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Abstract: Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized
member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the
regulation of several cellular pathways that support the survival, death, and general homeostasis of
eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in
the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner,
making this enzyme an important player in disease development and progression. Moreover, TG2 is
capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and
biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis.
Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number
of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein
kinase, guanine nucleotide binder, and cytosolic–nuclear translocator. With respect to cancer, TG2′s
role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor
and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a
tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.

Keywords: transglutaminase 2; melanoma; breast cancer; ovarian cancer; colorectal cancer; leukemia;
pancreatic cancer; lung cancer; microenvironment

1. Introduction

Transglutaminases (TGs) comprise a family of nine multifunctional isoenzymes named
TG1-7, blood coagulation factor XIII, and Band 4.2 [1–6]. First described by Waelsch in
1957, transglutaminase type 2 (TG2) is ubiquitously expressed and catalyzes calcium (Ca2+)-
dependent post-translational protein transamidation.

Among the members of the TG family, TG2 is the most abundant and well-characterized
transglutaminase in mammals [7] and is expressed in all cellular districts (nucleus, cytosol,
and organelles), as well as in the extracellular environment [5,8,9]. While it retains strong
sequence homology in its catalytic site [10] compared to other members of the transglu-
taminase family, TG2 has structural peculiarities that establish its uniqueness, making it a
versatile protein [11] (see Figure 1). TG2 has four different protein domains, each of which is
involved in various enzymatic activities. In addition to its primary transamidation function,
TG2 has been demonstrated to possess Ca2+-independent GTPase, kinase, proteolytic, and
scaffold activities [2,12,13].
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Figure 1. Representation of TG2′s structure from https://alphafold.ebi.ac.uk, accessed on 21 January 
2024. (A) Tertiary structure of TG2. Different colors represent different subunits. (B) TG2′s molecular 
surface. Different colors represent different subunits. 

TG2 can undergo a conformational change from a closed to an open state upon 
exposure to elevated intracellular Ca2+ concentrations triggered by various stimuli, and 
this is responsible for the activation of its cross-linking/transamidating activity [2,12]. TG2 
has a great number of substrates inside cells, and the enzyme’s presence throughout cells 
allows for the formation of sub-cellular regions where Ca2+ levels rise locally, as observed 
during autophagy due to lysosomes’ release of Ca2+ [14]. Instead of Ca2+, TG2 can bind 
GTP, shifting to a closed signaling-active conformation which locks transamidase activity. 
In this closed state, TG2 functions as a GTPase [7,15]. TG2′s activity is further modulated 
by various cofactors, such as membrane lipids like sphingosyl phosphocholine, which can 
influence its susceptibility to Ca2+ levels [1,16]. In the closed state, TG2 cannot bind Ca2+; 
thus, GTP and Ca2+ binding and consequently GTPase and transamidase activity are 
mutually exclusive [1,2,11,17,18]. 

As stated above, TG2 has different substrates that can undergo post-translation 
modifications via different molecular mechanisms thanks to its multiple activities, such as 
those of transamidases, deamidases, GTPases, isopeptidases, adapters/scaffolds, protein 
disulfide isomerases, and kinases, hipusination regulation, and serotonilation [2,19]. 

Moreover, making the study of this enzyme complicated, TG2 activity is diverse 
depending on its subcellular localization. Therefore, TG2 is involved in different cellular 
processes like cell death, growth, adhesion, and differentiation, as well as inflammation, 
tissue remodeling, wound healing, and extracellular matrix (ECM) organization [6,20,21]. 

Figure 1. Representation of TG2′s structure from https://alphafold.ebi.ac.uk, accessed on 21 January
2024. (A) Tertiary structure of TG2. Different colors represent different domains. (B) TG2′s molecular
surface. Different colors represent different domains.

TG2 can undergo a conformational change from a closed to an open state upon
exposure to elevated intracellular Ca2+ concentrations triggered by various stimuli, and
this is responsible for the activation of its cross-linking/transamidating activity [2,12]. TG2
has a great number of substrates inside cells, and the enzyme’s presence throughout cells
allows for the formation of sub-cellular regions where Ca2+ levels rise locally, as observed
during autophagy due to lysosomes’ release of Ca2+ [14]. Instead of Ca2+, TG2 can bind
GTP, shifting to a closed signaling-active conformation which locks transamidase activity.
In this closed state, TG2 functions as a GTPase [7,15]. TG2′s activity is further modulated
by various cofactors, such as membrane lipids like sphingosyl phosphocholine, which
can influence its susceptibility to Ca2+ levels [1,16]. In the closed state, TG2 cannot bind
Ca2+; thus, GTP and Ca2+ binding and consequently GTPase and transamidase activity are
mutually exclusive [1,2,11,17,18].

As stated above, TG2 has different substrates that can undergo post-translation modifi-
cations via different molecular mechanisms thanks to its multiple activities, such as those of
transamidases, deamidases, GTPases, isopeptidases, adapters/scaffolds, protein disulfide
isomerases, and kinases, hipusination regulation, and serotonilation [2,19].

Moreover, making the study of this enzyme complicated, TG2 activity is diverse
depending on its subcellular localization. Therefore, TG2 is involved in different cellular
processes like cell death, growth, adhesion, and differentiation, as well as inflammation,
tissue remodeling, wound healing, and extracellular matrix (ECM) organization [6,20,21].

https://alphafold.ebi.ac.uk
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In addition, a structural role of TG2 was recently dissected [1]. Indeed, it has been
demonstrated that TG2 contributes to the formation of mitochondria–ER contact sites by its
interaction with Heat Shock Protein Family A (Hsp70) Member 9 (GRP75) and Inositol 1,4,5-
Trisphosphate Receptor, Type 3 (IP3R); TG2 ablation leads to a wider and reduced number
of contacts between the two organelles [22,23]. Moreover, its expression is important for
supporting β-catenin accumulation inside the nucleus, where can regulate the transcription
of Wnt-signaling-related genes, ultimately enhancing proliferation [17,24]. Finally, TG2
promotes cell proliferation, also modulating the signaling pathways of extracellular signal-
regulated protein kinases 1 and 2 (ERK1/2) [17].

