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Abstract: Several types of mood disorders lie along a continuum, with nebulous boundaries between
them. Understanding the mechanisms that contribute to mood disorder complexity is critical for
effective treatment. However, present treatments are largely centered around neurotransmission and
receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately
explain the complexities of mood disorders. In this opinion piece, based on our recent results, we
propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain
the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide
range of effects. Ribosomes, with their mobility across neurites and complex composition, have the
potential to become specialized during stress; thus, ribosome diversity and dysregulation are well
suited to explaining mood disorder complexity. Here, we first establish a framework connecting
ribosomes to the current state of knowledge associated with mood disorders. Then, we describe
the potential mechanisms through which ribosomes could homeostatically regulate systems to
manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome
hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic
avenues targeting mood disorders.
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1. Introduction

The global impact of mood disorders is significant, with major depressive disorder
(MDD) alone affecting approximately 280 million people worldwide [1]. Mood disorders
encompass a spectrum of depression subtypes [2], such as bipolar I depression, bipolar
II depression, mixed depression, agitated depression, atypical depression, melancholic
depression, recurrent brief depression, minor depressive disorder, seasonal depression, and
dysthymic disorder, which exist along a continuum with nebulous boundaries. While these
types are often treated as a single clinical entity in primary care [3], uncovering the mecha-
nisms that differentiate them is crucial for the development of effective treatment strategies.

Several central nervous system components, including GABA, glutamate, monoamin-
ergic neurotransmission, and the immune system, have been associated with depression
and the target of medication strategies. However, the prevalence of MDD and treatment-
resistant depression has continued to rise despite the use of these medications [4]. This
persistent trend implies that these systems may not comprehensively elucidate the underly-
ing biology of mood disorders. Understanding mood disorder complexity is crucial for the
development of targeted treatment approaches that address specific depression subtypes.

In our recent comparative study, which examined the molecular similarities among
in vitro and in vivo experimental models of chronic stress, recapitulating several aspects of
depression, and postmortem subjects with mood disorders [5], we observed the significant
dysregulation of ribosomal protein genes (RPGs) across all these paradigms. Based on this
finding, we propose a ribosome hypothesis of mood-related disorders. The hypothesis sug-
gests that RPG dysregulation during these disorders can alter the number and composition
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of ribosomes, potentially leading to stress-induced ribosome specialization. This special-
ization, particularly in neurites, can impact the synthesis of proteins that sculpt neuronal
input and output, contributing to various forms of synaptic dysregulation associated with
mood disorders.

In this opinion piece, we aim to further examine how the ribosome, with its diverse
composition and regulatory mechanisms at different levels, fits into the existing anatomical
and physiological frameworks of mood-related disorders and has the potential to offer
explanations for depression subtype complexity. We discuss the development of a detailed
model of potential mechanisms of ribosomal regulation in mood disorders and address the
outstanding questions and associations that can establish the foundational aspects of the
ribosome hypothesis of mood-related disorders.

2. The Role of Ribosomes within the Current Anatomical and Physiological
Frameworks of Mood Disorders

Several broad frameworks have been proposed to describe the pathophysiology of
mood disorders at different levels. In this section, we will examine the existing anatomi-
cal and physiological frameworks of mood disorders and present findings that position
ribosomes and their infrastructure within these frameworks.

