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Abstract: Female breast cancer accounts for 15.2% of all new cancer cases in the United States,
with a continuing increase in incidence despite efforts to discover new targeted therapies. With an
approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for
more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular
matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell popula-
tions have been identified as necessary attributes for current preclinical models. Adipose-derived
stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition
and not only contribute to normal breast physiology but also play a significant role in breast cancer
pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression,
there remains a need to enhance the complexity of current models and account for the contribution
of the components that exist within the adipose stromal environment to breast tumorigenesis. This
review article captures the current landscape of preclinical breast cancer models with a focus on breast
cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft
(PDX) models to capture patient diversity as they relate to adipose tissue.

Keywords: breast cancer; microphysiological system; 3D culture; diversity; adipose tissue; adipose-
derived stromal/stem cells; adipocytes; tumor microenvironment; tumor stroma

1. Introduction

Female breast cancer represents approximately 15.2% of all new cancer cases in the
United States, with an estimated 297,790 new cases and 43,170 deaths in 2023 alone [1].
More importantly, data have evidenced increases in breast cancer incidence to 16.9 per
100,000 women, while efforts in drug development lead to limited efficacy. Approximately
85% of the drugs in early clinical trials fail due to poor clinical efficacy, toxicity, and drug-
like properties [2,3]. These roadblocks to clinical translation have initiated a shift in the
reexamination of preclinical models used for breast cancer drug development. Classic ani-
mal models still serve as the gold standard for disease modeling and compound validation.

Observable variance in breast cancer incidence, mortality, treatment response, and
recurrence across populations has incentivized the development of more clinically relevant
in vitro and in vivo models that capture the heterogeneity of the disease [4–8]. In particular,
the integration of microphysiological systems (MPS) as humanized three-dimensional
models has opened new avenues and opportunities for precision medicine in the treatment
of breast cancer. Preclinical models range from traditional, static, homotypic culture models
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to MPS models that include engineered organoids, single organ/tissue chips, and multi-
organ interconnected models [9]. In addition, other physiologically relevant in vivo models
that allow the study of diverse patient responses, including the chorioallantoic membrane
(CAM) and patient-derived xenograft (PDX) models for drug development and disease
modeling, are being adopted as patient-specific tumor therapy models [10–12]. The ideal
attributes of breast cancer MPS models, as emphasized by Bissell, Griffith, Prestwich, and
colleagues, include the use of human-derived materials, extracellular matrix (ECM), and a
heterogeneous cell population, amongst other design criteria [13]. These properties support
the goal of recapitulating breast inter- and intra-tumoral heterogeneity by integrating
patient-derived cells and mimicking the breast tumor microenvironment (TME) observed
in vivo. Nevertheless, given the anatomical location of mammary adipose tissue and the
documented pro-tumorigenic role of adipocytes in both early and late stages of tumor
progression, there remains a need to enhance the complexity of current models and account
for the contribution of the components that exist within the adipose stromal environment
on breast cancer initiation, progression, invasion, and treatment response. Here we present
an overview of breast cancer-adipose MPS models and discuss their feasibility in mimicking
human and tissue diversity.

1.1. Diversity in Breast Cancer

There is heterogenicity in breast cancer disease presentation, incidence, mortality, and
treatment response (Figures 1 and 2). Factors attributing to this variance include, but are
not limited to, age, race, and ethnicity. For example, breast cancer is the leading cause
of cancer deaths among African American and Hispanic women. Furthermore, African
American, Hispanic, and American Indian/Alaska Native (AIAN) women are less likely
to be diagnosed with local-stage breast cancers compared to Asian/Pacific Islander (API)
and White women [5]. African American women are twice as likely to be diagnosed with
HR−/HER2− tumors compared to Hispanic, AIAN, API, and White women [5]. To factor
in age, African American women have the highest incidence rate for <40 years old and
the highest mortality rate for ages 20–49 years old due to ER−,PR−,HER2/neu− (triple-
negative, TNBC) breast cancer incidence [5]. White women have the highest incidence at
ages 45–49, whereas AIAN women have the highest mortality rate at ages 70–75 [5].

Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part
of the breast tissue composition and provide energy, hormonal regulation, and cytokines
for wound healing [14]. They not only contribute to normal breast physiology but also
play a significant role in breast cancer pathophysiology. ASCs impact tumorigenesis by
not only orchestrating ASC recruitment to the tumor site but also by secreting paracrine
factors that interact with the tumor stroma. Obesity-induced alterations in adipose tissue
also contribute to changes in the biological properties of ASCs, which further enhance
tumorigenesis and cancer cell metastasis [15]. The rise in prevalence of obesity and the
correlation between obesity and breast cancer mortality, morbidity, and survival have
stimulated inquiry into adipose-breast cancer crosstalk as it relates to race, ethnicity, and
age [15–17]. Although there is strong correlative and causative evidence indicating that
obesity impacts ASC and adipocyte function and supports the onset and progression of
breast cancer, the extent to which it is linked to race is not well understood. Importantly, the
breast TME composition and corresponding biomechanical properties (e.g., tissue stiffness,
density) differ between races, ethnicities, and age cohorts [18]. The unique compositional
differences in the TME have been demonstrated by profiling resident cell populations,
including adipocytes and ASCs, the immune cell landscape, vascular tissue, and the
extracellular matrix [19].
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Figure 1. Tumor heterogeneity contributes to therapeutic resistance, resulting in tumor recurrence
and metastasis. Tumor heterogeneity is divided into two subcategories: inter- and intra-tumor
heterogeneity. Patient-specific differences (inter-tumor) and variations within the tumor itself (intra-
tumor) play a critical role in the patient response to treatment. The basis of heterogeneity arises
from alterations in the genome (point mutations, single nucleotide polymorphisms (SNPs), inser-
tions/deletions), transcriptome/proteome (over or under expression of genes, variations in patterns
of gene expression), and epigenome (variations in DNA methylation and noncoding RNA regulation
patterns, differences in chromatin and histone structure). These levels of heterogeneity are substan-
tiated in the tumor microenvironment (TME), expressed biomarkers, metabolic profile, cell cycle,
epithelial–mesenchymal transition (EMT), microcirculation of tumor cells, and presenting clinical
pathology. Both concepts of intra- and inter-tumoral heterogeneity must be incorporated into current
breast cancer microphysiological system (MPS) models to capture the full landscape of the disease
and develop more targeted therapies. Created with Biorender.com (accessed on 5 October 2023).