This transglutaminase also plays a fundamental role in ECM assembly. Indeed, it is
linked to the regulation of some extracellular components which support cancer growth.
TG2, stimulated by Epidermal Growth Factor (EGF) through the Ras and c-Jun kinase
pathways, facilitates the motility and invasive capacity of tumor cells [25].

TG2 has been observed to exhibit protein disulfide isomerase (PDI) activity, a function
linked to mitochondrial-dependent apoptosis [26,27]. This activity leads to the formation
and breakage of disulfide bonds between cysteine residues [28]. Serine/threonine kinase
activity phosphorylates specific substrates such as p53, histones H1-4, and retinoblastoma
(Rb) protein, along with serotonylation and hypusination activities [29–32].

According to TG2′s multiple functions inside cells and in distinct tissues, it is clear that
its deregulation is linked to numerous diseases, such as celiac disease, metabolic disorders,
neurodegeneration, fibrosis, inflammation, and cancer, and its role is highly controversial
and debated.

2. TG2 in Cancer

The pleiotropic nature of TG2 makes it an essential player in numerous cellular pro-
cesses; it participates in cell growth and differentiation, adhesion and migration, autophagy,
inflammation, tissue repair, fibrosis, extracellular matrix formation, proteostasis, apoptosis,
angiogenesis, the EMT transition, and epigenetic modification [10,21,23,28,33,34]. The
impairment of such a crucial enzyme that participates in several processes leads to different
hallmarks of cancer, such as cancer progression, metastasis spread, cancer cell survival and
invasion, and drug resistance. As reported in Table 1, TG2 has been shown to be involved
in the resistance mechanisms of some of commonly used drugs.

Table 1. Drugs for which TG2 is involved in resistance mechanisms.

Tumor Type Drug Reference

Skin Cutaneous Melanoma Dacarbazine [35]

Breast Cancer
Doxorubicin [36]

Neratinib [37]
PD-L1 inhibitors [38]

Lung Cancer Prexasertib
Doxorubicin

[39]
[40]

TG2 expression was previously reported to be altered in several tumors [17,26,41–43].
An investigation of TG2 expression levels in patients affected by different types of cancers
was conducted using the publicly available GEPIA (Gene Expression Profiling Interactive
Analysis) database [27]. We compared TGM2 mRNA expression levels in both tumor and
normal tissues. Our analysis revealed significantly increased expression levels of the TGM2
gene in tumor samples compared to controls for melanoma, diffuse large B-cell lymphoma,
and pancreatic adenocarcinoma. Conversely, TGM2 mRNA levels showed an opposite
trend in acute myeloid leukemia and lung adenocarcinomas. Finally, TGM2 did not exhibit
statistically significant differences in breast carcinoma, glioblastoma, ovarian cancer, and
colon adenocarcinoma (Figure 2).
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value: * = <0.01. 

To better clarify the association between TGM2 expression and overall survival in the 
same cohort of patients, we used a Kaplan–Meier curve by sorting samples for high and 
low levels of TGM2 expression according to median TGM2 mRNA levels. These analyses 
confirmed the prognostic value of TG2 in melanoma, glioblastoma, pancreatic 
adenocarcinoma, and lung carcinoma, as depicted in Figure 3. 

TG2 plays a pivotal role in various cancer-related processes and pathways (Figure 4), 
contributing to several cancer hallmarks [17,44]. 

For instance, TG2 promotes uncontrolled cellular proliferation by interacting with 
TGF-β, a cytokine involved in proliferation, differentiation, and immune function. TGF-β 
regulates TG2 through a direct interaction with NF-κB on its IKB regulatory subunit and 
leads to cell proliferation. This process consequently contributes to the formation of 
spheroids and promotes metastasis [44]. It has also been demonstrated that TG2 leads to 
the accumulation of β-catenin, which translocates into the nucleus and activates the 
expression of CyclinD-1 and c-Myc, enhancing cell proliferation [17,24]. TG2 also 
mediates the regulation of the extracellular signal-regulated protein kinase 1 and 2 
(ERK1/2) pathways that promote proliferation as well. 

The ability to proliferate is related to the evasion of regulatory processes in cancer 
that are often managed via onco-suppressive pathways. With this concern, TG2 has been 
recognized to modulate two fundamental onco-suppressors: p53 and Rb. However, TG2′s 

Figure 2. TGM2 expression level in tumors vs. normal tissues on GEPIA. SKCM (skin cutaneous
melanoma), BRCA (breast invasive carcinoma), GBM (glioblastoma multiforme), OV (ovarian serous
cystadenocarcinoma), COAD (colon adenocarcinoma), LAML (acute myeloid leukemia), DLBC
(lymphoid neoplasm diffuse large b-cell lymphoma), PAAD (pancreatic adenocarcinoma)0, and
LUAD+LUSC (lung adenocarcinoma + lung squamous cell carcinoma). One-way ANOVA; p-value:
* = <0.01.

To better clarify the association between TGM2 expression and overall survival in
the same cohort of patients, we used a Kaplan–Meier curve by sorting samples for high
and low levels of TGM2 expression according to median TGM2 mRNA levels. These
analyses confirmed the prognostic value of TG2 in melanoma, glioblastoma, pancreatic
adenocarcinoma, and lung carcinoma, as depicted in Figure 3.

TG2 plays a pivotal role in various cancer-related processes and pathways (Figure 4),
contributing to several cancer hallmarks [17,44].

For instance, TG2 promotes uncontrolled cellular proliferation by interacting with
TGF-β, a cytokine involved in proliferation, differentiation, and immune function. TGF-
β regulates TG2 through a direct interaction with NF-κB on its IKB regulatory subunit
and leads to cell proliferation. This process consequently contributes to the formation of
spheroids and promotes metastasis [44]. It has also been demonstrated that TG2 leads to
the accumulation of β-catenin, which translocates into the nucleus and activates the expres-
sion of CyclinD-1 and c-Myc, enhancing cell proliferation [17,24]. TG2 also mediates the
regulation of the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) pathways
that promote proliferation as well.