At the anatomical level, the diverse structure and branching pattern of dendrites play
a significant role in shaping input integration, including excitatory and inhibitory inputs
from different branches over time [6,7]. Previous studies have shown that abnormalities
in dendritic input or regulation can cause microcircuitry remodeling, leading to cognitive
changes associated with learning, memory, and attention deficits, which are hallmarks
of mood disorders [8–10]. In our recent study [5], we discovered an inverse relationship
between the expression of RPGs and their pseudogenes, with RPGs being downregulated
and RP pseudogenes being upregulated, in three paradigms: (1) postmortem subjects with
MDD and those who died by suicide; (2) mice exposed to chronic variable stress (CVS);
and (3) glucocorticoid-stressed primary neurons. Recent neuronal compartment-specific
transcriptomic studies have demonstrated the enrichment of RPGs in the dendrites and
neuritic compartment of neurons compared to the soma [11–15]. Strikingly, across all three
paradigms, the observed dysregulation of RPG families prominently correlated with the
neurite and synaptic pathways, establishing a direct link between compartment-specific en-
richment and functional impact. Additionally, confirming its functional association in each
of the respective paradigms, the inverse relationship between RPGs and RP pseudogenes
was (1) reversed in postmortem subjects in remission and attenuated in (2) CVS-exposed
mice treated with ketamine, a rapid antidepressant, and (3) glucocorticoid-stressed primary
neurons treated with RU486, a glucocorticoid receptor antagonist. While ribosomes are
traditionally viewed as homogeneous entities, building on the existing ribosome filter hy-
pothesis [16], we propose that the functional dysregulations resulting from stress-induced
changes in RP expression may lead to altered ribosome composition and the formation of
specialized ribosomes [17,18] that can differentially impact mRNA translation during these
disorders. In neurites, the ribosome specialization may alter protein synthesis to influence
synaptic input and output.

At the physiological level, acute and chronic environmental changes can induce
various types of plasticity in neuronal networks, and these types of plasticity are thought to
underlie some of the manifestations of mood disorders [19]. Hebbian plasticity, for example,
involves changes in synaptic strength that align with the applied stimuli in a feedforward
manner. Strong stimulation leads to long-term potentiation (LTP), while sustained low-
frequency stimulation results in long-term depression (LTD) [20]. On the other hand,
homeostatic plasticity (aka, homeostatic synaptic scaling) utilizes negative feedback to
restore neuronal activity patterns to their initial set point by adjusting synaptic strengths
in the opposite direction [21,22]. For instance, global silencing activity increases synaptic
strength, while enhancing activity decreases efficacy. Homeostatic plasticity is crucial
for maintaining optimal neural function by preserving relative synaptic strengths, which
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is particularly important for cognitive functions. Consequently, homeostatic plasticity
holds promise as a potential target for treating cognitive impairments associated with
mood-related disorders [23]. Notably, homeostatic plasticity relies on the synthesis of new
proteins that regulate key physiological parameters and takes time to develop, ranging
from hours to days [24–26]. At the structural level, homeostatic plasticity is a result of
both neuron-wide and compartment-specific changes; importantly, the crucial regulators of
synaptic scaling exhibit inverse associations in their expression in the soma and neurites.
In this context, ribosomes, as contributors to protein synthesis, may play a significant role
in the mechanisms underlying the neuron-wide and compartment-specific changes that are
the foundation of homeostatic plasticity. Supporting this notion, our study demonstrated
that the dysregulated expression of RPGs was positively correlated with soma-related
pathways and negatively correlated with neurite-related pathways. Furthermore, the
average half-life of RPGs (10 to 17 h) [27] falls within the duration required for homeostatic
scaling, further supporting their potential involvement in mechanisms of homeostatic
synaptic scaling. Thus, stress-induced ribosome dysregulation may be a key contributor to
the homeostatic plasticity underlying mood disorders.

We posit that any comprehensive framework explaining the diversity in mood disor-
ders must incorporate the infrastructure diversity that results in a wide range of effects.
Ribosomes, characterized by their intricate composition, numerous phosphorylation sites,
and multiple rRNA molecules, constitute a crucial component of the neuronal infrastruc-
ture, which offers a vast repertoire of regulatory capabilities that can provide insights on the
subtle differentiations observed among various types of mood disorders. In the following
section, we will delve into the ribosome hypothesis of mood-related disorders, building
upon these anatomical and physiological associations.

3. The Ribosome Hypothesis: Mechanisms of Ribosomal Regulation in Mood-Related
Disorders

Our hypothesis posits that there are two primary mechanisms by which a change in
RP expression can sculpt the adaptability of neurons to changes in synaptic input (Figure 1):
(1) through a global alteration in ribosome biosynthesis that influences synaptic protein
expression and synaptic weight throughout the neuron and (2) through local alterations in
ribosome composition, leading to ribosome specialization that affects synaptic function in
a compartment-specific manner.

