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Abstract: Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI)
found in Veterans presents with several complications, including cognitive and behavioral distur-
bances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well
understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI),
this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous,
uninterrupted video-EEG for up to four months. Following this period, we collected cortex and
hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those
without epilepsy (PTE−), and the control group (sham). Hundreds of differentially expressed proteins
were identified in the cortex and hippocampus of PTE+ and PTE− relative to sham. Focusing on
protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational
modifications, and transport were disrupted. Computational metabolic modeling using dysregulated
protein expression predicted mitochondrial proton pump dysregulation, suggesting electron trans-
port chain dysregulation in the epileptic tissue relative to PTE−. Finally, data mining enabled the
identification of several novel and previously validated TBI and epilepsy biomarkers in our data set,
many of which were found to already be targeted by drugs in various phases of clinical testing. These
findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae
following rbTBI.

Keywords: traumatic brain injury; post-traumatic epilepsy; concussive brain injury; blast neurotrauma;
gene ontology

1. Introduction

The Centers for Disease Control (CDC) report that epilepsy affects 3.4 million, or 1.2%,
of the US population [1]. Epilepsy is defined as two or more spontaneous or unprovoked
recurrent seizures. Though many brain insults may lead to seizures, traumatic brain injury
(TBI) is a leading cause of acquired epilepsy, accounting for 10–20% of reported cases [2].
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Acquired epilepsy, associated with TBI, or post-traumatic epilepsy (PTE) demonstrate a
poor response to current antiepileptic drugs (AEDs) [3], necessitating mechanistic studies
identifying disrupted proteins and protein pathways for the development of effective
therapeutic strategies.

It has been reported that more than 25% of Veterans suffered from closed-head TBI
due to blast wave exposure produced by explosive devices or high caliber weapons during
combat, and most have been exposed to multiple low-level blasts within their tour of
duty [4]. Assigned a unique medical code in 2023, in the CDC International Classification
of Diseases, 10th Revision, Clinical Modification (ICD-10-CM), rbTBI is described to be
associated with acute cognitive and behavioral deficits, with a subset of those injured
having persistent debilitating effects including headaches, anxiety, depression, and sleep
disturbances [5,6]. Blast TBI is of significant concern, particularly to the military population,
wherein it has been dubbed the ‘signature wound’ of Operations Enduring Freedom,
Iraqi Freedom, and New Dawn (OEF/OIF/OND) [7]. A recent study investigating the
neurological sequelae of repeated low-level blast exposure in a population of Special
Operations Forces services members utilized PET-CT imaging to identify markers of brain
inflammation, which supported previous work demonstrating changes in cortical thickness,
white matter, and default-mode network connectivity in military and law enforcement
personnel exposed to repeated low-level blast exposure [8]. Additionally, 3 out of 16 blast-
exposed OEF/OIF Veterans were clinically diagnosed with PTE [9]. Moreover, a diagnosis
of non-convulsive seizures was suspected in 44% of the group. These and other limited
studies have prompted the Department of Veterans Affairs to highlight epilepsy as a major
concern for the long-term care of Veterans [9,10] and emphasize the need to account for the
underlying molecular mechanisms that may serve to drive PTE following blast injury.

One significant difficulty in evaluating PTE is the highly variable time delay between
the TBI and the onset of epilepsy, which, in humans, may manifest as long as a decade after
injury [11,12], making unequivocal associations between epilepsy and TBI challenging.
Epidemiological studies suggest that the severity of the injury correlates with an increased
likelihood of PTE and that those patients who suffer early seizures (i.e., within seven days
of the injury) are more likely to progressively develop PTE [11]. This delay in PTE onset
suggests a potential therapeutic window for prevention and has been the study of inten-
sive investigations using preclinical models. In vitro and in vivo models of single bTBI
and repeated bTBI (rbTBI) have been developed. In rodent models of bTBI, studies have
indicated sleep disturbances, anxiety-like behavior, and elevated conditioned fear [13–15].
Experimental evidence indicates markers of inflammation, early (<48 h) non-convulsive
seizures, and neuronal hyperexcitability, as well as long-term spontaneous seizure devel-
opment in 46% of animals [16], causally linking rbTBI to PTE. However, the underlying
cellular and molecular mechanisms that drive these changes are unknown.

Here, we present an unbiased proteomics analysis at a chronic timepoint (four months)
in a mouse model of rbTBI, with the goal of identifying proteins and protein pathways that
contribute to the rbTBI-associated chronic sequalae, including PTE. At four months post
injury, cortex and hippocampal tissue from sham, PTE+, and PTE− were subject to shotgun
LC–MS/MS. Using a combined experimental and computational approach, evidence is
presented that identifies several PTE+ protein targets linked to mitochondrial dysfunction
that could be considered as potential targets for drug intervention.

2. Results
2.1. Repeated Blast TBI Caused Spontaneous, Unprovoked, Recurrent Seizures

To establish seizures and PTE in rbTBI we implemented chronic, continuous (24/7)
monitoring of brain activity using video-EEG. Considering the low incidence of seizures
reported in rodent models of post-traumatic epilepsy, [17,18] mice were equipped with EEG
electrodes 24 h after experiencing blast TBI and continuously recorded from two days post
injury (dpi) and up to 106 dpi (Figure 1A). Overall, 11 out of 53 (21%) rbTBI mice developed
spontaneous, unprovoked, recurrent seizures. Prior to and/or following the ictal episode,



Int. J. Mol. Sci. 2024, 25, 2880 3 of 21

intermittent epileptiform inter-ictal activity was observed, characterized by paroxysmal
spike discharges (sharp-shaped potentials lasting 30–70 milliseconds) and spike/sharp
wave discharges (SWDs) with durations under 200 milliseconds (Figure 1C). Seizures were
generalized as having been evidenced by the presence of epileptic activity across all EEG
channels. It is worth noting that, after most seizures, a suppression in the EEG background,
known as post-ictal suppression, was observed ranging from several seconds and up to
several minutes (Figure 1C).
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seizures. (C): Representative EEG traces of early (6 days post injury) and late (40 days post injury) 
electro-clinical seizures in rbTBI mouse. Panel a: typical pre-ictal and inter-ictal activity in the form 
of generalized bilateral epileptic spikes; panel b: expanded view of the active seizure phase; panel 
c: post-seizure depression; panel d: expanded view of the late seizure. (D): Representative EEG 
traces of physiological background activity of a sham mouse. 
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An unbiased proteomics approach was used to identify proteins and protein path-
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Figure 1. rbTBI induced spontaneous, unprovoked, recurrent seizures in mice. (A): EEG study design.
Day 0—induction of BLAST TBI. Then, 24 h after TBI, mice underwent stereotactic surgery and
electrode implantation. Mice were connected to the video-EEG acquisition system on post-TBI day 2
and were recorded up to 106 days. Diagram created with BioRender.com (B): Overall incidence of
seizures. (C): Representative EEG traces of early (6 days post injury) and late (40 days post injury)
electro-clinical seizures in rbTBI mouse. Panel a: typical pre-ictal and inter-ictal activity in the form
of generalized bilateral epileptic spikes; panel b: expanded view of the active seizure phase; panel c:
post-seizure depression; panel d: expanded view of the late seizure. (D): Representative EEG traces
of physiological background activity of a sham mouse.

2.2. Chronic Protein Dysregulation in the Cortex and Hippocampus following rbTBI

An unbiased proteomics approach was used to identify proteins and protein pathways
that were impacted as a result of rbTBI at four months post injury. Here, a subset of sham,
rbTBI PTE−, and rbTBI PTE+ (five per group) mice from EEG studies were selected at
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random for unbiased LC–MS/MS whole cortical and hippocampal proteomics. In total,
untargeted proteomics quantified the relative abundance of 3377 proteins through the iden-
tification of 22,620 unique peptide ions across all biological replicates in the hippocampus
and cortex with a high FDR confidence level (FDR < 0.01) and peptide spectrum match > 3
(Supplementary Table S1). Following data processing, differentially expressed proteins
(DEPs) were identified as having a fold change (FC) ≥ |1.2|, an adjusted p-value < 0.1, and
presented in at least 5 out of 10 technical replicates in the overexpressing group. In total, 282,
273, and 225 DEPs were identified comparing PTE− vs. sham, PTE+ vs. sham, and PTE+

vs. PTE− in the cortex, and 323, 314, and 248 DEPs in PTE− vs. sham, PTE+ vs. sham, and
PTE+ vs. PTE−, in the hippocampus, respectively (Figure 2A–D). Venn diagrams indicate
the number of shared or unique DEPs within each comparison for the cortex and hippocam-
pus (Figure 2A,B). The top 10 DEPs in each group are highlighted in the volcano plots
(Figure 2C,D). Protein abundance, fold change, and statistical data regarding groups can be
found in Supplementary Table S2. Several shared DEPs were observed between sham vs.
PTE− and sham vs. PTE+, suggesting abundant general injury-induced changes. Along
with shared DEPs, there were many that were unique to the PTE+ vs. PTE− group, indicat-
ing seizure-related proteins. Of the shared and unique DEPS, these include upregulation of
Fxyd1, Tbc1d15, and Trapp13 in the cortex and Mblac2 in the hippocampus (Figure 2C,D).
Notably, the protein Cap2, cyclase-associated protein 2, an actin-binding protein, which is
found in neuronal growth cones and associated with morphology of dendritic spines (for
review, see [19]), was upregulated in the PTE− vs. PTE+ comparison in both the cortex and
hippocampus. Additional seizure- and epilepsy-associated proteins identified in PTE+ and
PTE− cortex and hippocampus include Scnb1 [20], Isca2 [21], Wdr4 [22], and Dkc1 [23]. In
each comparison, several DEPs identified were below the level of detection in one of the
comparing groups (PTE− vs. sham, PTE+ vs. sham, and PTE+ vs. PTE−), including 31, 33,
and 38 for each cortical comparison, and 41, 43, and 37 proteins in the hippocampal com-
parisons. These data are provided in Supplementary Table S2 (0.1 = protein not detected in
experimental group, 100 = protein not detected in control group). After identifying the top
10 dysregulated DEPs in each comparison per brain region, z-scores were computed from
raw signal intensity for each biological replicate within the groups, where PTE− and PTE+

samples appeared to cluster together in the cortex, in contrast to sham and PTE− samples
clustering together in the hippocampus (Figure 2E,F) (denoted by dotted boxes). These
results were further confirmed by comparing the average signal intensities of the top 10
upregulated and top 10 downregulated DEPs per comparison for each sample in either the
cortex or hippocampus in a correlation heatmap (nearly 60 proteins in total, Figure 2G,H).
These findings indicate an injury-related effect in the rbTBI cortex, but a seizure-related
effect in the rbTBI hippocampus.

