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Abstract: Neurological diseases and neurotrauma manifest significant sex differences in prevalence,
progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflam-
mation, and environmental exposures are among many physiological and pathological factors that
impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of
gene expression regulator that are extensively involved in mediating biological pathways. Emerging
evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various
human diseases, including neurological diseases. Understanding the sex differences in miRNA ex-
pression and response is believed to have important implications for assessing the risk of neurological
disease, defining therapeutic intervention strategies, and advancing both basic research and clinical
investigations. However, there is limited research exploring the extent to which miRNAs contribute
to the sex disparities observed in various neurological diseases. Here, we review the current state of
knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma
research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism
phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in
human diseases and to advocate a gender/sex-balanced science.

Keywords: sex biased; microRNA; neurodegenerative diseases; traumatic brain injury; X chromosome;
miR-223-3p

1. Introduction

There are substantial neurobiological differences between males and females during
development, adulthood, and senescence [1–10]. As such, it is predictable that numerous
neurological and age-related diseases have distinct prevalence, progression, and therapeu-
tic responses between genders. For instance, women have a significantly increased risk of
developing Alzheimer’s disease (AD) relative to men [11–14]. According to Alzheimer’s
Disease Facts and Figures from the Alzheimer’s Association (https://www.alz.org/media/
Documents/alzheimers-facts-and-figures.pdf (accessed on 20 February 2024)), almost two-
thirds of Americans living with AD are women. Additionally, the prevalence of multiple
sclerosis (MS) is four times higher in women compared to men [15,16]. By contrast, there is
a significantly (~1.5×) higher incidence among men for Parkinson’s disease (PD) [17]. Amy-
otrophic lateral sclerosis (ALS) represents another sexual dimorphic neurodegenerative
disease, with the incidence among men being three times higher than among women, and
men typically experience an earlier onset of the disease [18,19]. Neuropsychiatric disorders
also exhibit substantial sex bias in prevalence, symptoms, and age of onset [20]. For exam-
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ple, men have a higher prevalence of schizophrenia, hyperactivity disorder, and autistic
spectrum, and women have a higher prevalence of anxiety disorders and depression [21].

The pathogenesis of neurological diseases is associated with multifactorial contributing
factors, including genetic predisposition, inflammation, and environmental exposures. Sex
differences in neurological diseases may be associated with any or all of these influences.
Research indicates that while the increased risk of developing AD associated with the
APOE E4 allele is generally assumed to be equal in men and women, this risk is actually
stronger in women [22,23]. In a Korean genome-wide study on PD, the risk variants SNCA
and PARK16 exhibited sex-specific patterns: SNCA locus single nucleotide polymorphisms
(SNPs) predominated in females, whereas PARK16 locus SNPs were greater in males [24].

Sex is not only associated with different disease epidemiology but also impacts out-
comes and responses to treatment. For example, following a stroke, women experience
worse outcomes and undergo more functional decline than men [25,26]. Huntington’s dis-
ease (HD), which is highly genetically determined with limited therapeutic options [27], has
a higher incidence and faster progression in women compared to men [28–30]. Moreover,
sexually dimorphic responses to environmental modulators are also noted in HD [27,29].
Traumatic brain injury (TBI) represents another neurological condition where sex differ-
ences impact the outcomes, responses to treatment, and recovery. According to the Centers
for Disease Control and Prevention (CDC), men are two-times more likely to be hospitalized
and three-times more to die due to TBI, yet women were more vulnerable than men to show
persisting TBI-related cognitive and somatic symptoms [31–34]. Moreover, a longer time to
symptom resolution was reported in high school and collegiate female athletes [35–38].

Although a myriad of sex-specific genes and pathways have been identified, the
mechanisms underlying the sexual dimorphism in diseases and pathological conditions are
quite incompletely understood. As a class of powerful biological regulators in all known
metazoan and plant species, microRNAs (miRNAs) have emerged as an important regulator
of sexually dimorphic responses. However, few studies have examined the extent to which
miRNAs contribute to the sex-biased differences observed in various neurological diseases.
Here, we review the current state of knowledge related to miRNA sexual dimorphism in
neurological diseases and neurotrauma research. We also discuss how sex chromosomes
may contribute to the miRNA sexual dimorphism phenomenon. With this review, our
goal is to emphasize the significance of sexual dimorphism in miRNA biology in human
diseases and to enrich the framework for upcoming studies.

2. Overview of microRNAs

MiRNAs are short non-coding RNAs (19–25 nt) that regulate protein translation,
usually by inhibiting translation or destabilizing the messenger RNA (mRNA) of a targeted
gene. Since the discovery of first miRNA in Caenorhabditis elegans [39,40], phylogenetically
conserved miRNAs have been characterized across many animals and plants, and the
key roles of miRNAs in gene regulation are well recognized. It is estimated that at least
60% of human coding genes are regulated by miRNAs [41]. MiRNAs regulate diverse
biological processes such as development, cell differentiation, proliferation, apoptosis,
neurodevelopment, senescence, and immunity, and are an integral regulatory component
of biological and pathological systems [42–51].