The ability to proliferate is related to the evasion of regulatory processes in cancer
that are often managed via onco-suppressive pathways. With this concern, TG2 has
been recognized to modulate two fundamental onco-suppressors: p53 and Rb. However,
TG2′s kinase activity can also impair the negative feedback loop that involves MDM2
(Mouse Double Minute 2 protein) and p53; p53 induces MDM2 transcription, and MDM2
ubiquitinates p53 to induce its degradation. In this way, TG2-phosphorylated p53 stays
undegraded as MDM2 does not ubiquitinate it and it accumulates, promoting apoptotic
events [45].
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TG2′s pro-apoptotic or anti-apoptotic effects were based on cellular context and changes 

Figure 3. Overall survival based on TGM2 expression level in SKCM (skin cutaneous melanoma),
BRCA (breast invasive carcinoma), GBM (glioblastoma multiforme), OV (ovarian serous cystade-
nocarcinoma), COAD (colon adenocarcinoma), LAML (acute myeloid leukemia), DLBC (lymphoid
neoplasm diffuse large b-cell lymphoma), PAAD (pancreatic adenocarcinoma), and LUAD + LUSC
(lung adenocarcinoma + lung squamous cell carcinoma) was obtained through a Kaplan–Meier curve
by sorting samples for high (yellow line) and low TGM2 (blue line) expression groups according to
quartile (high cutoff = 25%; low cutoff = 75%) on GEPIA. Percent survival was plotted, and p-values
are shown as per figure specifications. The dotted lines represent the 95% Confidence Interval.

Increased TG2 levels inside eukaryotic cells are considered a marker of apoptosis.
However, deepening the relationship between TG2 and apoptosis, it was shown that
TG2′s pro-apoptotic or anti-apoptotic effects were based on cellular context and changes
in structural conformation (further influenced by Ca2+ and GTP concentrations). In this
regard, it was demonstrated that TG2′s crosslinking of Sp1 induces apoptosis, while its
action on caspase-3 and Bax can inhibit programmed cell death [44,46,47].
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Cell death is prevented in cancer by a process called the epithelial to mesenchymal
transition (EMT). The EMT consists of a phenotypic switch which includes the downreg-
ulation of adhesion molecules and the contemporary reprogramming of gene expression
toward a mesenchymal profile with which survival factors are overproduced. This tran-
sition is often adopted by cancer cells to avoid death during the metastatic spreading
phase [48,49]. TG2 also helps cells that undergo the EMT to acquire further stemness
and plasticity, contributing to support stemness not only in primary tumors but also in
their metastases [50,51]. TG2′s activity is indeed linked with the formation of cancer stem
cells (CSCs) as it increases, through a non-canonical NF-κB pathway, the expression of
CD44, their typical marker and a promoter of immortality, metastasis, chemoresistance,
and a stem-like phenotype [44,52]. This is also explainable through integrin clustering
that triggers intracellular growth and survival signaling pathways (PI3K/AKT, Hippo,
and YAP (Yes-Associated Protein) and TAZ (transcriptional coactivator with PDZ-binding
motif) [32,53].

Even ECM homeostasis is regulated by TG2 under normal conditions. In particular,
ECM permeability and integrity are controlled thanks to the balance between TG2 (which
regulates ECM stiffness) and metalloproteases (MMPs, which degrade ECM components).
MMPs promote new matrix synthesis by fibroblasts, which then secrete TG2 and LOXs to
adjust its consistency. A metalloprotease’s physiological role is to degrade ECM proteins,
thus opposing TG2 crosslinking and stabilization [54,55].
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Figure 4. Schematic representation of TG2′s involvement in different pathways and tumors. For each
axis, the following are indicated: TG2′s effect (orange TG2: inhibitor; blue TG2: activator), the tumor
type in which this signaling is described, and its role in cancer progression. ECM: extracellular matrix.

TG2 also activates the FAK pathway to increase the contractility of tumor cells and
the stabilization of focal adhesions. Its crosslinking activity, exerted on integrins and
fibronectin, enhances adhesion, cell attachment, and invasion [56–58]. Particularly, in
melanoma models, TG2 has been proven to stabilize contacts between circulating tumor
cells and the subendothelial matrix but also to downregulate metastasizing capacity [59].

In the following paragraphs, we will discuss the different roles of TG2 in several cancer
types, briefly reporting what has been discovered so far and highlighting recent discoveries
to finally identify new possible therapeutic approaches involving TG2 in the treatment of
different tumors.

2.1. TG2 and Melanoma

Skin cutaneous melanoma (SKCM) is a highly aggressive cancer with a 5-year survival
rate lower than 5% in stage III or IV of the disease. The ability of SKCM to form metastases
and spread represents a challenge which remains unaddressed [60]. Unlike normal cells, the
TG2 expression level is upregulated in metastatic melanoma, correlating with an invasive
stage of the disease [20,61], and promotes apoptosis in neoplastic cells (Figure 5) [62].
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Figure 5. Representation of TG2 upregulation and downregulation effects in SKCM. Different levels
of TG2 expression modify the characteristics of proliferation, invasiveness, melanin production, and
metastasis formation in melanoma cells.

Metastases development is a critical issue in cancer treatment. In melanoma cells, TG2
seems to have a key role in the stabilization of the ECM and in the inhibition of tumor cell
migration. This confirms TG2 as a positive prognostic factor, with its absence fundamental
for metastases growth [61]. Furthermore, host tissues appear to respond to tumor invasion
by increasing TG2 expression. In other types of tumors, the shift to a highly invasive
phenotype is accompanied with an increase in TG2 expression and/or activity [61].

Cell motility is a critical step important to supporting the formation of metastases. In
2008, Kim and colleagues demonstrated that TG2 production is supported by hyaluronic
acid through the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), Rac
Family Small GTPase 1 (RAC1), and the Focal Adhesion Kinase (FAK). Thus, TG2 inhibitors
can decrease the cellular motility of melanoma cells [57].