2.3. Functional Enrichment Analysis of Dysregulated DEPs in rbTBI

Functional enrichment analysis was performed to identify overrepresented proteins
that may serve to drive rbTBI-associated phenotypes, including seizures across the cortex
and hippocampus of sham and rbTBI animals. Here, DEPs were separated by log2FC as
upregulated and downregulated. From these lists, gene symbols were used to determine
gene ontology (GO) assignments using the cluster profiler R package to identify over and
under expressed GO pathways. The top 10 upregulated and downregulated biological
processes (BPs) in each comparison were plotted utilizing the GOPlot package in R, based
on all dysregulated DEPs. In the hippocampus of rbTBI mice, several biological process
(BP) terms relating to synapse organization, neurogenesis, and the electron transport chain,
as well as ATP synthesis and metabolism were identified (Figure 3A). While comparing
sham vs. PTE− and sham vs. PTE+, we identified similar enriched pathways in the
cortical and hippocampal brain regions relating to mitochondrial dysfunction and oxidative
phosphorylation (Supplementary Figure S2). Intriguingly, many pathways in the PTE+

vs. PTE− comparison were similar to the sham comparisons, suggesting heightened
mitochondrial dysfunction in either the PTE− or PTE+ group.
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Venn diagrams showing unique and shared DEPs between each comparison in the cortex (left) and 
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cortex (left) or the whole hippocampus (right) with an adjusted p-value ≤ 0.1 and an FC greater than 
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Figure 2. Identification of DEPs’ rbTBI-associated PTE− and PTE+ cortex and hippocampus.
(A,B) Venn diagrams showing unique and shared DEPs between each comparison in the cortex
(left) and the hippocampus (right). (C,D) Volcano plots of all DEPs in each comparison from either the
whole cortex (left) or the whole hippocampus (right) with an adjusted p-value ≤ 0.1 and an FC greater
than l 1.2 l, with the top ten dysregulated proteins marked. (E,F) Heatmap of the top 10 dysregulated
DEPs in each comparison in either the whole cortex (left) or the whole hippocampus (right) based
on z-score. Dotted box in E marks injury related effects, while the dotted box in F marks a seizure
related effect. (G,H) Correlation heatmaps from either whole cortex (left) or whole hippocampus
(right) samples based on the top 10 upregulated and top 10 downregulated DEPs’ intensity value in
each comparison (PTE− vs. sham, PTE+ vs. sham, and PTE+ vs. PTE−, for a total of 60 proteins per
brain region).
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Figure 3. Functional enrichment analysis identifies disrupted biological processes related to the
mitochondrial functional rbTBI-associated hippocampus. (A) Top 10 downregulated (circles) and top
10 upregulated (triangles) GO biological process pathways identified in the whole hippocampus PTE+

vs. PTE− comparison. (B) GO chord plot indicating shorthand descriptions of biological processes
relating to mitochondrial dysfunction and oxidative phosphorylation dysregulated in the whole
hippocampus PTE+ vs. PTE− comparison and the corresponding DEPs present in the gene list per
term with associated log2FC.

In the hippocampal PTE+ vs. PTE− comparison, enrichment terms suggested alter-
ations in mitochondrial function and cellular metabolism, as has been reported in blast
injury in several recent studies [24–27]. To further investigate processes related to mitochon-
drial dysfunction, terms related to ATP synthesis and metabolism, aerobic respiration, and
acyl co-A metabolism, as well as the synthesis and metabolism of purines and their highly
integrated proteins were plotted using a chord plot (Figure 3B). The analysis revealed thar
the protein Gmpr3, guanosine monophosphate reductase 2, an enzyme that catalyzes the
irreversible and NADPH-dependent reductive de-amination of guanosine monophosphate
(GMP) to inosine monophosphate (IMP), was the most highly upregulated protein. In
contrast, Ndufv3, NADH:Ubiquinone oxidoreductase subunit V3, an accessory subunit of
the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), was
the most downregulated protein in this analysis. Here also Gcdh, Npc1, Acly, Dip2a, and
Mpc1, were highly integrated proteins, each being represented in seven of the ten enriched
GO terms (Figure 3B).

2.4. Predicted Alterations in Flux Reactions Caused by DEPs in PTE+ rbTBI

The GO analysis presented above predicts disrupted protein pathways but falls short
of identifying their effects on the substrates and metabolites both consumed and produced
from these pathways. To better understand the changes occurring to the metabolic network
and cellular metabolism between the hippocampal PTE+ and PTE− comparison, a system-
level analysis was conducted using the application of a constraint-based reconstruction and
analysis (COBRA) method known as flux balance analysis (FBA). We decided to perform
FBA by integrating our data with the RECON3D model from the Biochemical, Genetic, and
Genomic (BiGG) database. Briefly, this approach can be seen as an optimization problem
that searches for sets of steady-state reaction fluxes that maximize or minimize an objective
function representing a given biological purpose through linear programming. Through
comparative analysis of the reaction fluxes solved by various objective functions (ATP
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maintenance, ATP synthesis, nutrient update), it was observed that biomass production
accounted for a broader range of cellular activities and could reflect a more physiologically
relevant objective compared to a singular focus. Thus, we chose biomass maintenance,
which focuses on optimizing the distribution of metabolic fluxes of those reactions required
to meet the energy and resource requirements necessary for maintaining cellular functions,
as the objective function. This would allow us to initially evaluate the distribution of fluxes
and to optimize the network to represent a normal, steady-state condition. Recognizing
protein synthesis as an outcome of gene expression, we incorporated this aspect into our
modeling approach. Specifically, values representing protein fold changes were linked
to the bounds of reaction fluxes regulated by these proteins, originally provided by the
optimized solution. Metabolite outputs for each reaction between the steady-state and
disease condition were then evaluated.

When the objective function in FBA was set to biomass maintenance, the reaction
CYOO3mi (#1, Table 1) (Cytochrome c Oxidase Complex IV, CYOOm3i) flux was 3.187 mol
hr-1gDW-1 and reaction CYOR_u10mi (#2, Table 1) (Ubiquinol-10 cytochrome c reductase,
Complex III) flux was 1.813 mol hr-1gDW-1, for proton production in the inner mito-
chondrial membrane. In the disease condition, these flux values decreased to 0.917 mol
hr-1gDW-1 and 1.152 mol hr-1gDW-1, respectively, indicating a 58% reduction in pro-
ton production. Additional dysregulated flux reactions observed include SUCD1m (#3,
Table 1) (Succinate Dehydrogenase), AKGDm (#5, Table 1) (2-oxoglutarate dehydrogenase),
ECOAH9m (#4, Table 1) (Enoyl-coa hydratase, 3-Hydroxy-2-methylbutyryl-CoA forming),
GMPR (#6, Table 1) (GMP Reductase), and PGK (#7, Table 1) (Phosphoglycerate kinase).
Additional detailed descriptions of these reactions can be found in the BiGG database [28].
These results highlight a nuanced metabolic shift, characterized by heightened metabolic
activity and an increased demand for these reactions, while simultaneously predicting a
reduction in proton production across the inner mitochondrial membrane.

2.5. Identification of High Confidence Targets for Drug Intervention in Seizure Prevention

In the last set of predictive approaches, we used unbiased proteomic data to find
potential drug targets for treating or preventing seizures. We started by analyzing the high
confidence protein interactions of the DEPs through the search tool for the retrieval and of
interacting genes/proteins (STRING) database. A high confidence interaction is defined by
a confidence threshold exceeding 0.7. Subsequently, we created a protein-protein interaction
network (PPIN) based on these identified interactions where each “node” is represented
by a protein, and each “edge” is represented as the interaction or association between
them. This network was then imported into Cytoscape and centrality measurements were
computed to quantitatively assess the significance of individual nodes in the network. To
concentrate our efforts on interventions that are more likely to influence the overall network
dynamics, the key nodes identified may serve as suitable drug targets. In our analysis,
we prioritized degree and stress centrality as the most crucial measurements giving these
a high weight, emphasizing nodes with a high number of direct connections and those
acting as key bottlenecks in the network’s shortest path. Betweenness, closeness, and
eccentricity metrics were also weighted in descending order of importance to enhance our
analysis by identifying nodes that act as critical bridges, efficient network communicators,
and hold a unique positional significance. The top 10 nodes with the highest weighted
sums and an FC greater than |1.5| were identified as Cpeb2, Echs1, Hnrnpk, Mbn11,
Nduf4b, Ndufv3, Pten, Ube2d3, and Uqcrb (refer to Figure 4 and Table 2, protein function
provided). Additional proteins, namely Atp5pf, Kng1, Krt1, Nrp1, and Vps41 (Table 3),
were identified through a second form of weighted analysis, PageRank. All 15 central
nodes identified have been experimentally validated as dysregulated in either epilepsy or
TBI (Tables 4 and 5). Moreover, four of these central nodes are present in publicly available
biomarker datasets, and eight have been inferred with a high score to contribute to each
condition, further reinforcing their status as high-confidence targets (see Table 4). The
remaining nodes represent potential avenues for future study.
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Figure 4. STRING analysis identifies three distinct sub-networks through k-means clustering.
(A) Whole network of DEPs from the hippocampal PTE+ vs. PTE− comparison. Nodes with the
highest centrality through analysis or unbiased PageRank system are colored as red. (B) Sub-network
denoting proteins related to protein binding and structural proteins, with high centrality or PageRank
nodes marked in blue. (C). Sub-network denoting proteins related to trafficking and transport, with
high centrality or PageRank nodes marked in orange. (D). Sub-network denoting mitochondrial
proteins, with high centrality or PageRank nodes marked in purple.

Table 1. Optimized and Dysregulated Fluxes of Metabolites. Reaction IDs and corresponding flux for
optimized and dysregulated states are listed above. Subscripts denote the location of the metabolite
where m = mitochondria, I = inner mitochondrial membrane, and c = cytosol. Numbers in parentheses
indicate the flux value for that metabolite as mol/hr−1/gDw−1. Negative values indicate metabolites
consumed in the reaction, whereas positive values indicate metabolites being produced.