There are race disparities in obesity and triple negative breast cancer (TNBC) risk.
Nevertheless, there is no statistically significant evidence directly linking TNBC to obesity
in African Americans or other racial/ethnic demographics [20]. This outcome can be
substantiated by the inter-individual variety and extent of obesity-associated medical
comorbidities. Furthermore, excessive adipose tissue does not necessarily translate to
metabolic dysfunction, as up to thirty percent of obese individuals retain normal indicators
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of metabolic health [21]. There is also diversity within the adipose tissue, as evidenced by
the observation that total body fat, visceral adipose tissue (VAT), subcutaneous adipose
tissue (SAT), and body mass index (BMI) are significantly different between varying ethnic
and racial backgrounds [22]. These differences could speak to potential variance in ASC
stemness, but further comparative studies must be conducted that include ASCs from
donors with differing ethnic backgrounds. Although the complex, heterogeneous nature of
the breast cancer microenvironment is widely recognized as a critical factor, the application
of the knowledge presented in this section as it pertains to preclinical models remains
challenging and requires further patient stratification.
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Figure 2. Breast cancer incidence and mortality variance are dependent on race and age. (A) Breast
cancer mortality in U.S. women by race and ethnicity based on SEER Cancer Statistics Review,
2000–2020, 2022. (B) U.S. 5-Year Age-Adjusted Mortality Rates, 2016–2020 per 100,000 women, are
adjusted to the 2000 U.S. Std Population. (C) U.S. 5-Year Age Adjusted Incidence Rates, 2016–2020 per
100,000 women, are adjusted to the 2000 U.S. Std Population. Created with Biorender.com (accessed
on 13 November 2023).
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1.2. Current Breast Cancer-Adipose Preclinical Models

The paradigm of in vitro models has shifted from traditional, two-dimensional cell cul-
ture to more complex, three-dimensional frameworks, specifically regarding breast cancer
and adipose tissue in vitro models. Models strive to capture the heterogeneity associated
with the breast cancer tumor microenvironment with the inclusion of multiple cell types
and extracellular matrix while also focusing on the temporally dynamic nature of the breast
cancer TME. Rezaee et al. emphasized three important criteria for a reputable and relevant
disease model: (1) face validity described as biological similarity between the human
disease and animal model; (2) target validity, in which the target agents should exhibit
similar functions in the model and clinical setting; and (3) predictive validity, in which
clinically effective agents function similarly in the disease model [23]. (Figure 3). These
criteria, in conjunction with the design criteria described by Bissell et al., represent the
ultimate objective for researchers in the development of preclinical breast cancer-adipose
tissue models [13,23]. This review article highlights in vitro models established over the
past decade, with special attention to those integrating both breast cancer and adipose
stroma. These preclinical models include two-dimensional co-culture, three-dimensional
co-culture, spheroids, microfluidic devices, and bioprinting applications. Some studies
emphasized in this review employ traditional co-culture of ASCs and breast cancer cells in
the transwell system [24–27]. Others introduced a static, three-dimensional microenviron-
ment integrated with the classic co-culture models [28,29]. Several studies established more
dynamic co-culture systems [30–32]. Finally, whole white adipose tissue was co-cultured
with breast cancer cells to create a physiologically relevant system [33]. In addition to
these in vitro systems, we also highlight the application of PDX models as a translationally
relevant tool to capture patient diversity and recapitulate the role of adipose stroma in
breast cancer progression and treatment response (Figure 4).
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Figure 3. Breast cancer preclinical models must meet three criteria to be considered both reputable
and relevant. The translatability of preclinical models plays a decisive role in drug attrition and
success rates. For data retrieved from preclinical studies to reflect clinical outcomes, it is important
that in vitro disease models meet three criteria: face validity, target validity, and predictive validity.
Face validity refers to the biological similarities between the preclinical model and the disease itself.
Target validity is attained when drug responses are similar in both the model and clinical setting.
Finally, predictive validity is determined based on similar responses observed in both the model and
clinical settings. Created with Biorender.com (accessed on 11 January 2024).
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Figure 4. Breast cancer MPS models must reflect patient-specific tumor heterogeneity by incorporating
patient-derived tumor cells and associated stroma. Patient demographics, including sex, race, BMI,
and health status, are driving factors in breast cancer etiology, progression, and response to treatment.
As residents of the breast tissue stroma, adipocytes and ASCs also impact both the normal breast
physiology and the pathology attributed to cancer development. Current preclinical models include
2D and 3D co-culture systems and spheroids and organoids, as well as more complex systems
including microfluidic devices and bioprinted microenvironments. The engraftment of human breast
cancer and adipose-derived cells and tissues in murine models in patient-derived xenograft (PDX)
models has become a widely accepted model due to its clinical relevancy. Created with Biorender.com
(accessed on 19 October 2023).