We recently demonstrated a new mechanism involving TG2 in melanoma metastasis.
We showed the existence of a microphthalmia-associated transcription factor (MITF)–TG2
axis involved in the phenotype switching of SKCM cells [20]. In particular, we observed
that high levels of TG2 correlate with high MITF levels and an increased capacity to enter
into the nucleus to act as a transcription factor, finally activating several genes involved in
the pigmentation process and in leading to a differentiated/melanocytic and less invasive
phenotype. Conversely, low levels of TG2 impact both MITF expression and nuclear translo-
cation, supporting an undifferentiated and more invasive/mesenchymal phenotype [35].
Thus, TG2 KO melanoma cells are less differentiated, unable to pigment, and form larger
metastases when injected in vivo [57]. Moreover, TG2 is a positive prognostic factor as its
knock-out (KO) seems to be correlated with the impairment of the immune cell recruitment
and activation [43].

In addition to the formation of metastasis, resistance to chemotherapy is also a critical
problem in SKCM treatment. Dacarbazine is one of the main drugs for melanoma treat-
ment [6]. Tumor cells that express lower levels of TG2 are more sensitive to treatment with
this compound, showing a clear correlation between a high level of expression of TG2 and
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resistance to chemotherapy. It has also been demonstrated that TG2 expression activates
integrin signaling pathways to enhance melanoma cell chemoresistance [62].

Tumor growth is frequently related to an increase in extracellular matrix production. In
SKCM, the G-protein coupled receptor GPR56, which binds the extracellular matrix (ECM),
interacts with TG2, suppressing the development of the tumor. GPR56 and TG2 have
opposite roles in melanoma: while TG2 promotes melanoma growth, GPR56 internalizes
TG2, reducing its effect [63].

2.2. TG2 and Breast Cancer

Breast cancer (BC) stands as the prevailing malignant tumor among women and is
the second most common cause of cancer-related deaths in the Western world. Despite
significant efforts in recent decades, the mechanism driving tumorigenesis and progression
remains elusive [64]. Since 1996, it has been postulated that TG2 plays a role in breast
cancer [26], demonstrating its involvement in fostering the EMT [48], advancing metastatic
progression [65–67], and contributing to drug resistance [36–38]; see Figure 6.
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Different levels of expression of TG2 modify the proliferation capability, the glycolytic metabolism,
drug resistance, and the ability to form metastases.

TG2 has been also evaluated as a promising breast cancer prognostic biomarker that
sustains cell proliferation and glycolytic metabolism through the mitogen-activated protein
kinase/extracellular signal-related protein kinase/lactate dehydrogenase (MEK/ERK/LDH)
pathway or by inducing hypoxia-inducible factor 1-alpha (HIF-1α) via NF-κB [64].

Moreover, a correlation between breast cancer cell motility and TG2 expression and
localization has been demonstrated: exposure to doxorubicin, a chemotherapeutic drug,
increased TG2 levels, thus triggering the EMT and supporting cell motility due to an
interaction between TG2 and vimentin. On the other hand, treatment with NC9, an
irreversible TG2 inhibitor, altered the subcellular distribution of TG2 and its colocalization
with vimentin, inducing the nuclear accumulation of TG2 and consequent gene expression
modification [48]. Additionally, the GTP-binding activity of TG2 promotes the EMT and
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the bone metastasis downregulation of miR-205, thus increasing the expression of the EMT
marker ZEB1 [67].

Even in breast cancer, TG2 expression promotes the metastatic process: weakly migra-
tory metastatic cells can release TG2-containing microvesicles, causing fibroblast activation
and inducing tumor stiffening and spreading [65]. The role of TG2 in promoting the es-
tablishment of a pulmonary metastatic niche is further supported by another study which
highlights the induction of fibronectin fibrillogenesis on the surface of TG2 micro-vesicles
and a consequent reprogramming of lung fibroblasts [66].

A role of TG2 in promoting resistance to common anti-cancer drugs, including dox-
orubicin [36], neratinib [37], and PD-L1 inhibitors [38], has been shown. For example, TG2
mediates NF-κB activation, interleukin-6 (IL-6) upregulation, and Janus kinase/ signal
transducer and activator of transcription 3 (JAK/STAT3) induction, thus promoting tu-
mor progression, the acquisition of a stem-like phenotype, and neratinib resistance [37].
Another study suggests that TG2 could be considered a valuable predictive marker for
identifying patients with triple-negative breast cancer who may be resistant to PD-L1
inhibitors. In fact, it was observed that TG2 induces phosphatase and tensin homolog
(PTEN) and nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor
alpha (IκBα) proteasomal degradation, leading to phosphoinositide 3-kinases/protein
kinase b (PI3K/AKT) and NF-κB activation, which is responsible for chemokine (C-C motif)
ligand 2 (CCL2) and programmed death-ligand 1 (PD-L1) expression and, therefore, PD-L1
inhibitor resistance [38].

Finally, TG2 is activated by variations in intracellular Ca2/K+ due to the Kv10.1
voltage-dependent K channel. Kv10.1 is related to breast cancer cells’ ability to invade
and metastasize. The combination of TG2 and Kv10.1 inhibitors could represent a novel
therapeutic strategy [68].

2.3. TG2 and Glioblastoma

Glioblastoma (GBM) is one of the most aggressive glial tumors. A lack of targeted
treatments results in extremely poor patient survival, with a 2-year survival rate barely
reaching 10% [69]. So far, suggested therapies, span surgery, radiotherapy, and chemother-
apy (mainly using Temozolomide), but despite this, a glioma stem cell population often
causes resistance and relapse [70].

GBM can be further classified into four main groups: (1) proneural, (2) neural, (3) clas-
sical, and (4) mesenchymal, the subtype most resistant to conventional therapy [69]. It
has been shown that a depletion of TG2 guarantees increased mouse survival thanks to a
GBM size reduction and increased therapeutic efficacy. Accordingly, patients with high
TG2 levels show a worse prognosis [69]. This is due to high TG2 levels in the tumor’s
perinecrotic area which regulate key transcription factors, such as C/EBPb, TAZ, and
STAT3, finally promoting GBM growth.