# Reaction ID Optimized Flux Equation
(mol hr-1gDw-1)

Dysregulated Flux Equation
(mol hr-1gDw-1)

1 CYOO3mi

7.92Hm (−3.187) + O2m (0.7967) +
4FocytCm (−3.187) ⇌ 1.96 H2Om

(1.561) + 4.0FicytCm (3.187) +
0.02O2sm (0.015) + 4Hi (3.187)

7.92Hm (−13.940) + O2m (−1.761)
+ 4.0FocytCm (−7.043) ⇌

+1.96H2Om (3.451) + 4.0FicytCm
(7.043) + 0.02O2sm (0.035) + 4.0Hi

(0.917)
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Table 1. Cont.

# Reaction ID Optimized Flux Equation
(mol hr-1gDw-1)

Dysregulated Flux Equation
(mol hr-1gDw-1)

2 CYOR_u10mi

2.0Hm (−0.907) + 2.0FicytCm
(−0.907)

+q10H2m (−0.453) ⇌ 2.0FocytCm
(0.907) + q10m (0.453) + 4.0Hi

(1.813)

2.0Hm (−1.360) + 2.0FicytCm
(−1.360) + q10H2m (-0.680) ⇌

2.0FocytCm (1.360) + q10m (0.680)
+ 4.0Hi (1.152)

3 SUCD1m FADm (−0.578) + Succm (−0.578)
⇌FADH2m (0.578) + Fumm (0.578)

FADm (−0.752) + Succm (−0.752)
⇌ FADH2m (0.752) + Fumm

(0.752)

4 ECOAH9m H2Om (0.791) + 2mb2CoAm (0.791)
⇌ 3hmbCoAm (−0.791)

H2Om (1.107) + 2mb2CoAm (1.107)
⇌ 3hmbCoAm (−1.107)

5 AKDGm

Akgm (−0.366) + CoAm (−0.366) +
NADm (−0.366) ⇌ CO2m (0.366) +

NADHm (0.366) + SucCoAm
(0.366)

Akgm (−0.513) + CoAm (−0.513) +
NADm (−0.513) ⇌ CO2m (0.513) +

NADHm (0.513) + SucCoAm
(0.513)

6 GMPR
GMPc (0.027) + 2.0Hc (0.054) +

NADPHc (0.027) ⇌ impc (-0.027) +
NADPc (−0.027) + NH4c (−0.027)

GMPc (0.109) + 2.0Hc (0.218) +
NADPHc (0.109) ⇌ impc (−0.109)

+ NADPc (−0.109) + NH4c
(−0.109)

7 PGK 3pgc (0.449) + ATPc (0.449) ⇌
13dpgc (−0.449) + ADPc (−0.449)

3pgc (0.674) + ATPc (0.674) ⇌
13dpgc (−0.674) + ADPc (−0.674)

Table 2. Hippocampal PTE+ vs. PTE− protein network centrality analysis.

Gene
Symbol Degree # Betweenness

Centrality $
Closeness

Centrality %
Stress

Centrality &
Adj

p Value Protein Function *

Cpeb2 2 0.166667 0.292683 26 8.78 × 10−2 mRNA binding, regulating
cytoplasmic polyadenylation of mRNA

Echs1 2 0.054054 0.355769 180 4.43 × 10−6

Catalyzes CoA intermediates to
L-3-hydroxyacyl-CoAs in

mitochondrial fatty acid beta-oxidation
pathway

Fxr1 2 0.30303 0.375 48 2.67 × 10−16
RNA binding protein which shuttles

between the nucleus and cytoplasm to
bind to polyribosomes

Hnrnpk 4 0.712121 0.48 118 2.28 × 10−6

RNA binding protein which complexes
with heterogeneous nuclear RNA and
influence pre-mRNA processing and

metabolism

Mbnl1 2 0.166667 0.352941 26 1.93 × 10−2
C3H-Zinc finger binding protein which

modulates external splicing of
pre-mRNAs

Ndufb4 18 0.001661 0.506849 32 2.67 × 10−16 Non-catalytic subunit of multisubunit
NADH:oxidoreductase

Ndufv3 15 0.000374 0.474359 8 2.55 × 10−6
Subunit of multisubunit

NADH:oxidoreductase; function
unknown

Pten 3 0.7 0.625 14 1.17 × 10−3

Tumor suppressor which negatively
regulates AKT/PKB signaling. Longer

isoform may play a role in energy
metabolism in the mitochondria
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Table 2. Cont.

Gene
Symbol Degree # Betweenness

Centrality $
Closeness

Centrality %
Stress

Centrality &
Adj

p Value Protein Function *

Ube2d3 3 0.166667 0.315789 38 3.04 × 10−2

Member of the E2 ubiquitin
conjugating enzyme family, which
functions in ubiquitination tumor

suppressor protein p53

Uqcrb 19 0.006285 0.569231 114 2.07 × 10−3
Binds ubiquinone and participates in

electron transfer while bound to
ubiquinone

# Interactions (edges) a protein has in the network. High degree centrality are hub proteins well connected
within the network. Typically play a role in numerous biological pathways so targeting these can disrupt various
processes. $ Quantifies how often a protein acts as a bridge, connecting other proteins in the network. A high
degree of betweenness is central to mediating the flow of information between different parts of the network.
Targeting these could disrupt the flow of information and control over various processes. % Measures how close a
protein is to all other proteins in the network, identifying proteins that efficiently interact with others. Targeting
these may lead to widespread network perturbation and the modulation of multiple pathways. & Identifies
proteins’ importance based on its role in connecting other nodes in a network. High stress centrality nodes serve
as critical intermediaries in the network and are often seen as bridges or bottlenecks. * Protein functions obtained
from GeneCards.

Table 3. Top 10 Nodes weighted through PageRank.

Gene Symbol Protein Function *
Atp5pf F6 subunit of the F0 complex, required for F1 and F0 interactions

Hnrnpk # RNA binding protein which complexes with heterogeneous nuclear RNA
and influence pre-mRNA processing and metabolism

Kng1 Uses alternative splicing to generate high and low molecular weight
kininogens

Krt1 Member of the keratin family, which are expressed during simple and
stratified epithelial cell differentiation

Ndufb4 # Non-catalytic subunit of multisubunit NADH:oxidoreductase

Nrp1 Cell surface receptor involved in the development of the cardiovascular
system, in angiogenesis, in the formation of certain neuronal circuits

Pten # Tumor supressor which negatively regulates AKT/PKB signaling. Longer
isoform may play a role in energy metabolism in the mitochondria

Ube2d3 # Member of the E2 ubiquitin conjugating enzyme family, which functions in
ubiquitination tumor suppressor protein p53

Uqcrb # Binds ubiquinone and participates in electron transfer while bound to
ubiquinone

Vps41 Plays a role in transport and fusion of vacuoles from the Golgi
# Indicates nodes also detected through manual centrality analysis. * Protein functions obtained from GeneCards.

Table 4. Literature validation of PPIN and PageRank targets. Central proteins derived from proteomic
analysis (adj p-value < 0.1, FC > |1.5|) of the hippocampus in mice with bTBI-associated PTE with
selected literature support and clinical biomarker inclusion.

Gene Symbol Supporting Epilepsy Literature Supporting TBI Literature Biomarker Validation Database
DisGenNet * CTD ** Other

Cpeb2 [29] [29,30] n n y n n n

Echs1 [31] [32] n n y n y n

Fxr1 [33] [34] n n y y n n

Hnrnpk [35] [36] n n y n n n

Mbnl1 [37] [38] n n y n n n
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Table 4. Cont.

Gene Symbol Supporting Epilepsy Literature Supporting TBI Literature Biomarker Validation Database
Ndufb4 [39] [32] n n y n n n

Ndufv3 [39] [40,41] n n n n n n

Pten [39,42–44] [45–48] y n y y y n

Ube2d3 [49] n n y n n n

Uqcrb [50,51] [32,52] n n n n n

Additional nodes weighted through PageRank

Atp5pf [53] [32] n N y n n n

Kng1 [54] [32] y N y n n n

Krt1 [55] n N n n n n

Nrp1 [39] n N y n y n

Vps41 [56] [56] n N y n n n

For DisGenNet, CTD, and other columns: left sub columns = epilepsy, right sub columns = TBI, Y = yes, N = no.
(* CTD_Epilepsy inference score > 15) (CTD_TBI inference score > 3) (** include the databases OMIM, MGI,
Pubchem, Uniprot, HGMD, and gene cards).

Table 5. Identified selective drugs and chemicals that bind or target the high-confidence putative
markers in the hippocampus of mice with blast TBI-associated PTE.

Gene
Symbol Drug/Chemical Drug/Chemical, Group Database Species Protein Details

HU MO pPTMs TDL DTO Fam

Cpeb2 Bisphenol A Experimental CTD y y p, me, ac,
gl, ub, hy Tbio Nab

Echs1 Hexanoyl-CoA Experimental DrugBank y y p, gl, ub,
ac, Tbio E

Fxr1 Valproic Acid Experimental CTD y y
p, ac, pc, su,
ub, gl, me,

pa
Tbio Nab

Hnrnpk
Phenethyl

isothiocyanate,
Artenimol

Investigational,
Approved DrugBank y y

gl, ub, ac, p,
pc, hy, me,

su
Tbio E

Mbnl1 Bisphenol A Experimental CTD y y pc, gl, p, ub,
ac, hy, pa Tbio Nab

Ndufb4 Metformin Approved Pharos y y me, su, p,
gl, ub, ac Tclin E

Ndufv3 Metformin Approved Pharos y y p, ub, gl, hy,
su, ac Tclin na

Pten Bisphenol A Experimental CTD y y ac, ub, me,
su, gl Tbio E

Ube2d3 Bisphenol A Experimental CTD y y me, p, gl Tchem E

Uqcrb Azoxystrobin Experimental DrugBank y y ac, ub, p Tbio E

Additional nodes weighted through PageRank

Atp5pf Bisphenol A Experimental CTD y y p, ub, ac,
pc, su Tbio T

Kng1 Copper Approved DrugBank y y pc, p, gl, ub,
hy, me, ac Tbio EM



Int. J. Mol. Sci. 2024, 25, 2880 12 of 21

Table 5. Cont.

Gene
Symbol Drug/Chemical Drug/Chemical, Group Database Species Protein Details

HU MO pPTMs TDL DTO Fam

Krt1 Copper Approved DrugBank y y
p, pc, pa,
me, gl, ac,

ub, su
Tbio E

Nrp1 PEGAPTANIB Approved CTD y y
su, p, ub,
ac, gl, me,

pc, hy,
Tchem na

Vps41 Valproic Acid Experimental CTD y y pc, p, su, gl,
ub, ac, hy, Tbio T

Y = yes; N = no; HU = human; MO = mouse Target Development Level (TDL): T = Transporter; EM = Enzyme
Modulator; na = not applicable; K = kinase; E = enzyme; Nab = nucleic acid binding. Post-Translational
Modification Prediction (pPTM)—Phosphorylation: P, Glycosylation: gl, Ubiquitination: ub, SUMOylation: su,
Acetylation: ac, Methylation: me, Pyrrolidone carboxylic acid: pc, Palmitoylation: pa, Hydroxylation: hy.