First, the downregulation of RPGs can result in reduced ribosome biosynthesis through-
out the neuron, leading to a global decrease in translation and protein synthesis. A similar
downregulation of RPGs is observed in single-celled microorganisms as a strategy to con-
serve energy and nutrients during stress [28,29]. In MDD and CVS, RPG downregulation
may preserve the essential amino acids abundant in ribosomes [30,31], such as lysine and
arginine, deficiencies of which have been linked to depression [32–34]. As the majority of
RPGs are enriched in neurites, the homeostatic downregulation of RPGs reduces global
synaptic protein synthesis, thereby contributing to homeostatic synaptic scaling.

Homeostatic scaling can also occur in a set of synapses on a particular dendritic
branch or in a particular synapse [23]. Thus, the second mechanism by which RPs can
regulate neuronal response is through modifying ribosome composition to form specialized
ribosomes in a site-specific manner. At the transcript level, there are over 80 RPGs and
more than 2000 RP pseudogenes. Ribosome biogenesis, reliant on equimolar levels of
RPs, is sensitive to RPG gene dosage. The downregulation of RPGs during stress and
depression suggests that it could disrupt the molar quantity (stoichiometry) among the
core RPs composing the ribosomes, thus introducing heterogeneity. Additionally, since
the number and type of RPGs downregulated differed in a phenotype-, species-, and
sex-specific manner [5], the heterogeneity extends to diverse regulatory patterns across
these variables. RP stoichiometry can also be influenced by the upregulation of the RP
pseudogenes observed in our study. At the transcript level, RP pseudogenes can act as
short interfering RNA (siRNA) to downregulate the expression of parent RPGs through an



Int. J. Mol. Sci. 2024, 25, 2815 4 of 8

RNA interference-based mechanism or function as competitive endogenous RNA (ceRNA),
acting as sponges for common microRNAs (miRNAs) to attenuate the downregulation of
parent RPG expression [35,36]. In either case, RP pseudogenes can modify the expression
of specific RPGs, leading to altered ribosome stoichiometry. Most pseudogenes are also
known to code for a truncated form of a protein [37–40], which can serve as an RP paralog
and substitute for the parent RP in the ribosome, further adding to ribosome heterogeneity.
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Figure 1. The potential mechanisms by which the downregulation of RPGs could impact synaptic
inputs (A–E) are outlined as follows: 1. Global Effects (Location Non-Specific): RPG downregulation
is likely to lead to a reduction in ribosome production. This, in turn, may diminish the synthesis
of synaptic proteins, ultimately resulting in an overall decrease in synaptic weight. 2. Local Effects
(Location Specific): In addition to the global impact, RPG downregulation may induce changes in
ribosome composition within specific cellular locales. This can manifest as the removal, alteration,
or substitution of a few RPs. Such alterations have the potential to give rise to specialized ribo-
somes, thereby influencing the translation of synaptic proteins in a compartment-specific manner.
3. Concomitant Reduction in Ribosome Production: It is noteworthy that the reduction in ribosome
production, as observed due to RPG downregulation, may occur simultaneously with the generation
of specialized ribosomes. In such instances, the decrease in synaptic weight can be observed both
globally and locally.

Ribosomal heterogeneity is distinct from ribosomal specialization. Specialized ri-
bosomes are a subset of heterogeneous ribosomes that selectively modulate translation
for specific mRNAs. They possess the ability to selectively and site-specifically regulate
translation control [41], influencing translation initiation, speed, fidelity, and selectivity
(Figure 1, bottom). Notably, specialized ribosomes, along with their ability to move across
neurites, can generate numerous permutations that contribute to the diverse way in which
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the synaptic input can be regulated throughout the dendritic arbor, potentially explaining
the nuanced nature of the spectrum of depression and other mood disorders.