Radioresistant GBM also reveals higher TG2 and SDC-1 levels, suggesting the in-
volvement of these two proteins in the regulation of the tumor’s aggressiveness. Their
interaction promotes the fusion of autophagosomes with lysosomes in a process mediated
by EPG5 and the subsequent translocation of TG2 into the lysosome, conferring typical
radioresistance to GBM [71]. TG2 was also identified as a possible promoter of GBM cell
proliferation, even if the full mechanism still needs to be clarified [72]. In addition, only
some GBM subtypes respond to TG2 inhibitors, showing once more the controversial and
gene-specific role of this protein [72].

Regarding cell survival, TG2 promotes uncontrolled cell promotion, acting on the Akt
and NF-κB pathways [73].

2.4. TG2 and Ovarian Cancer

Epithelial ovarian cancer (EOC) develops from the epithelial layer covering the ovaries;
the preferred therapy for this neoplasm is surgical resection followed by consolidative
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platinum-based chemotherapy in combination with Paclitaxel. Despite a good response to
therapy, patients frequently relapse, bringing the 5-year survival rate down to 30% [74].

TG2 is known to be overexpressed in EOC, and its presence enhances peritoneal
metastatization as it is required for consistent dissemination and adhesion to the peritoneal
matrix [75]. The mechanism underlying this invasive capacity depends on the link between
TG2 and Matrix Metalloproteinase-2 (MMP-2), which ends up being transcriptionally
regulated. In fact, it was reported that TG2 binds and leads to the degradation of Protein
Phosphatase 2 (PP2A), which normally suppresses the cAMP response element-binding
protein (CREB). Consequently, CREB can bind the promoter of the MMP-2 gene, enhancing
its transcription [75].

TG2 can also interact with integrin-β1 and fibronectin, creating a ternary complex
at the plasma membrane. It has been demonstrated that the upregulation of these three
proteins in ovarian cancer stem cells (OCSCs), and their molecular targeting, can disrupt the
stem-like phenotype by dampening the Wnt/β-catenin signaling cascade. In the complex,
TG2 can indeed interact with Frizzled (Fzd7), a Wnt ligand receptor, triggering OCSC
proliferation and tumorigenicity [76]. In addition, it has been described how TG2′s catalytic
activity guarantees an interplay with key transcription factors implied in Wnt/β-catenin
pathway modulation [20].

In addition, TG2 regulates other important signaling pathways in EOC, such as the
NF-κB cascade which is sustained by TG2′s sequestration of the inhibitor IκBα, ultimately
leading to better tumor cell adhesion [75]. Moreover, extracellular TG2 induces the EMT by
activating noncanonical NF-κB signaling, overall presenting TG2 as a metastasis enhancer
at the cell–matrix interface [77]. TG2-mediated phosphorylation and complexation occurs
also with Integrin-Linked Kinase (ILK). This event has been shown to correlate with a
worse survival rate in patients [78].

Regarding tissues near tumors, a study demonstrates how TG2 promotes delayed OC
growth by enhancing the recruitment of CD8+ T cells and the loss of immunosuppressive
myeloid cell populations, highlighting once again the cell/tissue/context-specific role of
the protein [79].

Finally, it has been recently shown that high Ca2+ levels induced by high-glucose
conditions lead to ROS production and TG2 activation, with a consequent disruption of
cell-to-cell contacts and ovarian cancer cell migration. Interestingly, human C-peptide is
able to inhibit these high-glucose effects allowing us to hypothesize a potential therapeutic
use for it [80].

2.5. TG2 and Colorectal Cancer

According to the World Cancer Research Fund International, colorectal cancer (CRC)
is the third most frequent cancer worldwide in men and the second most frequent cancer in
women [81].

TG2 plays a significant role in CRC development and progression. TG2 KO leads to a
decrease in cell viability in vitro and a reduction in tumor development in vivo [82]. Indeed,
TG2 is upregulated in patient tumoral tissues compared to healthy ones and is associated
with poor prognosis and a reduced survival rate [83]. Similar to samples from patients, TG2
upregulation was also observed in CRC cell lines (e.g., HCT-116 and LoVo) [83]. In addition,
Fernández-Aceñero et al. correlate the expression of TG2 in the stroma, which is required
in CRC metastatic progression, with a high risk of relapse, while its epithelial expression
was associated with poor overall survival [84]. RNA interference studies indicate that
TG2 downregulation impairs cell viability, angiogenesis, and induces apoptosis through
Caspase-3 upregulation [83]. In particular, TG2 expression promotes nuclear accumulation
of β-catenin, while its inhibition reduces β-catenin expression and ERK1/2 activation [85],
Figure 7.
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Furthermore, recent studies demonstrated a role for TG2 in the inactivation of p53.
In fact, TG2 knockdown also determined modifications in gene expression, such as the
downregulation of pathways that involve NF-κB, KRAS, inflammatory and hypoxia media-
tors, estrogens, and the upregulation of p53 signaling. A proximity ligation assay proved a
physical interaction between p53 and TG2 which has the potential to influence p53 function
and activate the Caspase-3 pathway. Moreover, an elevated level of p53 phosphorylation
has been observed in tumors that exhibit low TG2 expression, corroborating evidence for
the pro-apoptotic effect of TG2 knockdown [82]. It has been demonstrated that there is
a correlation between the presence of p53 mutations and the level of TG2 expression as
tumors exhibiting p53 mutations show a greater level of TG2 expression. The inhibition of
TG2 results in the induction of p53-mediated apoptosis, which in turn reduces cancer cell
proliferation. For this reason, TG2 can represent a therapeutic target in CRC [86].

It has been demonstrated that TG2 is regulated by ETS1, and both these proteins are
targeted by miR-532-3p, which is downregulated in CRC and can restrain the overexpres-
sion of β-catenin. As a result, miR-532-3p exerts an inhibitory effect on CRC progression,
promoting chemosensitivity and activating p53 [87].

Further studies have found an association between TG2 expression and the metastatic
capabilities of CRC. It appears that the knockdown of TG2 can influence the upregulation
of E-cadherin and the downregulation of N-cadherin and vimentin, thereby altering the
metastatic potential of cancer cells in terms of invasion and migration. It is noteworthy that
actin appears to be an intracellular substrate for TG2, indicating the potential ability of TG2
to influence cytoskeleton remodeling during cell motility [87].