To characterize the druggability of the identified central nodes, we utilized all 10 of
the nodes identified in our centrality analysis and the additional 5 identified by PageRank.
Here, the DrugBank (https://go.drugbank.com/), Pharos (https://pharos.nih.gov/), and
Drug-Gene (https://www.dgidb.org/) interaction databases were mined to identify drugs
which have been created to target these nodes, ranging from experimental to approved
clinical use, in mice and humans. All of the identified nodes have identified drugs which
targeted them (Table 5). These findings suggest the possibility for the repurposing of these
drugs to be utilized in the treatment of rbTBI-associated epilepsy.

Most of the central proteins identified are notably understudied in the context of
TBI-PTE. Thus, we further interrogated small molecules, biologics, and other therapeu-
tic modalities using drug target ontology (DTO) families to target the 15 central node
proteins and their predicted post-translation modifications (Table 5). Using Pharos, the
target development level (TDL) [57] of each central protein was identified with the majority
belonging to the category of ‘Tbio.’ This category encompasses proteins that have gene
ontology (GO) leaf term annotations supported by experimental evidence, or that meet at
least two out of three of the following conditions: a fractional publication count exceeding
five, three or more Gene RIF annotations, or 50 or more commercial antibodies, as counted
in the Antibodypedia portal. The remaining central proteins fell into either the ‘Tchem’
category, confirming their ability to interact with small molecules with a high potency, or
the ‘Tclin’ category, validating their association with approved drugs. Two central proteins,
however, fall into the fourth TDL category ‘Tdark,’ which includes 31% of human proteins
curated at the primary sequence level in UniProt, but do not belong to an additional cate-
gory. In addition to the TDL, their DTO family was also identified to further investigate
if those central proteins would make for a suitable drug target, given our data highlight-
ing their critical role in TBI-PTE. Most of the central proteins identified belonged to the
DTO families of transporter proteins. Of note, transporter proteins, as well as enzymes
and nuclear receptors, are the main classes of proteins that are considered a part of the
druggable proteome.

3. Discussion

In the current study, an unbiased proteomics screening was performed in sham, rbTBI
PTE+, and rbTBI PTE− mice. Here, we report spontaneous recurrent seizures in a subset
of animals exposed to rbTBI (21%), as has been previously reported [16,58]. Given the
limited number of preclinical molecular studies using rbTBI models to assess chronic
timepoints, a discovery-based, unbiased approach was performed to identify the molecular
drivers of rbTBI-related neurological dysfunction. Using shotgun LC–MS/MS, hundreds
of dysregulated proteins were observed in the cortex and hippocampus of sham vs. rbTBI

https://go.drugbank.com/
https://pharos.nih.gov/
https://www.dgidb.org/
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mice, with the results largely finding differences in protein expression between rbTBI PTE+

animals vs. seizure-free mice (PTE−). Here, the analysis revealed a significant protein
pathway dysregulation in mitochondrial function, post-translational modifications, and
protein transport. Applying computational approaches provided additional evidence
of mitochondrial dysfunction, specifically in oxidative phosphorylation, and predicting
distinct metabolic shifts occurring in the inner mitochondrial membrane in rbTBI PPIN
and PageRank analysis performed on the proteomics data enabled the identification of
15 high-confidence protein targets that may serve as therapeutic targets in rbTBI PTE+, of
which all have been experimentally validated as dysregulated in either epilepsy or TBI.
Moreover, four of the central nodes we identified were also identified in publicly available
biomarker datasets. Thus, the findings highlight the disrupted protein pathways that may
serve to drive a chronic pathological function post rbTBI. Additionally, these datasets may
serve as a useful resource for those interested in rbTBI-driven chronic pathological function
and protein dysregulation post rbTBI.

PTE is an increasing concern in both civilian and military populations that are exposed
to blast waves from an explosive device or high-caliber weapons, yet few studies have
investigated blast-related PTE [9,10]. Bugay et al. (2020) [16] reported on the occurrence of
PTE following repeated blast events in mice. Their study utilized EEG to identify seizures
at one month following rbTBI, finding the development of PTE in 46% of animals. While the
results of this current study reported a lower incidence of PTE following rbTBI, differences
in the injury device and blast protocol used could account for the discrepancy. Furthermore,
it should be noted that, following TBI in humans, PTE may manifest as far as a decade post
TBI [11,12], thus, had we followed our animals for longer, we may have observed higher
seizure incidence. The rbTBI model presented here resulted in spontaneous recurrent
seizures, which began acutely and continued through four months. This model may, thus,
serve to study the chronic effects of blast related injury and to aid the development of novel
clinical treatment strategies.

Mitochondrial dysfunction has previously been reported as a result of bTBI. In mouse
models of blast injury, investigations at early time points (6 h) reveal decreased neuronal
ATP levels, which rebound by 24 h [59]. Additional acute effects post rbTBI include
decreased mitochondrial membrane potential, increased release of cytochrome C, and up-
regulation of Caspase-3, indicative of early apoptosis [60]. Further, Hubbard et al. reported
mitochondrial dysfunction in synaptic mitochondria across the brain, with elevated levels
of glial oxidative stress 48 h post rbTBI [24], and oxidative phosphorylation and mitochon-
drial dysfunction were observed in a mouse model of rbTBI at both the 7 and 30 days post
injury timepoints [27]. Additional literature links rbTBI to alterations in cerebrovascular
structure [61–63] and the neurovascular unit, including swollen astrocyte perivascular
endfeet with disorganized organelles, as early as 24 h post injury [64] and a complete loss
of perivascular endfeet at chronic timepoints [62]. Our studies examined the whole cortical
and hippocampal tissue rather than discrete cell populations, thus we are unable to con-
clude if the mitochondrial effects we observed are associated with unique cell populations.
However, based on the above-mentioned findings related to cerebrovascular remodeling
post rbTBI, there exists the possibility that deficits in cerebrovascular function drive neural
cell shifts in metabolic demand. Collectively, this accumulating body of literature utilizing
different rbTBI paradigms and different model systems (rat and mouse) supports acute and
chronic alterations in tissue metabolism and mitochondrial dysfunction, possibly driven by
altered cerebral blood perfusion, a condition which may be exacerbated by PTE.

Numerous methods have been developed to measure and analyze biological systems
across various omics platforms, yet, systematically assessing metabolic systems remains
challenging, as gene expression or protein levels may not always directly correlate with
metabolic activity. To provide a more comprehensive understanding on how the dysreg-
ulated proteins may serve to alter the metabolic network and the cellular metabolism
associated with PTE, this study applied a systematic analysis using FBA, a COBRA tech-
nique. The COBRA framework utilizes a stoichiometric matrix to convert mass-balanced
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metabolic reactions within a cellular system, encompassing both uptake and secretion rates,
into a comprehensive matrix that delineates alterations in the levels of reactants and prod-
ucts for each reaction. The choice of FBA permitted the use of the RECON3D model, the
most extensive genome-scale model of human metabolism, incorporating data on 3288 open
reading frames responsible for encoding metabolic enzymes that catalyze 13,543 reactions
involving 4140 distinct metabolites [65]. Our unbiased approach predicts dysregulated
flux across complexes I-IV of the electron transport chain (ETC), including a reduction in
proton production across the inner mitochondrial membrane. Of these complexes, complex
IV, which transfers electrons from cytochrome C to oxygen and adds to the maintenance
of the proton gradient, was found to have the highest metabolite dysregulation. This
proton gradient is critical for the generation of ATP through oxidative phosphorylation,
ultimately suggesting dysregulated cellular metabolism in the hippocampus of PTE+ rbTBI.
Protein pump inhibitors, such as pantoprazole, have been associated with an increased risk
of developing seizures, particularly in the elderly population [66]. Notably, it should be
recognized that there are limitations in the FBA analysis, including the utilization of protein
fold changes to introduce constraints in the FBA model and of proteins dysregulated in the
PTE+ condition, which were absent in the Recon3D model, each of which may reduce the
accuracy of the FBA model. Yet, despite these limitations, the results provide compelling
evidence of mitochondrial dysfunction, specifically in oxidative phosphorylation, and
distinct metabolic shifts occurring in the inner mitochondrial membrane. While we cannot
definitively conclude that these changes are a result of seizures, our results support a recent
and growing body of literature that mitochondrial dysfunction contributes to persistent
neurological dysfunction in rbTBI.

Proteomic approaches represent a powerful tool for advancing biomarker discovery
and therapeutic target identification. While not as sensitive as transcriptional profiling,
an understanding of dysregulated proteins and their functional pathways provides a
unique insight into drug and biomarker discovery [67]. Here, by integrating the proteomics
data set with computational protein–protein interaction networks, 15 high-confidence
targets for drug intervention in seizure prevention were identified. Remarkably, all of
the 15 identified targets have been associated with the epilepsy and/or TBI literature
(Table 4). These results highlight the utility of an unbiased approach and indicate that
rbTBI within the context of PTE shares common molecular signatures with other forms
of TBI. Future analysis on the PTE proteome will be required to determine if rbTBI alone
is sufficient to induce a similar molecular signature. Additionally, further investigation
into Tdark-identified proteins, proteins which have not been extensively annotated, may
provide a more comprehensive view of the molecular events associated with TBI-PTE. These
proteins may also uncover previously known aspects of the disease’s pathophysiology and
might exhibit individual variability, allowing for a more targeted and effective therapeutic
intervention. Although several promising anti-epileptogenic drugs and disease modifying
therapies have been tested in preclinical and clinical trials, they are far from satisfactory
in preventing the chronic effects from blasts, such as PTE. Therefore, there is a need for
novel or alternative treatment strategies for rbTBI to prevent such outcomes. To this end,
the high-confidence targets were classified using Pharos, to assess their suitability for
drug development. Additionally, PTMs of the identified targets were predicted using
MusiteDeep, as these modifications can provide insights into the molecular mechanisms, as
well as gauge the feasibility of developing therapeutics against these targets. These findings
warrant additional exploration into the influence of post-translational modifications on
regulating the assembly and functionality of electron transport chain complexes in PTE.
Available drugs targeting our high confidence targets were also identified, suggesting
potential drug repurposing.