The biogenesis of miRNA involves complex processes with a stereotypical pathway
that flows through multiple protein complexes [44,52]. MiRNAs are typically transcribed
as primary miRNA transcripts (Pri-miRNAs) from either the introns of their host genes
or standalone miRNA genes by RNA polymerase II. Pri-miRNA is further processed
in the nucleus by the Drosha/DGCR8 protein complex to a 70 bp stem-loop precursor-
miRNA (pre-miRNA) [44,53,54]. Pre-miRNAs are then exported to the cytoplasm by the
cotransporter Exportin 5 and then further cleaved by Dicer into small double-stranded
RNA in the cytoplasm [44,55–57]. One of the two double strands determined to be the
“guide strand” is then loaded into the Argonaute (AGO)-containing RNA-induced silencing
complex (RISC) [58,59], while the other strand (passenger strand) is degraded. The AGO-
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containing miRNA RISC complex is the effector unit of miRNA regulation, in which
different members of the AGO paralogs execute overlapping and distinct actions during
gene suppression [60]. For example, AGO1 mediates alternative splicing via interaction
with cell-type-specific transcriptional enhancers [61]. AGO2- and AGO3-RISC complexes
possess a ‘slicer’ function that may directly lead to mRNA degradation [60,62,63].

The complex processes of miRNA biogenesis and function, and the genes/proteins
involved are also subject to a spectrum of regulatory mechanisms, which include transcrip-
tion regulation, developmental staging, pathological stimuli, and sex hormones [64–66]. In
terms of the widespread regulation of miRNAs by sex hormones, which is not the main
focus of the current review, we recommend several excellent early review articles [67–70].

Some miRNA-related processing mechanisms are sexually dimorphic. For example,
AGO4 localized in mammalian germ cells plays a key role in regulating meiotic sex chro-
mosome inactivation [71]. Deficiency of AGO4 in germ cells caused a significant reduction
in miRNAs, in which over a 20% loss of miRNAs were X chromosome-linked miRNAs
(X-linked miRNAs) [71]. Additionally, miRNAs are differentially expressed in males and
females across cells, tissues, organs, and extracellular circulation, and are associated with
sex-biased biological and pathological processes [72–98]. However, the mechanisms for the
sexually dimorphic expression of miRNAs and their biological impact in both normal and
pathological events are largely unexplored [67].

3. Sex-Biased miRNAs in Neurodegenerative Diseases and Neuropsychiatric Disorders

Differential expressions and regulation of protein-coding genes by miRNAs between
males and females may represent the key mechanisms underlying the sex-biased preva-
lence, pathogenesis, response to therapy, and outcomes of human diseases. As an important
class of gene expression regulators, miRNAs play critical roles in neuronal development,
differentiation, and brain morphogenesis [49,99,100]. This implies that their sexually dimor-
phic expression might influence the risk of neurological diseases from early development
stages. A study revealed that the expression of the miR-200 family of miRNAs (miR-141-3p,
miR200a-3P, miR200b-3P, and miR-429) as well as miR-875 showed a sex-specific switch
in the developing rat brain [85]. At postnatal day 0 (P0), these miRNAs were elevated in
females; at P7 and the adult stage, all these miRNAs were elevated in male brains (Table 1).
Additionally, miRNA may influence response to early life events, such as environmental
stresses, which may impact the development of neurological disease later in life.

Sex-biased miRNA expression at different stages of development may lead to gender-
specific changes in the onset, progression, and outcome of a neurological disease, especially
neuropsychiatric disorders [101]. Prenatal environmental stresses (e.g., maternal stress, diet,
and endocrine disruption) can have a major impact on brain development and contribute
to the development of neuropsychiatric disorders, such as depression, schizophrenia, and
autistic spectrum disorders [102–105]. These adverse effects are often sex-biased and
can persist into subsequent generations [106–109]. Epigenetic mechanisms [110–113] and
miRNA dysregulation [79,80], among others, were suggested to be associated with these
phenomena. It was shown that early gestation is a perinatal period when organizational
gonadal hormones establish the sexually dimorphic brain and are most susceptible to
maternal stress [80,114]. In a mouse model of demasculinization, a study showed the
paternal transmission and programming of the prenatal stress-induced demasculinized
phenotype in second-generation (F2) male offspring [80]. The miRNA analysis using the
brains of these male offspring 1 day after birth revealed a significant reduction in miR-322,
miR-574, and miR-873, with levels similar to those of control female brains. The reduction
in these miRNAs was correlated with the significant increase in β-glycan, a common target
of all three miRNAs. β-glycan is a member of the TGFβ superfamily and it may be involved
in regulating the release of gonadal hormones [80]. Another study showed that estrogen-
sensitive miR-30b was found to be significantly reduced in the cerebral cortex of female but
not male subjects with schizophrenia [96]. This sex-biased miRNA expression appeared to
be regulated by estrogen and estrogen receptor signaling.
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Table 1. Sex-biased miRNAs in neurological diseases.