Enhanced expression of TG2 is associated with a higher level of self-renewal capability,
whereas its elimination leads to a decrease in it. This phenomenon may be attributed to the
fact that stemness-associated proteins, such as CD133 and Sox-2, were increased in cells
exhibiting elevated TG2 expression [88].
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TG2 is also involved in the inhibition of T cell infiltration and motility in the tumor
microenvironment. It appears that TG2 is necessary for the formation of a coating of
CXCL12-KRT-19: TG2 binds KRT-19 in the cytosol, and the complex is secreted in the
extracellular space where CXCL12 performs a nucleophilic attack. When the complex is
formed, it can self-assemble with KRT-8, forming a coating around cancer cells. This coating
is able to cross-link CXCR4 on nearby T-cells’ surfaces, suppressing the T cells’ motility [89].

2.6. TG2 and Leukemia

Leukemia is cancer of blood-forming tissues, including bone marrow and the lym-
phatic system. The word “leukemia” refers to a variety of pathologies with different
characteristics: acute or chronic leukemias and myeloid, histiocytic/dendritic, and lym-
phoid neoplasms [90,91].

In the field of the acute leukemias, TG2 is involved in blast motility [40]. TG2 expres-
sion, which is higher in relapsed leukemia with respect to the level at diagnosis, positively
correlates with several adhesion proteins (e.g., fibronectin, FAK, etc.) [92].

TG2 is important in acute promyelocytic leukemia (APL), which is characterized by
the accumulation of immature granulocytes called promyelocytes [93]. When it is not
rapidly diagnosed and treated, APL is considered one of the worst leukemias [93]. In the
context of canonical APL treatment with all-trans retinoic acid (ATRA) and arsenic trioxide
(ATO), TG2 expression is increased, and this leads to an intensification of inflammation
through the NF-κB pathway [94]. Consequently, TG2 inhibition reduces ROS production,
inflammation processes, and consequent organ damage [95]. To turn off the lethal effects
of the inflammatory response (called differentiation syndrome, it is typically present after
ATRA-ATO treatment [96]) is crucial to improving patient outcome [94]. Moreover, Jam-
brovics K et al. highlight the mechanism through which TG2 is able to extend APL cell
survival following conventional ATRA-ATO treatment. They described the role of TG2 in
signalosome platform initiation. This, in turn, triggers the hyperactivation of downstream
mTORC2-AKT signaling, and it consequently leads to the phosphorylation and subsequent
inhibition of FOXO3, a critical pro-apoptotic transcription factor [97].

A role for TG2 has also been described in T- cell lymphoblastic leukemia (T-ALL).
T-ALL is an aggressive hematologic neoplasm characterized by the accumulation of early
T cell progenitors in the bone marrow [98]. Jung H et al. described that T-ALL blasts
highly express TG2 and that the inhibition of this protein reduces cell resistance to steroids
in association with decreased NF-κB activity [99]. In T cell lymphoblastic lymphoma, a
subtype of T-ALL characterized by the accumulation of T-blasts in lymph nodes [100], the
modulation of IL-6/JAK/STAT3 by the siRNA inhibition of TG2 has been demonstrated.
The impairment of these signaling pathways leads to a reduction in T cell lymphoma cell
proliferation [101].

TG2 is also important in Mantle Cell Lymphoma (MCL), which is an incurable lym-
phoma originating from the mantle zone of the lymph node (where memory and naïve
B cells and T cells can be found) [102]. In this neoplasm, TG2 expression leads to the
constitutive activation of NF-κB and consequent chemoresistance [103]. Moreover, TG2 can
increase IL-6 production, triggering autophagy through the JAK/STAT3 axis to promote
MCL cell survival [103].

TG2 can play a relevant role in Chronic Myeloid Leukemia (CML). In CML, myeloid
cells grow uncontrolled in bone marrow and accumulate in the blood; in both these dis-
tricts, there is a proliferation of mature granulocytes (neutrophils, eosinophils, and ba-
sophils) [104]. Kang S et al. demonstrate that TG2 is recruited at the plasma membrane
during erythroid differentiation and that the impairment of TG2 expression in a CML-K562
cell line can lead to a delay in differentiation through the PI3K/Akt pathway [105]. More-
over, Ha et al. hypothesized a crucial role of TG2 recruitment on the cell membrane, thanks
to the ganglioside GD3/α1-AR-mediated signaling pathway, for CML-K562 cell erythroid
differentiation. This evidence suggests a promising solution for leukemia treatment, pro-
viding a rationale for a combination therapy between a GD3/α1-AR/TG2 axis inhibitor
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and Imatinib or another routinely used drug [106]. Finally, it has been demonstrated that
TG2′s active form is needed for caffeic acid-induced apoptosis. In particular, TG2 inhibitors
are able to reduce phosphatidylserine extroversion and caspase activation. Consequently,
TG2′s pharmacological activation could represent a possible strategy to enhance to enhance
available therapies [107].

2.7. TG2 and Pancreatic Cancer

Pancreatic cancer is the fourth most common cause of cancer death worldwide. Pancre-
atic ductal adenocarcinoma (PDAC) accounts for the majority of pancreatic malignancies,
and most patients present with disseminated disease at diagnosis [108]. Higher TG2 ex-
pression levels in PanINs compared to normal pancreatic tissues and which increase with
pancreatic cancer progression have been observed.

Indeed, recent works proposed a role for TG2 in the pathogenesis of pancreatic can-
cer [109], contributing to chemotherapy resistance [110] and influencing immune infil-
tration [111]. More specifically, a comprehensive study conducted to understand the
importance of transglutaminases in human cancers revealed that high TG2 levels in pancre-
atic cancer are associated with worse patient survival, resistance to gemcitabine, and an
increase in macrophage recruitment due to the release of the chemokine CCL2 by cancer
cells [111]; see Figure 8.
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Different expression levels of TG2 lead to a different prognosis and drug resistance. Moreover, TG2
modulation is correlated with cancer cells’ efficiency at invading tissues and recruiting macrophages.