Together, our results indicate long-term changes in the hippocampal and cortical
proteome following rbTBI, regardless of PTE status. Further, mitochondrial function
was perturbed in both regions and was further dysregulated in PTE, as indicated by the
presence of protein and pathways in the PTE+ vs. PTE− comparison groups. These pivotal
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advancements that aligned experimental and computational approaches have the potential
to develop, expand, and optimize more effective treatments for PTE.

4. Materials and Methods
4.1. Animal Experimentation

All experiments were conducted in accordance with the NIH Guide for the Care
and Use of Laboratory Animals and with the approval of the Virginia Tech Institutional
Animal Care and Use Committee. C57/Bl6 male and female mice at P60–90 from Charles
River, were housed in an AAALAC-accredited facility with a 12 h light–dark cycle, food,
and water, ad libitum. For EEG-video recording, animals were housed individually in a
12.5′′ × 12.5′′ × 15.5′′ polycarbonate cage (AAA Plastic Products, Birmingham, AL, USA)
with corncob bedding and nesting material [68]. An established preclinical model of blast
neurotrauma was used for this study [15]. An advanced blast simulator (ABS) generated
free-field blast waves [10]. Isoflurane anesthetized mice (4% for 5 min) prior to the blast
were positioned inside the ABS in a mesh sling that allows for minimal hindrance of the
blast wave through the simulator and prevents wall impact. Static overpressures were
calculated to be 13.8 ± 0.433 psi at the animal’s position using the Rankine–Hugoniot
equation. Repeated bTBI was induced with three blasts at one hour inter-injury intervals.
Sham-injured mice underwent the entire process without blast injury.

4.2. EEG Electrode Placement and Video-EEG Data Acquisition

Stereotactic surgery was performed on all sham and rbTBI mice 24 h after blast, as
previously described [69]. Briefly, mice were anesthetized with 3.5% isoflurane for 5 min
before placement into the stereotactic apparatus (Kopf Instruments, Tujunga, CA, USA).
Buprenorphine (0.1 mg/kg) was administered subcutaneously for analgesia. The isoflurane
level was maintained at 1.5% during the surgery. Stainless steel electrodes (0.10′′ screw with
wire leads (#8403, Pinnacle Technology, Parsippany, NJ, USA) or 00-96 × 1/16 (1.6 mm)
screws with wire leads (Plastics1)) were implanted epidurally for chronic intracranial
recordings (Figure 1A). Wire leads from the electrodes were connected into the custom 6-pin
connector for 2 monopolar and 1 bipolar EEG channels (#8235-SM-C, Pinnacle Technology)
or 6 channel electrode pedestals for 3 monopolar EEG channels (#MS363, Plastics One,
Roanoke, VA, USA). For EEG acquisition, we used two systems: Pinnacle Technology
(8200-K1-SE system) and Biopac Systems (Goleta, CA, USA) (ERS100C amplifiers, MP160
system) at the 2000 Hz sampling rate with a high-pass cutoff at 1 Hz (Pinnacle Technology
and Biopac Systems), and a low-pass cutoff at 1000 Hz (Pinnacle Technology) and 3000 Hz
(Biopac Systems). For synchronized 24/7 video data acquisition, cameras had either
integrated or separate infrared sources for dark hours video acquisition and were affixed
over (dome cameras) or in front of (box cameras) the single-housed Plexiglas cylinders.
Video-EEG data were collected continuously (24/7) with programmed, automated restart
every 24 h for four months. EEG acquisition was acquired using Sirenia Acquisition v2.2.11
(Pinnacle Technology) and Acqknowledge 5 (Biopac Systems) software.

4.3. Seizure Detection

EEG for seizure detection and characterization data were converted to EDF format
and were first analyzed manually. Subsequently, data were re-analyzed using a custom
automated Matlab algorithm with post hoc manual proofreading and validation by experi-
menters blinded to the experimental group. The following criteria were used to identify
electrographic seizures: event length of at least 5 s, an amplitude at least three times greater
than the background signal, and the presence of an evolution of amplitude and frequency
of the event.

4.4. Cortical and Hippocampal Dissection and Dissociation

Four months post rbTBI, sham and injured mice were anesthetized using CO2, and
were decapitated. The cortex and hippocampus were dissected from each hemisphere and
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were separated in ice-cold ACSF (120 mM NaCl, 3.0 mM KCl, 2 mM MgCl, 0.2 mM CaCl,
26.2 mM NaHCO3, 11.1 mM glucose, 5.0 mM HEPES, 3 mM AP5, 3 mM CNQX), bubbled
with 95% oxygen. The right cortical and hippocampal hemisphere were separately minced
into 1 mm3 pieces to form a homogeneous tissue. An aliquot of tissue was homogenized
in protein homogenization buffer consisting of 50 mM Tris-HCl, 150mM NaCl, 1% Triton
X-100, 0.5% Sodium deoxycholate, and 0.1% sodium dodecyl sulfate, and a Bradford assay
was used to determine protein concentration (Thermo Scientific, Waltham, MA, USA,
Cat #: 23225).

4.5. Trypsin Digestion and Untargeted LC–MS/MS Proteomic Acquisition

One hundred micrograms of protein from each animal/tissue region was adjusted
to a final volume of 100 µL using 2X S-Trap protein solubilization buffer (10% (w/v) SDS,
200 mM triethylammonium bicarbonate (TEAB), pH 8.5). Each sample per group was run
twice to obtain two technical replicates per sample. Samples were reduced and alkylated
by incubation at 37 ◦C for 1 h with 4.5 mM dithiothreitol (DTT), followed by incubation
at room temperature for 30 min in the dark with 10 mM iodoacetamide (IAA). Unreacted
IAA was quenched by the addition of DTT to 10 mM. Protein was precipitated by the
addition of 10 µL 12% (v/v) o-phosphoric acid and 1ml methanol and incubated overnight
at −80 ◦C. Precipitated protein was pelleted using centrifugation at 13,000× g and 4 ◦C
for 20 min and loaded onto S-Traps (Protifi, Fairport, NY, USA) at 1000× g and room
temperature for 1 min. After extensive washing of the pellets entrapped in the S-Traps
using methanol, protein was digested by incubation at 37 ◦C for 4 h after the addition of
1 µg trypsin in 50 mM TEAB, followed by a second addition of 1 µg trypsin in 50 mM TEAB
and incubation at 37 ◦C overnight. Peptides were recovered from S-Traps after digestion
by sequential washing with solvent A (2:98 acetonitrile:water supplemented with 0.1%
(v/v) formic acid) and solvent B (80:20 acetonitrile:water supplemented with 0.1% (v/v)
formic acid). After removal of acetonitrile using a centrifugal vacuum concentrator, peptide
concentrations were determined by measuring the absorbance at 215 nm. Samples were
diluted using solvent A to a concentration of 0.5 mg/mL based on these measurements.
Duplicate injections of 10 µL (approximately 5 µg) of the resulting peptide mixture for each
sample were analyzed utilizing our standard 2 h DDA LC–MS/MS method on a Thermo
Orbitrap Fusion Lumos instrument (Thermo Fisher Scientific, Waltham, MA, USA).

4.6. Untargeted Proteomic Data Analysis

Raw data were processed using Thermo Proteome Discoverer 2.5 and searched using
two different search engines (Mascot (Matrix Science, Columbus, OH, USA) and Sequest
HT (Thermo)) using the mouse protein database from Uniprot, appended with a database
containing common laboratory contaminants. Results from both search engines are reported
together as one result file. Search parameters were limited to trypsin-specific peptides with
two possible missed cleavages, precursor, and fragment mass tolerances of 10 ppm, a fixed
modification of carbamidomethylation on Cys, and variable modifications of oxidation
of Met, deamidation of Gln/Asn, and pyroGlu formation from Gln at the N-terminus of
a peptide.

Peptide abundances were normalized so that the sum of the intensities for all identified
peptides are equal in each sample run. Protein abundances were then calculated as the sums
of the peak intensities for all peptides associated with each peak. Abundances for technical
replicates are averaged prior to averaging across biological replicates. Abundance ratios
for all relevant comparisons were given for each identified protein with a corresponding
p-value calculated via t-tests using the Benjamini–Hochberg method to adjust for false
discovery rates. Male mice were primarily utilized for proteomics, except for two female
mice in the PTE+ group. Using the R packages ggfortify (v0.4.16) and ggplot2 (v3.4.3),
generated 2D PCA plots were consistently clustered into sham, PTE+, and PTE− animals,
thus males and females were collapsed in each group (Supplementary Figure S1). Identified
unique peptides and proteins are provided in Supplementary Table S1 and identification
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files provided in the ProteomeXchange with the accession number PXD048228. All differen-
tially expressed proteins were then plotted utilizing ggplot2, tidyverse (v2.0.0), and ggrepel
(v0.9.3) packages in R to generate volcano plots, along with the venn (v1.11) package for
venn diagrams and lattice (v0.21.8), reshape2 (v1.4.4), and ggplot2 for heatmaps in R. All
DEPs were, again, used for GO enrichment with the R package clusterProfiler (v4.4.4) and
org.Mm.eg.db (v3.15.0). The top 10 most significantly upregulated and downregulated
biological process (BP) terms were used to generate GO bubble plots with the R package
ggplot2. Following GO enrichment, DEPs found in both the PTE+ and PTE− groups of the
hippocampus were plotted on a chord plot utilizing the GOplot (v1.0.2) package in R.

4.7. Methodological Approach for Predicting Cellular Metabolism

A system-level analysis was conducted using the application of a constraint-based
reconstruction and analysis (COBRA) method known as flux balance analysis (FBA) [70].
FBA was performed by integrating identified proteomics DEP with the RECON3D model
(http://bigg.ucsd.edu/models/Recon3D, accessed on 2 October 2023). Using Biomass
maintenance as the objective function, values representing protein fold changes were linked
to the bounds of reaction fluxes regulated by these proteins, originally provided by the
optimized solution. Metabolite outputs and functional relations among fluxes between
steady state and the disease condition were then evaluated.