1.2.1. Co-Culture Models

Co-culture models investigate the interactions between one or more cell populations,
either directly through physical contact via surface receptors and gap junctions or indirectly
via cell signaling communication [34]. The latter typically separates the cell types using
a semi-permeable membrane, such as a trans-well system. Indirect co-cultures include
conditioned media, which contain the cell-derived secretome responsible for positively or
negatively regulating cellular behavior via the regulation of signaling pathways. Further-
more, scaffolds are integrated into the co-culture systems to simulate the three-dimensional
microenvironment observed in vivo. Hydrogels are the most commonly used scaffolds,
with the most prevalent being Matrigel (Corning), an Engelbreth–Holm–Swarm mouse
sarcoma-derived basement membrane. Although Matrigel provides additional complexity
and relevancy to the model by facilitating cell–matrix interactions, it presents documented
drawbacks, including batch-to-batch variability and animal derivation, which impact the
face, target and predictive validity metrics described above, and overall clinical relevancy
of the model of interest [35].

Biorender.com
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The use of a co-culture model is critical in the study of adipose tissue as it relates
to normal breast tissue and the TME [21,36–40]. The adipose tissue microenvironment
can dysregulate normal mammary myoepithelial cell behavior and facilitate breast tumor
progression via disruption of routine ECM maintenance and upregulation of adipokines
and pro-inflammatory cytokines [24]. Adipocyte paracrine activity can promote breast
cancer cell migration, an in vitro hallmark of metastasis [21,28,41,42]. The secretion of
adipokines, including adiponectin and leptin, influences breast cancer cell proliferation and
invasion. Moreover, IL-6 and leptin secreted by adipocytes lead to subsequent activation
of pathways such as JAK/STAT3 and PI3K/AKT, and downstream expression of pro-
inflammatory cytokines including Interleukin 6 (IL-6), Interleukin 1 beta (IL-1β), and
Tumor necrosis factor alpha (TNF-α) in breast cancer cells [43,44]. Secretion of free fatty
acids as well as cytokines and growth factors, including Monocyte chemoattractant protein
1 (MCP-1), C-C motif chemokine ligand 5 (CCL5), and Insulin-like growth factor 1 (IGF-1),
also promote breast cancer cell invasion and proliferation [29,45–47]. Adipocyte-immune
cell interactions play a critical role in breast cancer cell-adipocyte crosstalk and subsequent
tumor progression and metastasis. Several studies have demonstrated that macrophages
directly (via cell–cell contact) and indirectly (via their secretome) impact adipocyte-breast
cancer crosstalk, facilitating tumor angiogenesis and metastasis [27,48]. Although Yadav
et al. did not directly implement a breast cancer cell/adipocyte/macrophage co-culture,
their co-culture with adipocytes and macrophages was used as a tool to demonstrate
a possible mechanism for the increased risk of breast cancer progression observed in
obese individuals.

Other models have incorporated murine-derived or human-derived ASCs or adipocytes
with established hormone receptor-positive (HR+) and TNBC cell lines, including MCF-7,
MDA-MB-231, T47D, BT-474, and ZR75 cell lines [24–26,33,49]. The co-culture models high-
lighted in Table 1 incorporated adipocytes, or ASCs, derived from a heterogeneous patient
population [24,26,33,49]. The experimental design by Ejaz et al. went beyond the traditional
2D co-culture by integrating two unique co-culture methods, including an inverted flask
culture, described as a contact co-culture, and a conventional flask culture, identified as
a paracrine co-culture [33]. The inverted flask culture included a layer of BT-474, MDA-
MB-231, or MCF-7 breast cancer cell lines seeded at the base of the flask, followed by
a layer of lipoaspirate derived from female donors undergoing routine abdominoplasty
(n = 5, 39 ± 13 YO, BMI 27 ± 4 kg/m2). The flask remained inverted throughout the cul-
tural period. In contrast, BT-474, MDA-MB-231, and MCF-7 were seeded at the base of a
flask, followed by a layer of lipoaspirate collected from the donor pool. The flask was placed
in an upright position, allowing the lipoaspirate to float to the top of the flask and create
a paracrine co-culture environment. In this study, a traditional trans-well culture with
breast cancer cell lines within the well and human ASCs in the insert was used as a com-
parison. Interestingly, both lipoaspirate and ASCs had no sizeable effect on breast cancer
cell proliferation and EMT-related gene expression in either direct or paracrine-dependent
co-cultures [33].

Co-culture models have improved significantly with the recognition of cell–matrix
interactions as a critical driver of cell behavior and the introduction of Matrigel over four
decades ago. The incorporation of a matrix not only allows for the use of a heterogeneous
cell population, but also facilitates ECM crosstalk [50]. The integration of ECM into in vitro
models mimics in vivo cell–matrix interactions, including the conversion of mechanical
response ECM properties to a biochemical signal (mechanotransduction) and cell exposure
to ECM-embedded chemical signals that include structural proteins and growth factors [51].
Furthermore, evaluation of ECM remodeling via cell-secreted matrix metalloproteases
(MMPs) and tissue inhibitors of matrix metalloproteases (TIMPs) can be supported by
these types of models [52]. Some adipose-breast cancer models optimized the traditional
co-culture transwell model by including a Matrigel coating on the porous membrane or as
a third layer sandwiched between multicell layers to evaluate the role of adipose-derived
cells in breast cancer cell invasion (Table 1) [28,29,53]. Of these studies, only one included
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stromal vascular fraction (SVF) and ASCs from multiple patients to assess MDA-MB-231
invasiveness [39]. The other platforms either included 3T3-L1 preadipocytes [28,53] or
murine preadipocyte line 3T3-F442A [45]. As an alternative to trans-well co-culture, Asante
et al. embedded murine per-uterine and inguinal white adipose tissue (WAT) in Matrigel to
collect adipose-derived conditioned media and assess the paracrine effects of lean and obese
adipose tissue on MDA-MB-231 mesenchymal–epithelial transition (MET) [54]. Additional
scaffolds, including silk, fibrin, collagen, and decellularized matrices, were used as a trans-
well coating or more complex in vitro system to evaluate the role of breast cancer-adipocyte
crosstalk on breast cancer progression and invasiveness [55–58]. While many of the three-
dimensional co-culture models include human-derived adipocytes, or ASCs, they do not
include more than a single donor with undisclosed patient demographics [55,57,59]. A
sandwich model is also used to support and evaluate adipocyte-breast cancer cell crosstalk.
In this review, we have highlighted the work of Au-Brown, including a combination of
non-diseased breast tissue sandwiched between WAT, while Matossian introduces TU-
BcX-4IC PDX-derived cells into a modified version of the sandwich white adipose tissue
(SWAT) [59–61].
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Table 1. Review of in vitro breast cancer-adipose preclinical platforms, which includes a summary of associated cell types, derivation, key findings, and the strengths
and/or weaknesses of the platform demonstrated in each study.