Additionally, two recent works highlighted how TG2 can stimulate cancer growth
through the activation of YAP/TAZ transcription factors. Moreover, when TG2 is secreted
by pancreatic cancer cells, it can activate cancer-associated fibroblasts to produce laminin A1
which, in turn, shields tumor cells from gemcitabine-induced cell cytotoxicity by triggering
signaling pathways, such as the FAK pathway [59,110]. Another study supports a role
for TG2 in regulating the FAK/AKT survival pathway due to the stimulation of PTEN
proteasomal degradation after inhibiting its phosphorylation. This is responsible for
influencing pancreatic cancer cells’ invasiveness and response to chemotherapy [112].
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2.8. TG2 and Lung Cancer

Despite ranking second in incidence, lung cancer remains the leading cause of cancer-
related death [113]. According to the 2021 World Health Organization (WHO) Classification
of Thoracic Tumors, lung cancer encompasses a very heterogeneous group of approximately
eighty different tumors characterized by distinctive morphology, immunohistochemistry,
and molecular markers [113]. We can broadly distinguish between (1) non-small cell lung
cancer (NSCLC), further categorized into lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), and large-cell carcinoma (LCC); and (2) small cell lung cancer
(SCLC), divided in two subtypes: oat cell cancer (OCC) and combined small cell carcinoma
(C-SCLC). Concerning NSCLC, two in vivo studies on a patient cohort [113,114] suggested
TG2 as a biomarker of increased invasion/migration and poor prognosis, highlighting
significantly increased TG2 expression in lung cancer tissues compared to normal ones and
showing a correlation between TG2 upregulation and shorter disease-free survival in the
non-adenocarcinoma subtype in a Korean cohort [113] and in both the non-adenocarcinoma
and adenocarcinoma cancer subtypes in Chinese patients [114,115]. In vitro studies pro-
vided the greatest part of our knowledge about TG2′s role in lung cancer, highlighting
its involvement in cell invasion migration and drug sensitivity. In more detail, using a
less invasive LUAG cell line, CL1-0, and its highly invasive counterpart, CL1-5, Lee et al.
showed that TG2 promotes the migration and invasion of lung cancer cells through a
mechanism independent from its transamidase activity [41]. Lei et al. showed that TG2
confers radioresistance in NSCLC adenocarcinoma cell lines, promoting DNA repair and
directly interacting with TOP2. Both TG2 expression and its transglutaminase activity were
found to be upregulated; using the RNA interfering strategy, it has been demonstrated that
TG2 reduction results in oxidative stress, inducing p53-independent extrinsic and intrinsic
apoptosis [116]. Even if TG2′s role in SCLC is poorly investigated, a recent study showed
that in acquired prexasertib-resistant cell lines, H792LYR and GLC4LYR correlate with
increased TG2M expression [39].

3. TG2 and Microenvironment

In the intricate interplay between a tumor and its surrounding microenvironment,
TG2 has consistently played a distinctive role, positioning TG2 as a possible prognostic
biomarker. The presence and activity of this enzyme have been extensively acknowledged
in the stromal tissue surrounding the tumor but also in various cellular components of the
TME, including endothelial cells, cancer-associated fibroblasts (CAFs), immune cells, and
adipocytes [17]. Importantly, TG2 exhibits varying expression levels depending on the cell
type and the stage of the disease [44]. Altogether, these findings point out the role of TG2
in modulating various biological and biomechanical processes.

3.1. TG2 and Angiogenesis

One of the hallmarks of cancer is angiogenesis, a process implicated in generating new
blood vessels which is involved in supporting the immune escape and the formation of
metastases [117–120]. Indeed, the presence of blood vessels inside the tumor is important
or feeding cancer cells with oxygen and nutrients, and it is further sustained by the release
of pro-angiogenic factors such as VEGF, bFGF, and PDGF by tumor cells and the tumor
microenvironment (TME) [121]. Despite limited success in therapies targeting pathological
angiogenesis [122], the identification of new possible targets, including TG2, is crucial for
developing more effective anticancer approaches.

The relationship between TG2 and angiogenesis is debated since both pro- and an
anti-angiogenic roles have been reported [44]. TG2 is expressed in endothelial cells in the
cytosol [123,124], but most of its impact on angiogenesis is mediated by its presence in
the extracellular matrix. With regard to the cytosol, TG2 interference by siRNA reduced
endothelial cell quantity by supporting cell cycle arrest in the G1 phase, the induction of
apoptosis, and decreased cell adhesion, even if this role is ascribable to the extracellular
pool [125]. In the extracellular space, a role of matrix-bound TG2–syndecan-4 interactions



Int. J. Mol. Sci. 2024, 25, 2797 16 of 25

in cell adhesion [126,127] and that TG2 colocalizes with β1 integrin molecules, particularly
in focal at-cell adhesion points, have been demonstrated [127]. Furthermore, the inhibition
of extracellular TG2 crosslinking activity or TG2 downregulation reduce angiogenesis
both in vitro by impacting tubule branching, as well as in vivo, by weakening vasculature
formation in chicken embryos [128]. From a molecular point of view, TG2 inhibition
leads to diminished fibronectin deposition and cell migration, both necessary processes
during tubule formation, by impairing the VEGF-mediated cascade and finally leading
to reduced Akt and ERK1/2 signaling [128]. Additionally, NF-κB /HIF1α was reduced
in endothelial cells following the inhibition of the GTP-binding activity of TG2, achieved
through its interaction with the gastric cancer-targeting peptide GX1 [129,130]. Moreover,
HIF1α has been shown to be triggered by TG2 activity in several cancers, such as in
renal carcinoma where, in turn, it supported the increased expression of VEGF after p53
degradation [131]. Finally, TG2 has a negative effect on the von Hippel–Lindau (VHL)
tumor suppressor protein through its cross-linking activity, favoring the release of HIF1α
from degradation by proteasomes and increasing vascularization and invasiveness: CHOP-
mediated TG2 downregulation disrupts this mechanism, suppressing kidney tumor growth
and angiogenesis [132].