4.8. Protein Network Centrality Analysis

Significant DEPs were entered into the STRING database to construct a comprehensive
protein–protein interaction network (PPIN) and imported into Cytoscape. The construction
of this network involved setting a minimum interaction score threshold (0.7) to ensure
high confidence in the interactions. Subsequently, centrality measurements were computed
within Cytoscape using the ‘Network Analyzer’ function. These centrality metrics were
then exported and further analyzed in Python (3.11). In the Python analysis, the ‘pandas
v1.24’ library was employed alongside ‘numpy v1.5.2’, a fundamental package for scientific
computing. ‘Pandas’ facilitated the efficient handling and manipulation of tabular data,
while ‘numpy’ provided essential support for mathematical operations and array manipu-
lations. The proteins within the network were then ranked based on their weighted sums,
where the weights were assigned according to the perceived importance of each centrality
measure in the overall network. Degree and stress were given the highest weights, followed
by betweenness, closeness, and eccentricity, in descending order. Additionally, for compar-
ative analysis, the PageRank algorithm [71] was applied to evaluate the importance of a
node, by considering both the number and quality of its connections within the network.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25052880/s1.

Author Contributions: Conceptualization, M.L.O., S.R. and P.J.V.; methodology, O.S., M.L.O., S.R.
and P.J.V.; validation, J.L.B. and K.A.W.; Software, K.A.W.; formal analysis, K.A.W.; investigation, O.S.,
J.L.B., K.A.W., X.W. and D.M.; resources, M.L.O., S.R. and P.J.V.; data curation, J.L.B., O.S. and K.A.W.;
writing—original draft preparation, J.L.B., K.A.W., M.L.O. and P.J.V.; writing—review and editing,
O.S., X.W., D.M. and B.M.; visualization, J.L.B., K.A.W., M.L.O. and P.J.V.; supervision, M.L.O., S.R.
and P.V; project administration, O.S., M.L.O., S.R. and P.J.V.; funding acquisition, M.L.O., S.R. and
P.J.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Department of Defense Award No. W81XWH-18-1-0521
(P.V.) Opinions, interpretations, conclusions, and recommendations are those of the author and are
not necessarily endorsed by the Department of Defense. In conducting research using animals,
the investigator(s) adheres to the laws of the United States and regulations of the Department
of Agriculture.

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Review Board, Virginia Tech (protocol 18-157, approved 27 August 2018).

Informed Consent Statement: Not applicable.

http://bigg.ucsd.edu/models/Recon3D
https://www.mdpi.com/article/10.3390/ijms25052880/s1
https://www.mdpi.com/article/10.3390/ijms25052880/s1


Int. J. Mol. Sci. 2024, 25, 2880 18 of 21

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: We would like to thank the following for assistance with the animal testing and
surgery protocols: Fernanda Guilhaume-Correa, Susan Murphy, and Jessica Strickler. We would also
like to thank Keith Ray and Rich Helm from the Virginia Tech Mass Spectrometry Incubator.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zack, M.M.; Kobau, R. National and State Estimates of the Numbers of Adults and Children with Active Epilepsy—United States,

2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 821–825. [CrossRef] [PubMed]
2. Ferguson, P.L.; Smith, G.M.; Wannamaker, B.B.; Thurman, D.J.; Pickelsimer, E.E.; Selassie, A.W. A population-based study of risk

of epilepsy after hospitalization for traumatic brain injury. Epilepsia 2010, 51, 891–898. [CrossRef] [PubMed]
3. Wat, R.; Mammi, M.; Paredes, J.; Haines, J.; Alasmari, M.; Liew, A.; Lu, V.M.; Arnaout, O.; Smith, T.R.; Gormley, W.B.; et al. The

Effectiveness of Antiepileptic Medications as Prophylaxis of Early Seizure in Patients with Traumatic Brain Injury Compared
with Placebo or No Treatment: A Systematic Review and Meta-Analysis. World Neurosurg. 2019, 122, 433–440. [CrossRef]

4. Yu, W.; Ravelo, A.; Wagner, T.H.; Phibbs, C.S.; Bhandari, A.; Chen, S.; Barnett, P.G. Prevalence and costs of chronic conditions in
the VA health care system. Med. Care Res. Rev. 2003, 60, 146S–167S. [CrossRef] [PubMed]

5. Hainsworth, J.B.; Johnson, A.; Godfred-Cato, S.; Smolinski, G.J.; Jorgensen-Wagers, K. The 8 January 2020 theatre ballistic missile
attack on US soldiers stationed at Al Asad Air Base, Iraq: Case series using a concussion subtypes framework to approach a
real-world, chaotic blast-related TBI mass casualty event. BMJ Neurol. Open 2023, 5, e000343. [CrossRef]

6. Saar-Ashkenazy, R.; Naparstek, S.; Dizitzer, Y.; Zimhoni, N.; Friedman, A.; Shelef, I.; Cohen, H.; Shalev, H.; Oxman, L.; Novack,
V.; et al. Neuro-psychiatric symptoms in directly and indirectly blast exposed civilian survivors of urban missile attacks. BMC
Psychiatry 2023, 23, 423. [CrossRef]

7. Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I.; The Demographics and Clinical Assessment Working Group of the
International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological
Health. Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [CrossRef]

8. Stone, J.R.; Avants, B.B.; Tustison, N.J.; Wassermann, E.M.; Gill, J.; Polejaeva, E.; Dell, K.C.; Carr, W.; Yarnell, A.M.; LoPresti,
M.L.; et al. Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers.
J. Neurotrauma 2020, 37, 2468–2481. [CrossRef]

9. Chen, L.L.; Baca, C.B.; Choe, J.; Chen, J.W.; Ayad, M.E.; Cheng, E.M. Posttraumatic epilepsy in Operation Enduring Free-
dom/Operation Iraqi Freedom veterans. Mil. Med. 2014, 179, 492–496. [CrossRef]

10. Rehman, R.; Kelly, P.R.; Husain, A.M.; Tran, T.T. Characteristics of Veterans diagnosed with seizures within Veterans Health
Administration. J. Rehabil. Res. Dev. 2015, 52, 751–762. [CrossRef]

11. Frey, L.C. Epidemiology of posttraumatic epilepsy: A critical review. Epilepsia 2003, 44, 11–17. [CrossRef]
12. Lowenstein, D.H. Epilepsy after head injury: An overview. Epilepsia 2009, 50 (Suppl. S2), 4–9. [CrossRef] [PubMed]
13. Govindarajulu, M.; Patel, M.Y.; Wilder, D.M.; Long, J.B.; Arun, P. Blast Exposure Dysregulates Nighttime Melatonin Synthesis and

Signaling in the Pineal Gland: A Potential Mechanism of Blast-Induced Sleep Disruptions. Brain Sci. 2022, 12, 1340. [CrossRef]
[PubMed]

14. Agoston, D.V. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J. Neurotrauma
2017, 34, S44–S52. [CrossRef]

15. Dickerson, M.R.; Murphy, S.F.; Urban, M.J.; White, Z.; VandeVord, P.J. Chronic Anxiety- and Depression-Like Behaviors Are
Associated With Glial-Driven Pathology Following Repeated Blast Induced Neurotrauma. Front. Behav. Neurosci. 2021, 15, 787475.
[CrossRef]

16. Bugay, V.; Bozdemir, E.; Vigil, F.A.; Chun, S.H.; Holstein, D.M.; Elliott, W.R.; Sprague, C.J.; Cavazos, J.E.; Zamora, D.O.; Rule,
G.; et al. A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal
Excitability. J. Neurotrauma 2020, 37, 248–261. [CrossRef] [PubMed]

17. Pitkanen, A.; Immonen, R. Epilepsy related to traumatic brain injury. Neurotherapeutics 2014, 11, 286–296. [CrossRef]
18. Shandra, O.; Winemiller, A.R.; Heithoff, B.P.; Munoz-Ballester, C.; George, K.K.; Benko, M.J.; Zuidhoek, I.A.; Besser, M.N.; Curley,

D.E.; Edwards, G.F., 3rd; et al. Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and
Spontaneous Recurrent Seizures. J. Neurosci. 2019, 39, 1944–1963. [CrossRef]

19. Rust, M.B.; Marcello, E. Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human
genetic studies. Eur. J. Cell Biol. 2022, 101, 151207. [CrossRef]

20. Scheffer, I.E.; Harkin, L.A.; Grinton, B.E.; Dibbens, L.M.; Turner, S.J.; Zielinski, M.A.; Xu, R.; Jackson, G.; Adams, J.; Connellan, M.;
et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 2007, 130, 100–109. [CrossRef]

21. Al-Hassnan, Z.N.; Kaya, N. ISCA2-Related Mitochondrial Disorder. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M.,
Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993.

22. Braun, D.A.; Shril, S.; Sinha, A.; Schneider, R.; Tan, W.; Ashraf, S.; Hermle, T.; Jobst-Schwan, T.; Widmeier, E.; Majmundar, A.J.;
et al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am. J. Med. Genet. A 2018, 176, 2460–2465. [CrossRef]

https://doi.org/10.15585/mmwr.mm6631a1
https://www.ncbi.nlm.nih.gov/pubmed/28796763
https://doi.org/10.1111/j.1528-1167.2009.02384.x
https://www.ncbi.nlm.nih.gov/pubmed/19845734
https://doi.org/10.1016/j.wneu.2018.11.076
https://doi.org/10.1177/1077558703257000
https://www.ncbi.nlm.nih.gov/pubmed/15095551
https://doi.org/10.1136/bmjno-2022-000343
https://doi.org/10.1186/s12888-023-04943-1
https://doi.org/10.1016/j.apmr.2010.05.017
https://doi.org/10.1089/neu.2020.7141
https://doi.org/10.7205/MILMED-D-13-00413
https://doi.org/10.1682/JRRD.2014.10.0241
https://doi.org/10.1046/j.1528-1157.44.s10.4.x
https://doi.org/10.1111/j.1528-1167.2008.02004.x
https://www.ncbi.nlm.nih.gov/pubmed/19187288
https://doi.org/10.3390/brainsci12101340
https://www.ncbi.nlm.nih.gov/pubmed/36291274
https://doi.org/10.1089/neu.2017.5317
https://doi.org/10.3389/fnbeh.2021.787475
https://doi.org/10.1089/neu.2018.6333
https://www.ncbi.nlm.nih.gov/pubmed/31025597
https://doi.org/10.1007/s13311-014-0260-7
https://doi.org/10.1523/JNEUROSCI.1067-18.2018
https://doi.org/10.1016/j.ejcb.2022.151207
https://doi.org/10.1093/brain/awl272
https://doi.org/10.1002/ajmg.a.40489


Int. J. Mol. Sci. 2024, 25, 2880 19 of 21

23. Wang, J.; Lin, Z.J.; Liu, L.; Xu, H.Q.; Shi, Y.W.; Yi, Y.H.; He, N.; Liao, W.P. Epilepsy-associated genes. Seizure 2017, 44, 11–20.
[CrossRef] [PubMed]