Platform Cell Type(s) Human-Derived
(Y/N)

Patient-Derived
Adipocytes or

Adipose-Derived
Stromal/Stem Cells

(ASCs) (Y/N)

Multi Patient
Adipocytes or

ASCs (Y/N)
Key Findings Strengths and/or

Weaknesses Reference

2D
C

o-
C

ul
tu

re

THP-1 Macrophages,
HUVECs, and

Mammary
Preadipocytes

Yes Yes No

Macrophage vascular endothelial growth factor A
(VEGFA) expression increased post co-culture.
Macrophage expression of pro-angiogenic and
pro-metastatic genes significantly increased post
co-culture. Conditioned media derived from co-cultures
promoted HUVEC endothelial tube formation

No breast cancer
cells were used [48]

MSCs, U937, MCF-7,
and MDA-MB-231 Yes Yes No Macrophage paracrine activity intensifies breast cancer

cell-adipocyte crosstalk 2D co-culture [27]

ASCs, MCF-7, T47D,
and ZR75 Yes Yes Yes Obesity-altered ASCs contribute to the radiation

resistance observed in ER+ breast cancer 2D co-culture [49]

ASCs, MCF-7, and
MDA-MB-231 Yes Yes Yes ASCs increase breast cancer cell proliferation. ASC

paracrine activity increases breast tumor cell proliferation 2D co-culture [26]

MDA-MB-231 and
Adipocytes No Yes No

MDA-MB-231 pro-inflammatory gene expression was
upregulated in the presence of obese murine adipose
tissue. MDA-MB-231 impacted adipocyte
biosynthesis pathways

2D co-culture [25]

HS578Bst and ASCs Yes Yes Yes
ASCs disrupted the expression of ECM
maintenance-related genes and increased leptin and
inflammatory marker gene expression

2D co-culture [24]

ASCs, MDA-MB-231,
and MCF-7 Yes Yes Yes

ASCs do not impact breast cancer cell proliferation via
direct cell contact or paracrine activity. ASCs do not
significantly increase breast cancer cell EMT-related gene
expression via direct cell contact

2D co-culture [33]
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Table 1. Cont.

Platform Cell Type(s) Human-Derived
(Y/N)

Patient-Derived
Adipocytes or

Adipose-Derived
Stromal/Stem Cells

(ASCs) (Y/N)

Multi Patient
Adipocytes or

ASCs (Y/N)
Key Findings Strengths and/or

Weaknesses Reference

3D
C

o-
C

ul
tu

re

3T3-F442A, ZR75,
SUM159PT, MCF-7,

T47D, and MDA-MB-231

Yes-Breast Cancer
Cell Lines

No-Preadipocytes
No No Adipocytes promote the invasion of MDA-MB-231,

MCF-7, and other breast cancer cell lines
No human-derived
preadipocytes used [45]

ASCs and breast cancer
cell lines Yes Yes No Demonstrates breast cancer cell-primary preadipocyte

crosstalk in vitro

Sandwich white
adipose tissue-breast

cancer model
[59]

Breast Adipose Tissue,
ASCs, and TU-BcX-41C Yes Yes Yes Increase in cancer stem cell population when TU-BcX-41C

cells are cultured in breast cancer-adipose MPS
Modified sandwich

MPS model [60]

3T3-L1 pre-adipocytes,
MDA-MB-231, MCF-7,
SUM159, and HS578t

Yes No No
Breast cancer cell interactions with the ECM and
adipocytes alter breast cancer cell MET, potentially
contributing to secondary tumor formation

Used 3T3-L1
preadipocytes [53]

MSCs and MDA-MB-231 Yes Yes No MDA-MB-231 invasion is enhanced in the presence of
adipocytes and collagen matrix

Integrated a collagen
plug into traditional

Boyden chamber
[55]

3T3-L1 pre-adipocytes,
MDA-MB-453,

MDA-MB-435S,
MDA-MB-231, and

MDA-MB-468

Yes No No

Adipocytes induce migration and invasion of breast
cancer cells. Adipocytes stimulate breast cancer cells to
adopt an aggressive tumor phenotype by inducing
EMT-associated traits

Used 3T3-L1
preadipocytes [28]

Stromal vascular
fraction (SVF), ASCs,

and MDA-MB-231
Yes Yes Yes

Direct and indirect contact with adipocytes induces
similar invasive behaviors in the MDA-MB-231 TNBC cell
line

Enhanced cellular
heterogeneity by

including SVF
[29]

Mammary adipocytes
and MDA-MB-231 Yes Yes Yes

Breast cancer-adipocyte crosstalk is amplified by obesity.
Supports the study of mammary adipocyte lipid secretion
on tumor secretions and overall tumor aggressiveness in
lean and obese conditions

Used a fibrin matrix
in Boyden chamber [56]

ASCs, Fibroblasts, and
MDA-MB-231 Yes No No

Collagen VI, a highly oncogenic collagen isoform linked
to breast cancer, was decreased in the irradiated cancer
co-culture. Irradiation not only makes cells ablative but
also may influence the oncogenic potential of the
microenvironment

Used decellularized
scaffold [57]

Murine peri-uterine and
inguinal white adipose

tissue (WAT) and
MDA-MB-231

Yes No No Adipose tissue paracrine activity induces MET-like
changes in the MDA-MB-231 TNBC cell line Used murine WAT [54]
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Table 1. Cont.

