the anti-tumor effects of
bacterial MVs. Currently, the emphasis in cancer treatment development lies on targeted
drugs; however, alternative approaches to identify and stimulate tumor immunity are
also under investigation. Considering the immunomodulatory properties of MVs, they
can be engineered to express cancer-specific epitopes or carry small noncoding RNAs, as
previously explored for Gram-negative bacteria. Hence, OMVs have demonstrated the
ability to induce a sustained antitumor immune response, effectively inhibiting tumor
growth in various models [104]. For example, it has been shown that basic fibroblast
growth factor (BFGF)-OMVs, used as vaccines, can successfully induce the body to produce
persistent anti-BFGF autoantibodies to inhibit tumor growth and metastasis [105]. For
Gram-positive bacteria, most of the evidence comes from several studies on probiotic
strains belonging to the Lactobacillus genus, illustrating the existing approaches to regulate
human gut microbial ecology, aiming at alternative methods to reduce the damage and
improve the effectiveness of cancer therapy [106]. Notably, Lactobacillus rhamnosus GG, a
commonly used probiotic supplement, generates MVs with cytotoxic effects on hepatic
cancer cells. This is achieved, in part, through the downregulation of the bcl-2 and bax
genes in cancer cells [107]. Furthermore, MVs from Lacticaseibacillus paracasei PC-H1 can
inhibit colorectal cancer cell growth both in vivo and in vitro, inducing apoptosis through
the PDK1/AKT/Bcl-2 signaling pathway [108]. Gram-positive bacterial MVs may also play
a role in various pathologies, including dermatological and viral diseases. Streptococcus
epidermidis MVs show potential therapeutic value for psoriasis [109], while Lactobacillus
druckerii MVs may have applications for hyperplastic scars [110]. In conclusion, Palomino
et al. demonstrated that MVs from vaginally isolated Lactobacillus inhibited the adhesion
and entry of the HIV-1 virus into human T cells [111] (Figure 4).
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8. Future Directions

Engineered Bacterial Vesicles (BEVs) have emerged as versatile tools with promising
applications across various domains, offering a glimpse into the future of medical and biotech-
nological advancements [112]. One of the most innovative applications lies in vaccine develop-
ment, where BEVs could revolutionize the current approach to infectious diseases, providing
a platform for the rapid development of effective vaccines [103,113–115]. Indeed, MVs can be
engineered to carry specific antigens from pathogens, mimicking their natural presentation
and potentially eliciting a more robust and targeted immune response [116].

In addition, BEVs hold great potential for drug delivery since they can be loaded
with therapeutic agents such as antibiotics, antivirals, or immunomodulators, offering a
controlled and targeted release system. This approach maximizes the efficacy of treatments,
enhancing the stability of encapsulated cargoes [117] and at the same time minimizing
side effects by directly delivering drugs to the site of infection [118]. Moreover, loaded
BEVs preserve their immunogenicity, thereby simultaneously treating and preventing the
infection. This combined effect may be helpful to counteract the spread of MDR bacteria.
Since BEVs can contain a variety of bacterial biomolecules such as DNA, RNA, lipids,
proteins, and metabolites, there is increasing evidence that they have significant potential
as diagnostic biomarkers enabling the detection of early signs of infection and specifically
identify the bacterial etiological agent [119]. The applications of BEVs extend beyond

Biorender.com
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infectious diseases, opening new avenues for treating a wide range of diseases such as
cancer or osteoporosis. In this context, they can be engineered to carry specific cargo, such
as therapeutic proteins or small interfering RNA (siRNA) in order to modulate cellular
processes for therapeutic purposes [120,121].

Moreover, there has been growing interest in investigating the impact of BEVs on Neu-
rodegenerative Diseases (NDs) [122,123]. In recent years, research has highlighted the potential
of BEVs to play a substantial role in the treatment and therapeutics of NDs [124]. Recent
studies have suggested that these vehicles exhibit immuno-modulatory and neuroprotective
properties, offering potential benefits in addressing NDs. Additionally, it has been noted
that BEVs can effectively cross the Blood-Brain Barrier (BBB) and target specific regions of
the brain, making them an appealing drug delivery system for ND treatment [124]. Despite
their immense potential, engineered BEVs come with inherent challenges and limitations.
Long-term studies are necessary to assess their safety and toxicity, especially as they progress
toward clinical applications [125]. The standardization of production processes, scalability,
and storage stability are critical obstacles that must be addressed to facilitate widespread
use [126]. Due to their isolation from growth medium, batch-to-batch differences may occur,
challenging current isolation methods to remove non-encapsulated bacterial components and
discriminate between empty or filled vesicles [117].

9. Conclusions

There is a pressing need for innovative approaches to combat bacterial infections
caused by Gram-positive bacteria. As far as we know, this study provides the first com-
prehensive review on how Gram-positive bacteria naturally interact with the host through
MVs. Ongoing advancements in bacterial MV extraction technology have revealed the
ability of Gram-positive bacteria to produce MVs, intricately linked to their virulence,
immune capabilities, and pathogenic factors. While MVs assist bacteria in resisting host
defenses, eliciting immune responses, and transferring drug-resistance genes, the molecular
mechanisms remain unclear. MVs resist external environmental stresses, like antibiotic
killing, suggesting a therapeutic strategy against antibiotic resistance. In addition, the im-
mune response triggered by MVs, along with their adaptability for engineering, highlights
their potential for various clinical applications. Probiotic MVs from Gram-positive bacteria
hold promise for oral administration or incorporation into pharmaceutical supplements
due to their regulatory and anti-inflammatory benefits. The prospect of revolutionizing
vaccine development, drug delivery, diagnostics, and therapeutics is substantial, making
BEVs a groundbreaking frontier in medicine and biotechnology. Nevertheless, practical im-
plementation on a large scale requires addressing current limitations, ensuring safety, and
developing robust production and regulatory frameworks. As research progresses, engi-
neered MVs and their role in host–pathogen interactions hold the promise of transforming
the healthcare and disease management landscape.
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