24. Hubbard, W.B.; Vekaria, H.J.; Velmurugan, G.V.; Kalimon, O.J.; Prajapati, P.; Brown, E.; Geisler, J.G.; Sullivan, P.G. Mitochondrial
Dysfunction After Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug.
J. Neurotrauma 2023, 40, 2396–2409. [CrossRef]

25. Schmitt, R.; Qayum, S.; Pliss, A.; Kuzmin, A.N.; Muthaiah, V.P.K.; Kaliyappan, K.; Prasad, P.N.; Mahajan, S.D. Mitochondrial
Dysfunction and Apoptosis in Brain Microvascular Endothelial Cells Following Blast Traumatic Brain Injury. Cell Mol. Neurobiol.
2023, 43, 3639–3651. [CrossRef] [PubMed]

26. Guilhaume-Correa, F.; Pickrell, A.M.; VandeVord, P.J. The Imbalance of Astrocytic Mitochondrial Dynamics Following Blast-
Induced Traumatic Brain Injury. Biomedicines 2023, 11, 329. [CrossRef] [PubMed]

27. Song, H.; Chen, M.; Chen, C.; Cui, J.; Johnson, C.E.; Cheng, J.; Wang, X.; Swerdlow, R.H.; DePalma, R.G.; Xia, W.; et al. Proteomic
Analysis and Biochemical Correlates of Mitochondrial Dysfunction after Low-Intensity Primary Blast Exposure. J. Neurotrauma
2019, 36, 1591–1605. [CrossRef] [PubMed]

28. King, Z.A.; Lu, J.; Drager, A.; Miller, P.; Federowicz, S.; Lerman, J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG Models: A
platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016, 44, D515–D522. [CrossRef]
[PubMed]

29. Huang, Y.S.; Mendez, R.; Fernandez, M.; Richter, J.D. CPEB and translational control by cytoplasmic polyadenylation: Impact on
synaptic plasticity, learning, and memory. Mol. Psychiatry 2023, 28, 2728–2736. [CrossRef] [PubMed]

30. Su, X.; Qu, Y.; Mu, D. The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic
Targets. Biomolecules 2023, 13, 664. [CrossRef]

31. Hu, T.; Chen, X.; Lu, S.; Zeng, H.; Guo, L.; Han, Y. Biological Role and Mechanism of Lipid Metabolism Reprogramming Related
Gene ECHS1 in Cancer. Technol. Cancer Res. Treat. 2022, 21, 15330338221140655. [CrossRef]

32. Gowthami, N.; Pursotham, N.; Dey, G.; Ghose, V.; Sathe, G.; Pruthi, N.; Shukla, D.; Gayathri, N.; Santhoshkumar, R.; Padmanabhan,
B.; et al. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein
oxidation: Implications for secondary injury events. J. Neurochem. 2023, 167, 218–247. [CrossRef]

33. Shen, M.; Guo, Y.; Dong, Q.; Gao, Y.; Stockton, M.E.; Li, M.; Kannan, S.; Korabelnikov, T.; Schoeller, K.A.; Sirois, C.L.; et al. FXR1
regulation of parvalbumin interneurons in the prefrontal cortex is critical for schizophrenia-like behaviors. Mol. Psychiatry 2021,
26, 6845–6867. [CrossRef]

34. Knight, H.M.; Demirbugen Oz, M.; PerezGrovas-Saltijeral, A. Dysregulation of RNA modification systems in clinical populations
with neurocognitive disorders. Neural Regen. Res. 2024, 19, 1256–1261. [CrossRef]

35. Do Canto, A.M.; Donatti, A.; Geraldis, J.C.; Godoi, A.B.; da Rosa, D.C.; Lopes-Cendes, I. Neuroproteomics in Epilepsy: What Do
We Know so Far? Front. Mol. Neurosci. 2020, 13, 604158. [CrossRef] [PubMed]

36. Montes-Cano, M.A. Heterogeneous Nuclear Ribonucleoprotein K Autoantibodies in Patients who Suffered Severe Traumatic
Brain Injury. SOJ Immunol. 2014, 2, 1–6. [CrossRef]

37. Malik, I.; Kelley, C.P.; Wang, E.T.; Todd, P.K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev.
Mol. Cell Biol. 2021, 22, 589–607. [CrossRef] [PubMed]

38. Dorsett, C.R.; McGuire, J.L.; Niedzielko, T.L.; DePasquale, E.A.; Meller, J.; Floyd, C.L.; McCullumsmith, R.E. Traumatic Brain
Injury Induces Alterations in Cortical Glutamate Uptake without a Reduction in Glutamate Transporter-1 Protein Expression.
J. Neurotrauma 2017, 34, 220–234. [CrossRef]

39. Shevlyakov, A.D.; Kolesnikova, T.O.; de Abreu, M.S.; Petersen, E.V.; Yenkoyan, K.B.; Demin, K.A.; Kalueff, A.V. Forward
Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. Int. J. Mol. Sci. 2023,
24, 5280. [CrossRef]

40. Wen, M.; Jin, Y.; Zhang, H.; Sun, X.; Kuai, Y.; Tan, W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term
Phases of Focal Cerebral Ischemia-Reperfusion Injury. J. Proteome Res. 2019, 18, 3099–3118. [CrossRef]

41. Zhao, J.; Xu, C.; Cao, H.; Zhang, L.; Wang, X.; Chen, S. Identification of target genes in neuroinflammation and neurodegeneration
after traumatic brain injury in rats. PeerJ 2019, 7, e8324. [CrossRef]

42. Kim, J.E.; Lee, D.S.; Park, H.; Kang, T.C. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the
Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats. Int. J. Mol. Sci. 2020, 21, 9633. [CrossRef]

43. White, A.R.; Tiwari, D.; MacLeod, M.C.; Danzer, S.C.; Gross, C. PI3K isoform-selective inhibition in neuron-specific PTEN-deficient
mice rescues molecular defects and reduces epilepsy-associated phenotypes. Neurobiol. Dis. 2020, 144, 105026. [CrossRef]

44. Zhu, H.; Xu, H.; Ma, H.; Luo, L.; Yang, L.; Chen, F.; Qu, X.; Liu, H.; Zhang, R. LncRNA CASC2 inhibits astrocytic activation and
adenosine metabolism by regulating PTEN in pentylenetetrazol-induced epilepsy model. J. Chem. Neuroanat. 2020, 105, 101749.
[CrossRef]

45. Walker, C.L.; Wu, X.; Liu, N.K.; Xu, X.M. Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and
Activation of PI3K/AKT-mTOR Signaling after Traumatic Spinal Injuries. J. Neurotrauma 2019, 36, 2676–2687. [CrossRef]

46. Xiong, Y.; Cao, F.; Hu, L.; Yan, C.; Chen, L.; Panayi, A.C.; Sun, Y.; Zhou, W.; Zhang, P.; Wu, Q.; et al. miRNA-26a-5p Accelerates
Healing via Downregulation of PTEN in Fracture Patients with Traumatic Brain Injury. Mol. Ther. Nucleic Acids 2019, 17, 223–234.
[CrossRef]

https://doi.org/10.1016/j.seizure.2016.11.030
https://www.ncbi.nlm.nih.gov/pubmed/28007376
https://doi.org/10.1089/neu.2023.0102
https://doi.org/10.1007/s10571-023-01372-2
https://www.ncbi.nlm.nih.gov/pubmed/37314617
https://doi.org/10.3390/biomedicines11020329
https://www.ncbi.nlm.nih.gov/pubmed/36830865
https://doi.org/10.1089/neu.2018.6114
https://www.ncbi.nlm.nih.gov/pubmed/30484371
https://doi.org/10.1093/nar/gkv1049
https://www.ncbi.nlm.nih.gov/pubmed/26476456
https://doi.org/10.1038/s41380-023-02088-x
https://www.ncbi.nlm.nih.gov/pubmed/37131078
https://doi.org/10.3390/biom13040664
https://doi.org/10.1177/15330338221140655
https://doi.org/10.1111/jnc.15953
https://doi.org/10.1038/s41380-021-01096-z
https://doi.org/10.4103/1673-5374.385858
https://doi.org/10.3389/fnmol.2020.604158
https://www.ncbi.nlm.nih.gov/pubmed/33488359
https://doi.org/10.15226/soji/2/2/00114
https://doi.org/10.1038/s41580-021-00382-6
https://www.ncbi.nlm.nih.gov/pubmed/34140671
https://doi.org/10.1089/neu.2015.4372
https://doi.org/10.3390/ijms24065280
https://doi.org/10.1021/acs.jproteome.9b00220
https://doi.org/10.7717/peerj.8324
https://doi.org/10.3390/ijms21249633
https://doi.org/10.1016/j.nbd.2020.105026
https://doi.org/10.1016/j.jchemneu.2020.101749
https://doi.org/10.1089/neu.2018.6294
https://doi.org/10.1016/j.omtn.2019.06.001


Int. J. Mol. Sci. 2024, 25, 2880 20 of 21

47. Gao, X.; Xiong, Y.; Li, Q.; Han, M.; Shan, D.; Yang, G.; Zhang, S.; Xin, D.; Zhao, R.; Wang, Z.; et al. Extracellular vesicle-mediated
transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via
the PTEN/Akt pathway after subarachnoid hemorrhage. Cell Death Dis. 2020, 11, 363. [CrossRef] [PubMed]

48. Pearson, A.; Ortiz, C.; Eisenbaum, M.; Arrate, C.; Browning, M.; Mullan, M.; Bachmeier, C.; Crawford, F.; Ojo, J.O. Deletion
of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Mol. Cell Neurosci. 2023, 125, 103855.
[CrossRef] [PubMed]

49. Bolte, A.C.; Shapiro, D.A.; Dutta, A.B.; Ma, W.F.; Bruch, K.R.; Kovacs, M.A.; Royo Marco, A.; Ennerfelt, H.E.; Lukens, J.R. The
meningeal transcriptional response to traumatic brain injury and aging. eLife 2023, 12, e81154. [CrossRef] [PubMed]

50. Bando, S.Y.; Bertonha, F.B.; Pimentel-Silva, L.R.; de Oliveira, J.G.M.; Carneiro, M.A.D.; Oku, M.H.M.; Wen, H.T.; Castro, L.H.M.;
Moreira-Filho, C.A. Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment
in refractory mesial temporal lobe epilepsy patients. Sci. Rep. 2021, 11, 10257. [CrossRef] [PubMed]

51. Fernandez-Vizarra, E.; Zeviani, M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021, 595, 1062–1106. [CrossRef]
[PubMed]