Platform Cell Type(s) Human-Derived
(Y/N)

Patient-Derived
Adipocytes or

Adipose-Derived
Stromal/Stem Cells

(ASCs) (Y/N)

Multi Patient
Adipocytes or

ASCs (Y/N)
Key Findings Strengths and/or

Weaknesses Reference

M
ic

ro
flu

id
ic

s ASCs and MDA-MB-231 Yes Yes No

Statistically significant increase in MDA-MB-231
proliferation in the presence of ASCs. MDA-MB-231 cells
adopt more of a mesenchymal phenotype in the presence
of ASCs. Paclitaxel has reduced effectiveness in inhibiting
MDA-MB-231 replication in the presence of ASCs

One ASC donor
used (female,

Caucasian, normal
BMI)

[30]

MCF-7 and ASCs Yes Yes Yes

Predicts anastrazole sensitivity with respect to ASC BMI
better than a 2D co-culture system. Primary mammary
adipose stromal cells derived from obese patients exhibited
increased aromatase mRNA compared to lean controls

Multiple ASC
donors used [32]

Sp
he

ro
id

s

ASCs, MDA-MB-231,
MCF-7, DT28, and

HMLER3 CSC
Yes Yes Yes

The proportion of mammosphere-forming cells and cells
expressing stem-like markers increases when in direct or
indirect contact with adipocytes

Multiple ASC
donors used [62]

Multipotent
adipose-derived stem

cells (MADS)-adipocytes,
breast adipocytes, MCF-7,

and MDA-MB-231

Yes Yes No

Adipocyte lipid droplet size decreases in the presence of
mammospheres. UCP1 expression is dependent on
adipocyte-mammosphere distance. Mammospheres
produce adrenomedullin, which is critical in the
interactions between adipocytes and breast cancer cells

hMADS cells
isolated from young

donors [63]
[64]

ASCs, MDA_MB-231,
and MCF-7 Yes No No

ASC C-C motif chemokine ligand 5 (CCL5) expression
was elevated when co-cultured with the MDA-MB-231
TNBC cell line

One ASC
donor used [65]

3T3-L1 pre-adipocytes,
SKBR-3, MDA-MB-231,

and MDA-MB-468
Yes No No Adipocytes increase the invasiveness of breast cancer cells Used 3T3-L1

preadipocytes [43]

ASCs, MCF10AT,
MCF10A,

MCF10DCIS.com,
MCF10CA1a

Yes Yes No
ASCs promote premalignant breast cell invasions via
direct cell contact. Obese ASCs have a pro-invasive effect
on premalignant and malignant breast cell lines

Combination of
models established

in study
[66]

B
io

pr
in

ti
ng ASCs and MDA-MB-231 Yes No No MDA-MB-231 TNBC cell line induces adipose tissue ECM

remodeling and lipid content modulation

Used hyaluronic
acid-based bioink

and extrusion-based
bioprinting

[67]

ASCs and MDA-MB-231 Yes Yes Yes

Adipose cells hasten the invasion and escape of tumor
cells via soluble factor secretion. Tumor invasion and
escape are more strongly induced by ASCs
than adipocytes

Multiple
demographics

represented in ASC
donor selection

[31]
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1.2.2. Spheroids

Although three-dimensional scaffold-based platforms provide support for cell attach-
ment and support cell proliferation, differentiation, and ECM deposition, some scaffolds
can limit direct cell–cell interaction [68]. Unlike 2D and scaffold-based cultures, spheroids
cultured in a scaffold-free system take advantage of the inherent self-assembly tendency
displayed by multiple cell types [69]. Instead of relying on the addition of foreign ECM,
this model relies on the direct generation of ECM from the cells themselves. Spheroids have
already achieved success in breast cancer research as biomimetic in vitro models to study
underlying mechanisms in tumor biology (Table 1) [2,21,62,70–75]. Although the exclusion
of stromal cell populations such as adipocytes or ASCs in spheroid models is a current
shortcoming, progress has been made in this model, as demonstrated by the promising
results from several studies [49,62,64–66]. The spheroid models highlighted in this sec-
tion focus on the adipocyte or ASC-breast cancer crosstalk. Picon-Ruiz et al. generated
mammospheres composed of malignant mammary epithelial cells (MDA-MB-231, MCF-7,
and T-47D) in direct contact with immature adipocytes or in the presence of the adipocyte
secretome [62]. Findings suggest that mammosphere-forming cells and cells expressing
stem-like markers proliferate in the presence of adipocytes or the adipocyte-derived se-
cretome. Pare et al. demonstrated that mammosphere-secreted adrenomedullin (ADM)
is critical in the control of adipocyte-breast cancer cell interactions and could potentially
be interrogated for targeted therapy [64]. ASC paracrine activity in the release of CCL5
has also received attention in a co-cultured spheroid model. Results indicated an upregu-
lation in CCL5 and C-C chemokine receptor 1 (CCR1) expression in ASC/MDA-MB-231
spheroids, further validating the pro-metastatic role of adipose tissue [65].