Conversely, as described above, high TG2 levels hamper angiogenesis both in vitro
and in vivo, finally ceasing cancer development. Again, the supplementation of exoge-
nous TG2 addition impedes angiogenesis in a dose-dependent manner, supporting an
augmented accumulation of extracellular matrix protein, finally impacting tumor growth,
tumor angiogenesis, and animal survival [133].

In addition to these effects mostly related to the capability of TG2 to modulate endothe-
lial cell signaling and angiogenesis, TG2 is also involved in influencing the mechanical
properties of vascular walls. TG2 contributes to matrix remodeling, affecting the mechanical
properties of collagen fibers, and plays a role in tuning vascular stiffness [134].

3.2. TG2 and Cancer Associated Fibroblast (CAFs)

Fibroblasts are the main tumor-supportive cells found in the TME, and they normally
sustain the synthesis and deposition of ECM components. In this context, TG2 plays several
roles in supporting fibroblast–matrix interactions, finally impacting cell spreading and
migration, the restructuring of the ECM, wound healing, and fibrosis. During cancer,
TG2 is involved in promoting fibroblast de-differentiation to a more tumor-supporting
and myofibroblastic-activated phenotype [17,44,135]. Part of these functions in CAFs
can be sustained by the well-known interplay between TG2 and TGFβ; indeed, TGFβ
can activate CAFs, and this event correlates with patient poor prognosis [136–138]. In
colorectal cancer, TG2 has been shown to be upregulated in CAFs compared to normal
fibroblasts [139]. In addition, TG2 expression was assessed in CAFs from other types of
tumors; in hepatocellular carcinoma, it was associated with a CAF-driven EMT via the IL-
6/IL-6R/STAT3 axis [140], while in pancreatic cancer, it correlates with a worse prognosis
since the TG2 secreted by cancer cells supports matrix deposition and promotes neoplastic
cell proliferation via the activation of the YAP/TAZ signaling pathway [59]. In addition,
TG2-activated CAFs can secrete laminin 1, impacting pancreatic cancer cell sensitivity to
gemcitabine treatment [110].

3.3. TG2 and Immune Cells

The interaction between immune cells and a tumor is a crucial event during cancer
development and invasion. In addition, cancer cells can impair the immune response by
acting directly on immune system populations, by enrolling cells with immunosuppressive
activity, or by secreting factors able to recruit specific immune cell subpopulations (e.g., reg-
ulatory T lymphocytes, immature dendritic cells, TAMs, and myeloid-derived suppressor
cells) that can inhibit the immune response [141]. In this scenario, TG2 is likewise involved
in controlling the maturation of different immune cells [10]. Indeed, TG2 is constitutively
expressed in monocytes and macrophages, and it is important for process like cell adhesion
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and extravasation, which are fundamental for monocytes to reach the site of inflamma-
tion [142]. In addition, TG2 expression increases during the differentiation of monocytes
into macrophages [143] or dendritic cells (DCs), where TG2 mediates the maturation of
antigen-presenting cells in response to LPS [144,145]. Furthermore, TG2 has been shown to
be involved in several immunological processes ranging from DC-T cell interactions, which
endorse the adaptive immune response [44,146], to regulating the macrophage phagocyto-
sis of apoptotic and necrotic cells [147], or to the modulation of T cell proliferation [146].
Indeed, in the TME, TG2 expression has also been found in myeloid cells, T, and B cells [17].
TG2 has been identified as a marker for tumor-promoting M2 macrophages [17]. According
to cancer in PDAC and lung squamous cell carcinoma, TG2 expression has been identified
as immunosuppressive and associated with a poor clinical outcome since increased num-
bers of M2 macrophages and regulatory T cells have been observed, along with reduced
numbers of pro-B and memory B cells [148]. In this setting, the molecular mechanism
is based on PD-L1 regulation, following NF-κB and STAT3 signaling activation [148]. In
gastric cancer, a high level of TG2 activity enhanced inflammation and tumor growth
by recruiting macrophages to the tumor via the IL-1β-mediated induction of CCL2 and
CXCL10 [149]. In breast cancer, the inhibition of TG2 can be used as a therapeutic strategy
to overcome PD-L1 inhibitor resistance in PD-L1(+) TNBC patients since this reestablished
T cell-dependent cytotoxicity by impeding the expression of both PD-L1 and CCL2 [38]. In
ovarian cancer, a lack of TG2 delayed tumor dissemination by inducing, in TG2 KO mice,
less TAM infiltration and decreased PD-L1 expression, as well as an increased infiltration
by cytotoxic T cells and T effector/memory cells [79]. CD8+ and CD4+ T cells derived from
TG2 KO mice exhibited altered STAT1/STAT3 signaling in response to IFN-γ, IL-6, and
TGF-β [79]. In this line, the CD30-TG2 axis is an essential signaling pathway for memory
Th cell generation [150]. Moreover, TG2 plays a role as a negative regulator in humoral
immune responses by modulating the expression of B-lymphocyte-induced maturation
protein-1 (Blimp-1) and activation-induced cytidine deaminase (AID) [151].

Finally, TG2 has been recently correlated with the activation of the cGAS-STING
pathway, a cellular cytosolic double-stranded DNA sensor that produces large amounts
of type I IFNs, allowing for an innate immune response to infections, inflammation, and
cancer. Indeed, in tumor cells, the activation of the STING pathway may pose an obstacle to
the progression of early neoplastic cells by upregulating type I IFNs or other inflammatory
genes [152]. In this context, TG2 negatively regulates STING signaling and can reduce IFN
I production by preventing the interaction of TBK1 with IRF3, suggesting TG2 as a novel
target to modulate immune responses in cancer [153].

4. Conclusions

In this review, we have reported some of the most recent, updated literature concerning
the role of transglutaminase type 2 in several types of cancers, as well its role in modulating
and interacting with the tumor microenvironment. Altogether, the presented data clearly
demonstrate an important function of TG2 in supporting several hallmarks of cancer, finally
resulting in the favorable or a poor prognostic role of this enzyme (Figure 9).

Nevertheless, several aspects need to be clarified since TG2 has shown a controversial
behavior, it is clear that targeting TG2 multiple activities inside and outside cancer cells
and could finally bring us to a possible cure for several of the worst tumors.
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