52. Chen, H.; He, Y.; Ji, J.; Shi, Y. A Machine Learning Method for Identifying Critical Interactions Between Gene Pairs in Alzheimer’s
Disease Prediction. Front. Neurol. 2019, 10, 1162. [CrossRef]

53. Zhang, S.N.; Li, H.M.; Liu, Q.; Li, X.Z.; Yang, W.D.; Zhou, Y. Eucommiae Folium and Active Compounds Protect Against
Mitochondrial Dysfunction-Calcium Overload in Epileptic Hippocampal Neurons Through the Hypertrophic Cardiomyopathy
Pathway. Neurochem. Res. 2023, 48, 2674–2686. [CrossRef]

54. Liu, T.; Zhou, J.; Cui, H.; Li, P.; Li, H.; Wang, Y.; Tang, T. Quantitative proteomic analysis of intracerebral hemorrhage in rats with
a focus on brain energy metabolism. Brain Behav. 2018, 8, e01130. [CrossRef] [PubMed]

55. Liang, Y.; Tong, F.; Zhang, L.; Zhu, L.; Li, W.; Huang, W.; Zhao, S.; He, G.; Zhou, Y. iTRAQ-based proteomic analysis discovers
potential biomarkers of diffuse axonal injury in rats. Brain Res. Bull. 2019, 153, 289–304. [CrossRef] [PubMed]

56. Sanderson, L.E.; Lanko, K.; Alsagob, M.; Almass, R.; Al-Ahmadi, N.; Najafi, M.; Al-Muhaizea, M.A.; Alzaidan, H.; AlDhalaan,
H.; Perenthaler, E.; et al. Bi-allelic variants in HOPS complex subunit VPS41 cause cerebellar ataxia and abnormal membrane
trafficking. Brain 2021, 144, 769–780. [CrossRef] [PubMed]

57. Sheils, T.K.; Mathias, S.L.; Kelleher, K.J.; Siramshetty, V.B.; Nguyen, D.T.; Bologa, C.G.; Jensen, L.J.; Vidovic, D.; Koleti, A.; Schurer,
S.C.; et al. TCRD and Pharos 2021: Mining the human proteome for disease biology. Nucleic Acids Res 2021, 49, D1334–D1346.
[CrossRef] [PubMed]

58. Vigil, F.A.; Belchior, H.; Bugay, V.; Bazaldua, I.I.; Stoja, A.; Dantas, D.C.; Chun, S.H.; Farmer, A.; Bozdemir, E.; Holstein, D.M.;
et al. Acute Treatment with the M-Channel (K(v)7, KCNQ) Opener Retigabine Reduces the Long-Term Effects of Repetitive Blast
Traumatic Brain Injuries. Neurotherapeutics 2023, 20, 853–869. [CrossRef] [PubMed]

59. Arun, P.; Abu-Taleb, R.; Oguntayo, S.; Wang, Y.; Valiyaveettil, M.; Long, J.B.; Nambiar, M.P. Acute mitochondrial dysfunction
after blast exposure: Potential role of mitochondrial glutamate oxaloacetate transaminase. J. Neurotrauma 2013, 30, 1645–1651.
[CrossRef] [PubMed]

60. Wang, Y.; Arun, P.; Wei, Y.; Oguntayo, S.; Gharavi, R.; Valiyaveettil, M.; Nambiar, M.P.; Long, J.B. Repeated blast exposures cause
brain DNA fragmentation in mice. J. Neurotrauma 2014, 31, 498–504. [CrossRef] [PubMed]

61. Cao, R.; Zhang, C.; Mitkin, V.V.; Lankford, M.F.; Li, J.; Zuo, Z.; Meyer, C.H.; Goyne, C.P.; Ahlers, S.T.; Stone, J.R.; et al.
Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain Injury Using Photoacoustic Microscopy.
J. Neurotrauma 2019, 36, 1526–1534. [CrossRef]

62. Gama Sosa, M.A.; De Gasperi, R.; Pryor, D.; Perez Garcia, G.S.; Perez, G.M.; Abutarboush, R.; Kawoos, U.; Hogg, S.; Ache, B.;
Janssen, W.G.; et al. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and
vascular-associated neuroinflammation. Acta Neuropathol. Commun. 2021, 9, 167. [CrossRef] [PubMed]

63. Gama Sosa, M.A.; De Gasperi, R.; Pryor, D.; Perez Garcia, G.S.; Perez, G.M.; Abutarboush, R.; Kawoos, U.; Hogg, S.; Ache, B.;
Sowa, A.; et al. Late chronic local inflammation, synaptic alterations, vascular remodeling and arteriovenous malformations in
the brains of male rats exposed to repetitive low-level blast overpressures. Acta Neuropathol. Commun. 2023, 11, 81. [CrossRef]
[PubMed]

64. Kaur, C.; Singh, J.; Lim, M.K.; Ng, B.L.; Yap, E.P.; Ling, E.A. Ultrastructural changes of macroglial cells in the rat brain following
an exposure to a non-penetrative blast. Ann. Acad. Med. Singap. 1997, 26, 27–29. [PubMed]

65. Robinson, J.L.; Kocabas, P.; Wang, H.; Cholley, P.E.; Cook, D.; Nilsson, A.; Anton, M.; Ferreira, R.; Domenzain, I.; Billa, V.; et al. An
atlas of human metabolism. Sci. Signal 2020, 13, eaaz1482. [CrossRef] [PubMed]

66. Liang, C.S.; Bai, Y.M.; Hsu, J.W.; Huang, K.L.; Ko, N.Y.; Tsai, C.K.; Yeh, T.C.; Chu, H.T.; Tsai, S.J.; Chen, T.J.; et al. The Risk of
Epilepsy after Long-term Proton Pump Inhibitor Therapy. Seizure 2021, 87, 88–93. [CrossRef] [PubMed]

67. Poulos, R.C.; Cai, Z.; Robinson, P.J.; Reddel, R.R.; Zhong, Q. Opportunities for pharmacoproteomics in biomarker discovery.
Proteomics 2023, 23, e2200031. [CrossRef] [PubMed]

68. Cho, H.J.; Sajja, V.S.; Vandevord, P.J.; Lee, Y.W. Blast induces oxidative stress, inflammation, neuronal loss and subsequent
short-term memory impairment in rats. Neuroscience 2013, 253, 9–20. [CrossRef] [PubMed]

69. Shandra, O.; Robel, S. Inducing Post-Traumatic Epilepsy in a Mouse Model of Repetitive Diffuse Traumatic Brain Injury. J. Vis.
Exp. JoVE 2020, e60360. [CrossRef]

https://doi.org/10.1038/s41419-020-2530-0
https://www.ncbi.nlm.nih.gov/pubmed/32404916
https://doi.org/10.1016/j.mcn.2023.103855
https://www.ncbi.nlm.nih.gov/pubmed/37084991
https://doi.org/10.7554/eLife.81154
https://www.ncbi.nlm.nih.gov/pubmed/36594818
https://doi.org/10.1038/s41598-021-89802-3
https://www.ncbi.nlm.nih.gov/pubmed/33986407
https://doi.org/10.1002/1873-3468.13995
https://www.ncbi.nlm.nih.gov/pubmed/33159691
https://doi.org/10.3389/fneur.2019.01162
https://doi.org/10.1007/s11064-023-03937-5
https://doi.org/10.1002/brb3.1130
https://www.ncbi.nlm.nih.gov/pubmed/30307711
https://doi.org/10.1016/j.brainresbull.2019.09.004
https://www.ncbi.nlm.nih.gov/pubmed/31539556
https://doi.org/10.1093/brain/awaa459
https://www.ncbi.nlm.nih.gov/pubmed/33764426
https://doi.org/10.1093/nar/gkaa993
https://www.ncbi.nlm.nih.gov/pubmed/33156327
https://doi.org/10.1007/s13311-023-01361-9
https://www.ncbi.nlm.nih.gov/pubmed/36976493
https://doi.org/10.1089/neu.2012.2834
https://www.ncbi.nlm.nih.gov/pubmed/23600763
https://doi.org/10.1089/neu.2013.3074
https://www.ncbi.nlm.nih.gov/pubmed/24074345
https://doi.org/10.1089/neu.2018.6062
https://doi.org/10.1186/s40478-021-01269-5
https://www.ncbi.nlm.nih.gov/pubmed/34654480
https://doi.org/10.1186/s40478-023-01553-6
https://www.ncbi.nlm.nih.gov/pubmed/37173747
https://www.ncbi.nlm.nih.gov/pubmed/9140574
https://doi.org/10.1126/scisignal.aaz1482
https://www.ncbi.nlm.nih.gov/pubmed/32209698
https://doi.org/10.1016/j.seizure.2021.03.008
https://www.ncbi.nlm.nih.gov/pubmed/33735722
https://doi.org/10.1002/pmic.202200031
https://www.ncbi.nlm.nih.gov/pubmed/36086888
https://doi.org/10.1016/j.neuroscience.2013.08.037
https://www.ncbi.nlm.nih.gov/pubmed/23999126
https://doi.org/10.3791/60360


Int. J. Mol. Sci. 2024, 25, 2880 21 of 21

70. Ng, R.H.; Lee, J.W.; Baloni, P.; Diener, C.; Heath, J.R.; Su, Y. Constraint-Based Reconstruction and Analyses of Metabolic Models:
Open-Source Python Tools and Applications to Cancer. Front. Oncol. 2022, 12, 914594. [CrossRef]

71. Ivan, G.; Grolmusz, V. When the Web meets the cell: Using personalized PageRank for analyzing protein interaction networks.
Bioinformatics 2011, 27, 405–407. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fonc.2022.914594
https://doi.org/10.1093/bioinformatics/btq680

	Introduction 
	Results 
	Repeated Blast TBI Caused Spontaneous, Unprovoked, Recurrent Seizures 
	Chronic Protein Dysregulation in the Cortex and Hippocampus following rbTBI 
	Functional Enrichment Analysis of Dysregulated DEPs in rbTBI 
	Predicted Alterations in Flux Reactions Caused by DEPs in PTE+ rbTBI 
	Identification of High Confidence Targets for Drug Intervention in Seizure Prevention 

	Discussion 
	Materials and Methods 
	Animal Experimentation 
	EEG Electrode Placement and Video-EEG Data Acquisition 
	Seizure Detection 
	Cortical and Hippocampal Dissection and Dissociation 
	Trypsin Digestion and Untargeted LC–MS/MS Proteomic Acquisition 
	Untargeted Proteomic Data Analysis 
	Methodological Approach for Predicting Cellular Metabolism 
	Protein Network Centrality Analysis 

	References