Spheroids can also be cultured within a scaffold system. In contrast to the models
described above, He et al. created spheroids composed of breast cancer cells and 3T3-L1
adipocytes embedded in Matrigel to evaluate MDA-MB-231 and MDA-MB-468 invasive-
ness [43]. Similarly, Ling et al. created multicellular spheroids embedded in collagen
composed of either B6.Cg-Lepob/J (ob/ob) or wild-type C57BL/6j-derived ASCs and
premalignant or malignant breast cell lines [66]. In contrast to other spheroid models,
Ling et al. directed special attention to the effect of the obesity-associated myofibroblastic
ASC phenotype on the migration and invasion of premalignant breast cell lines. Findings
of this study suggested that obese ASCs promoted tumor cell invasion in a cell contact-
dependent manner more than lean ASCs. Importantly, while some of the studies included
patient-derived adipocytes or ASCs [49,62,64], others included murine-derived 3T3-L1
preadipocytes or freshly isolated murine-derived ASCs [43,65,66].

1.2.3. Microfluidics

Microfluidic technology, a subset of what is referred to as organ-on-a-chip technology,
introduces a shift from a static to a more fluidly dynamic environment in which tumor
models can respond to cues including fluidic pressure and flow. Microfluidic devices also
replicate the in vivo vasculature and enable studies to evaluate metastasis and tumor cell
migration, invasion, and adhesion from a primary to a distant tumor site [76]. Attrition of
commonly used cancer treatments such as cisplatin has been evaluated using microfluidic
technology, such as the Nortis Bio dual-channel microphysiologic chip [77]. Microfluidic
technology can support both direct and indirect co-cultures. In indirect co-culture, single
or co-cultured cell types are separated by a physical barrier so that communication can
only transpire via secreted factors. They can also incorporate both two-dimensional and
three-dimensional formats in which cells are either cultured directly on devices or fully
encapsulated into the desired ECM [35]. For example, select models have evaluated the
efficacy of doxorubicin delivery into breast tumor spheroids by mimicking vascular flow,
malignant epithelial cell invasion into healthy stroma, and breast ductal carcinoma in situ
(DCIS) progression to invasive ductal carcinoma (IDC) [2,78–80]. Despite advancements
in organ-on-a-chip technology, few studies have demonstrated the utility of examining
adipose-breast cancer interactions in a comprehensive manner. Rahman et al. and Morgan
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et al. assessed the effect of human ASCs on breast cancer cell responses to chemotherapy
(Taxol) or aromatase inhibitors (anastrozole) [30,32]. While Rahman et al. focused on the im-
pact of a single ASC donor on MDA-MB-231 morphology and treatment response, Morgan
et al. examined MCF-7 anastrozole sensitivity with respect to BMI and included lean (mean
BMI 24 kg/m2) and obese (mean BMI 34 kg/m2) patient-derived ASCs for comparison.

1.2.4. Bioprinting

Despite its relevance and impact in driving disease progression, recapitulating the
complex microarchitecture of breast TME has proven to be an arduous task. However, with
advancements in 3D bioprinting (3DBP) technology, more customizable, comprehensive
models have been developed, including systems mimicking vascular-like tubes, artificial
skin, lung, kidney, cartilage, and brain [35]. Bioprinted models simulating breast, brain,
ovarian, and skin cancers have been optimized over the past five years [2,81–85]. Bio-
printing can be described as a process that deposits materials by layering to generate a
three-dimensional structure. Current commonly used bioprinting materials include algi-
nate, decellularized ECM, and microcarriers or hydrogels. These materials are assembled
into tissue structures such as spheroids, cell pellets, or organoids [35]. Dance et al. engi-
neered micropatterned type I collagen gels into human breast tumors adjacent to a stroma
composed of adipocytes, ASCs, and lymphatic-like cavities to model the interstitial inva-
sion and vascular escape of breast cancer cells (Table 1) [31]. This model demonstrates that
tumor escape and invasion are strongly supported by ASCs, more so than adipocytes [31].
In contrast, Horder et al. generated ASC spheroids encapsulated in a hyaluronic acid-based
bioink via extrusion-based bioprinting (EBB) (Table 1) [67]. After adipogenic differentiation,
the adipose microtissue was merged with a bioprinted breast tumor compartment to form
an adipose-breast cancer tissue construct to assess tumor-induced ECM remodeling in
conjunction with lipid modulation [67].

In the development of breast cancer MPS models for preclinical studies, bioprinting
provides the inclusion of multiple cell types in the models, generating complex and physio-
logically relevant tissue structures. Furthermore, automation for MPS with this technology
supports optimization to support efficient and reproducible fabrication processes [86,87].

1.2.5. Xenograft and PDX Models

Breast cancer PDX models can offer predictive power compared with long-established
cell lines and transgenic murine models [88]. PDX models are characterized by the implan-
tation of patient-derived tumor tissue into immunocompromised mice [60]. PDX models
for cancer studies typically utilize humanized mouse models to mimic the human immune
system. Unlike cell-line-derived xenograft models, PDX models permit the retention of
patient tumor heterogeneity, mutations, TME, and endocrine function, making them an
ideal model for the evaluation of biomarkers and cell-based therapies, preclinical studies,
and personalized medicine approaches [18,89].