4. Exploring Key Questions and Associations in the Ribosome Hypothesis

The proposed ribosome hypothesis raises several important questions that require
further investigation. First, since the hypothesis is based on transcriptomics data, a critical
first step is to examine the gene expression program (i.e., gene to protein) of RPGs and RP
pseudogenes, elucidating their role in the global and local regulation of ribosomes. At the
transcriptional level, research needs to identify stress-induced transcription factors and how
they regulate the RPG dose (i.e., mRNA levels), which tightly controls RP stoichiometry. At
the post-transcriptional level, studies need to investigate the role of RPG mRNA splicing
in regulating RPG diversity and explore the role of RP pseudogenes as miRNAs and
ceRNAs that modulate RPG mRNA processing. To establish the existence of the altered
ribosome stoichiometry proposed in our ribosome hypothesis, investigations must identify
the absolute change in RPs within ribosomes and define the specific RPs undergoing altered
stochiometric composition using quantitative proteomics approaches [42,43]. As mentioned
above, RP pseudogenes are likely to play an important role in ribosome heterogeneity and
dysregulation; however, they pose a particular challenge in proteomics studies, as their
similarity to the parent RP make them difficult to distinguish. Thus, translatiomics-based
approaches, known for mitigating this issue [37], will be needed to establish the role of RP
pseudogenes in coding for RP paralogs and altering ribosome stoichiometry [44]. Together,
these investigations are likely to demonstrate stress-induced changes in ribosomal proteins,
resulting in an altered ribosome number and composition, providing support for our
ribosome hypothesis.

Our current understanding of mood disorders includes an appreciation for the cell
type-specific changes underlying circuit dysregulation. Thus, single-cell transcriptomics
(scRNA-seq) and translatomics (scRibo-seq) approaches should be employed to discern the
cell-type-specific gene expression program of RPGs and RP pseudogenes. Next, the most
challenging aspect of substantiating the ribosome hypothesis lies in establishing the role
of site-specific ribosomal specialization in explaining the nuanced nature of the spectrum
of mood disorders. Investigating site-specific ribosomal specialization entails generating
permutations that modify synaptic input throughout the dendritic arbor. Unfortunately,
there is a lack of experiments that simultaneously modify ribosomal composition and map
the synaptic input at different dendritic arbor locations. However, with a mathematical
understanding of protein mobility across dendrites [45] and well-rationalized assumptions
regarding changes in synaptic scaling along the depression spectrum, available detailed
biophysical models can be employed to examine and evaluate this concept.

Finally, genome-wide association studies (GWASs) of depression [46] have identified
genetic variations linked to neurite- and synapse-related pathways, which act in parallel
to the pathways associated with the dysregulation of RPG infrastructure. This intriguing
association calls for an examination of the correspondence between the genetic variations
identified in GWAS and RPG infrastructure (i.e., RPGs and RP pseudogenes). Understand-
ing the degree of correspondence between depression-related genetic variants and RPG
infrastructure will provide insights into whether the observed synaptic changes associated
with RPG infrastructure are driven by genetic mechanisms underlying depression risk or
by pathophysiological mechanisms that influence symptom manifestations.

5. Conclusions

In conclusion, the ribosome hypothesis capitalizes on the evolutionarily conserved
role of ribosomes and RPGs in stress [47], offering valuable insight into the nuances linked
with various depression subtypes. Furthermore, the conserved nature of this dysregulation
in human MDD and mouse models of stress provides a simple experimental system
for further the investigation of the proposed mechanisms. The diversity of RPGs and
their regulatory role at various levels are key aspects of this hypothesis and suggest that
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targeting RP expression and ribosomal specialization could inspire unexplored therapeutic
strategies. Notably, ribosomes, typically associated with protein synthesis, are involved
in synthesizing transmitter receptors, synaptic scaffold proteins, and other regulatory
proteins. Therefore, our novel ribosome hypothesis encompasses and integrates other
existing hypotheses of depression involving GABA [48], glutamate [49], immune [50],
and monoaminergic [51] systems. As such, exploring the therapeutic options associated
with ribosomal dysregulation holds promise for a broader transdiagnostic impact across
depression subtypes.
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