In contrast to PDX models, traditional orthotopic xenograft models utilize immor-
talized cell lines, which arguably lack tumor heterogeneity and retention of tumor tissue
architecture and stroma. Although great strides have been made in demonstrating the
feasibility of PDX models, as they have exhibited responses parallel to tumor responses
in vivo, there are still gaps in knowledge concerning adipose tissue-breast cancer crosstalk
with respect to PDX models [90]. Sabol et al. conducted a side-by-side comparison of
orthotopic xenograft and PDX models using established breast cancer cell lines or PDX in
combination with pooled ASCs that were isolated from lean (BMI < 25 kg/m2) or obese
(BMI > 30 kg/m2) adipose tissue donors (Table 2) [91]. Results from this study demon-
strated the impact of the ASC secretome on breast cancer cell proliferation and phenotype,
including obesity-affected EMT of TNBC cells. Sabol et al. also established a xenograft
model in which MCF-7 cells co-cultured with ASCs from an obese donor were exposed
to radiation prior to injection (Table 2) [49]. The study illustrated the impactful nature of
adipose tissue dysfunction and obesity on breast cancer treatment responses.
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The role of adipose–epithelial cell interaction was highlighted by Goto et al. as they
interrogated the effect of adipocyte-secreted adipsin (also known as complement factor D)
on breast cancer cell proliferation and the adoption of a stem cell-like phenotype via 3D
culture and xenotransplantation assays (Table 2) [92]. By employing the co-transplantation
of ASCs or adipsin knockdown ASCs (shAdipsin) and breast cancer PDX cells, Goto et al.
demonstrated that adipsin effectively enhanced the growth of PDX tumors in vivo, and
thus could serve as a potential target for adipsin/C3a inhibitors such as lampalizumab.

The distinct and heterogeneous nature of PDX models is exemplified in the study
that was conducted by Matossian et al., in which a new PDX model for metaplastic breast
cancer (MBC) was extensively characterized and validated as a translatable platform for
the development of novel therapies (Table 2) [60]. Of particular interest was the presence of
a cancer stem cell (CSC)-like population within the TU-BcX-41C PDX model. To evaluate
the maintenance of this population, Matossian et al. modified a previously published
system that was suggested to be both translatable and physiologically relevant to in vitro
TME [60,61,93]. The modified system, identified as the breast cancer microphyisological
system (BC-MPS), was composed of human-derived breast adipose tissue, ASCs from
two separate obese patients, and the Tu-BcX-41C cell line. Their results revealed that
there was an elevated expression of the CSC marker, GD2 ganglioside, in the BC-MPS
compared to traditional 2D culture conditions and further validated the powerful nature of
three-dimensional in vitro culture.
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Table 2. Review of in vivo breast cancer-adipose preclinical platforms for breast cancer studies, which includes a summary of associated cell types, derivation, and
key findings demonstrated in each study.

Platform Cell Type(s) Human-Derived (Y/N) Patient-Derived
Adipocytes or ASCs (Y/N)

Multi Patient Adipocytes
or ASCs (Y/N) Key Findings Reference

X
en

og
ra

ft

ASCs, BT20,
MDA-MB-231,

MDA-MB-468, MCF-7,
and HCC1806

Yes Yes No

ASCs derived from obese donors promote a
pro-metastatic phenotype by upregulating
epithelial–mesenchymal transition
(EMT)-associated genes and promoting migration
in vitro

[91]

ASCs, MCF-7, T47D, and
ZR-75 Yes Yes Yes

MCF-7 co-cultured with obese ASCs and irradiated
prior to injection had increased tumor growth
compared to cells that were not co-cultured
before radiation

[49]

PD
X

MDA-MB-231,
TU-BCX-41C PDX, and

TU-BCX-41C PDX
derived cells

Yes No No

Provided a detailed characterization of a PDX
model for metastatic breast cancer (MBC). The
established PDX model maintained consistent
matrix architecture and stiffness after multiple
serial passages

[60]

ASCs, human breast
cancer PDX cells Yes Yes Yes

Adipsin secreted from mammary ASCs promotes
cancer stem cell-like properties and proliferation of
human breast cancer PDX cells in vitro and in vivo

[92]

TU-BCX-2 K1 PDX,
ASCs Yes Yes Yes

ASCs derived from obese donors promote a
pro-metastatic phenotype by upregulating
EMT-associated genes and promoting migration
in vitro

[91]
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2. Discussion

The adoption of new, innovative approaches to evaluate breast cancer-adipose tissue
crosstalk with the inclusion of more traditional methods has facilitated the development of
novel clinically relevant, translatable preclinical models. Although considerable progress
has been made, there remains room for improvement. With preclinical model innovation,
emphasis lies on the feasible application of precision medicine and the ability to tailor
medical treatment to the individual characteristics of each patient. One of the overarching
goals of precision medicine is to classify individuals into subpopulations that differ in their
susceptibility to a particular disease or treatment response [94]. This will facilitate better
healthcare decisions, effective treatment options, and the quality of care initiated.

Many models, including in vitro cell culture, cell-line or patient-derived xenografts, or
murine/nonmurine animals, are subpar in complexity and void of consideration and/or
incorporation of a TME and ECM [95]. With that said, focus must be directed on the
impact of intra-tumoral heterogeneity on patient prognosis, survival, and treatment efficacy.
One of the most recognized examples of intra-tumoral heterogeneity is within the TNBC
population. Gene expression analyses have identified several molecular subtypes with
distinct mutational profiles, genomic alterations, and biological processes, including basal-
like (BL), immunomodulatory (IM), luminal androgen receptor (LAR), mesenchymal (M),
and mesenchymal stem-like (MSL) [96]. Preclinical models not only reflect intra-tumoral
heterogeneity and account for variance in the landscape of the microenvironment but must
also mirror the intra-tumoral heterogeneity observed amongst patients. Many factors play a
critical role in the onset and progression of breast cancer, including genetic background [97].
Specific population subsets within the population at large have a genetic predisposition
to diseases. Some examples include the Ashkenazi and Tay Sachs, Caucasians and Cystic
Fibrosis, and African Americans and Sickle Cell Disease [98–100].

Similarly, variances with respect to patient demographics such as race, ethnicity, and
age have been recognized as key players in the development of preclinical breast cancer
models for drug efficacy [8,101–103]. To compound the demographic-related challenges,
the functional role of adipocytes and adipose tissue must also be taken into careful con-
sideration when integrating the adipose stromal environment into preclinical models [22].
With respect to experimental design, we must assume that (a) adult stem cell function is
dependent on patient or donor physiology and the anatomical harvest location [15], and
(b) the heterogeneity of the resident cell populations in adipose tissue varies from patient
to patient and donor to donor [15].

Several of the preclinical models included in this review continue to incorporate
murine-derived cells, or ECM, versus human-derived cells, or ECM. Although murine-
derived ECM such as Matrigel is valuable and feasible in establishing an MPS model, the
use of these types of matrices does not provide an accurate model of the human disease,
largely due to their origin, batch-to-batch variability in gelation, and biomechanical proper-
ties [104,105]. In addition, mouse adipose tissue, cellular composition, and corresponding
metabolic signaling pathways are strikingly different from human adipose tissue, which
has been demonstrated to diminish preclinical model translatability and predictability [106].
Furthermore, studies that include human-derived ASCs or adipocytes incorporate a single
donor, either with or within corresponding demographics.

In this review, we highlighted that 60% of the in vivo platforms and 38% of the in vitro
platforms not only incorporated human-derived ASCs or adipocytes and patient-derived
ASCs or adipocytes but also included a range of donors that varied in age, race, ethnic-
ity, and BMI. Of the in vitro platforms described in this article, <10% included the ASC
or adipocyte donor demographics. Although 100% of this small percentage disclosed
donor BMI, only <50% included donor age, and 1% utilized non-white ASCs in their study.
The inclusion of both immune and endothelial cells into adipose-breast cancer models
would further improve their translatability and more accurately mimic the in vivo tumor
microenvironment. Only one of the preclinical models reviewed included immune cells.
Importantly, recent studies have demonstrated strong depot-specific associations and BMI-
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dependent shifts in resident cell populations, including adipocytes, ASCs, vascular, and
immune cells, within different adipose depots [107]. The incorporation of human SVF
cells into current preclinical models would help mitigate some of these variances. The
SVF, consisting of a heterogeneous population of cells including ASCs, hematopoietic
stem and progenitor cells, endothelial cells, erythrocytes, fibroblasts, lymphocytes, mono-
cytes/macrophages, and pericytes, has more utility, ease of use, and patient-associated
heterogeneity than the adipocyte and/or ASC subpopulations alone [108]. Improving
breast cancer-adipose tissue preclinical model diversity requires several directives, includ-
ing: (1) acquiring a diverse donor pool of matched mammary adipose tissue and breast
tumors; (2) characterizing the breast TME of a diverse population with special attention to
age, race/ethnicity, and other comorbidities; and (3) improving the cellular heterogeneity
of the models by incorporating endothelial and immune cell populations. Initial steps
to improve the diversity of these models could include the use of ASC donor pools for
the preliminary study, followed by studies using single ASC donor samples to define
interindividual differences in drug responses.

Companion technologies developed over the past several years have provided ad-
ditional value for microphysiological systems in preclinical studies as well as for the
understanding of breast cancer initiation, progression, and invasion. The application of
high-content imaging techniques allows investigators to extract information within multi-
cellular 3D environments. This, in combination with computer-assisted data analysis and
machine learning, will enable high-throughput modeling and application of behavior and
responses within the microphysiological systems. Indeed, high-throughput, label-free, live
cell imaging of MPS offers the potential to become a foundational tool in future pharma-
ceutical drug discovery [109]. In addition, the incorporation of biosensors for readouts
in real-time [110,111], as well as the connectors and flow generators in the plates and
devices [112–114], will support the adoption of breast cancer MPS alone or in multi-tissue
systems for drug toxicity and efficacy testing in the context of cancer [115–117].

3. Conclusions

Technical innovation and inclusion of patient diversity in the experimental designs are
slowly improving the development of physiologically and genetically relevant preclinical
models and will be critical elements for capturing the key aspects of the breast TME as
they relate to each racial and ethnic subpopulation [23]. The use of microphysiological
models using human-derived materials as well as historical data from preclinical models
and clinical trials allows for comparative studies and validation of breast cancer MPS.
This can confirm target validity with established clinical targets as well as prediction
validity, in which clinically effective agents can better support the identification of future
novel agents [23]. Better models will provide a more in-depth understanding of breast
cancer pathophysiology and the development of targeted treatments for each breast cancer
subgroup in the broader human population. Despite the growth of the MPS industry over
the past two decades, these systems have not yet gained overwhelming traction in the
pharmaceutical sector, largely in part due to the lack of supportive datasets and the time and
monetary investments required by pharmaceutical companies to assess the overall value of
the technology [118]. Verification and validation of MPS for safety and efficacy of anticancer
drugs required from the U.S. Food and Drug Administration (FDA) in clinical trials are not
as defined as for animal studies [119]. Guidelines for the verification/validation of MPS will
be critical to standardizing the systems now that MPS has been cleared to replace animal
research in preclinical studies. Validation of MPS models would require comparative
studies using the current gold standard animal models for specific readouts. Furthermore,
the standardization and optimization of MPS models could include an intermediate step
using an MPS model composed of animal-derived tissues that would be compared to
animal studies in terms of cellular and molecular responses. Ultimately, an accurate,
reliable, and relevant model for drug screening could serve as a personalized medicine tool
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for evaluating and addressing treatment resistance, for example, in a targeted manner for
at-risk ethnic subpopulations or at the individual patient level.
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