miRNAs Species/Tissue Disease/Condition X-Linked Yes/No Observation Reference

Pr
e-

cl
in

ic
al

st
ud

ie
s

miR-200 family (miR-141-3p, miR200a-3P,
miR200b-3P, and miR-429), miR-875 Rat/cortex P0/development No Upregulated in females [85]

miR-200 family (miR-141-3p, miR200a-3P,
miR200b-3P, and miR-429), miR-875 Rat/cortex P7, adult/development No Upregulated in males [85]

miR-935 Rat/cortex P0, P7, adult Upregulated in males [85]

miR-322, miR-574, and miR-873 Mouse/brain Prenatal stress No Downregulated in males [80]

Let-7g, miR-1944 Mouse/cerebral vessels 3xTg-AD, young to CI No Downregulated in males [86]

miR-133a, miR-2140 Mouse/cerebral vessels 3xTg-AD, young to CI No Downregulated in females [86]

miR-99a Mouse/cerebral vessels 3xTg-AD, CI to Aβ No Downregulated in males [86]

let-7d, let-7i, miR-23a, miR-34b-3p, miR-99a,
miR-126-3p, miR-132, miR-150, miR-151-5p,
miR-181a

Mouse/cerebral vessels 3xTg-AD, pre-AD to AD No Changed in males [86]

miR-150, miR-539 Mouse/cerebral vessels 3xTg-AD, pre-AD to AD No Changed in females [86]

miR-137, miR-181c, miR-29a, miR29b-1 Mouse/brain C57/BL No Downregulated in females [88]

miR-137, miR-181c, miR29b-1 Mouse/serum High-fat diet/C57/BL No Downregulated in females [87]

miR-320 Mouse/hippocampus Sepsis/old mice No Changed in females not males [89]

miR-223-3p, miR-98-3p, and miR-662-5p Mouse/hippocampus Sepsis/old mice Yes Upregulated in males [89]

miR-23a Mouse/brain Cerebral ischemia No Upregulated in females [75]

miR-509-3p Mouse/cortices Cerebral ischemia No Upregulated in males
downregulated in females [90]

miR-883b-3p Mouse/cortices Cerebral ischemia No Upregulated in females
downregulated in males [90]
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Table 1. Cont.

miRNAs Species/Tissue Disease/Condition X-Linked Yes/No Observation Reference

Pr
e-

cl
in

ic
al

st
ud

ie
s

miR-142a-5p and 25 others Mouse/microglia B6C3F1/J/naive Yes to some Enriched in females [91]

miR-1298-5p and 60 others Mouse/microglia B6C3F1/J/naive Yes to some Enriched in males [91]

miR-150-5p, miR-155-5p Mouse/CD11b+ C57BL/6J/naïve No Upregulated in males [98]

miR-150-5p, miR-155-5p, miR-146a-5p,
miR-223-3p Mouse/CD11b+ C57BL/6J/TBI No, except miR-223-3p Sex-specific response at different

time points following TBI [98]

miR-29a, miR-29c Mouse/brain Radiation-induced brain
injury No Upregulated in female [72]

C
lin

ic
al

st
ud

ie
s

miR-206, miR-133a, miR-133b, miR-27a, miR-155,
miR-146a, miR-221 Human/muscle ALS No, except miR-222 Upregulated in males [92]

miR-146a, miR-34a-5p Human/serum PD No Upregulated in men [93]

miR-29a, miR-29b, miR-29c Human/serum PD No Downregulated in men [94]

miR-206 Human/plasma FTD No Downregulated in men [95]

miR-30b Human/cortices Schizophrenia No Downregulated in females [96]

miR-548am-5p Human/primary dermal
fibroblasts XCI escape Yes Upregulated in females [97]
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MiRNAs directly regulate key molecules in the pathogenesis of various neurological
diseases, and numerous dysregulated miRNAs have been characterized [115–120]. Unfortu-
nately, few studies have considered sex as a biological factor, leaving the role of sex-biased
miRNAs in neurological diseases and neurotrauma largely undefined.

Certain trends have been identified among the limited studies report sex-specific
miRNA expression in injured and diseased brains (Table 1). For instance, in a tau pathology
mouse model (PS19), miRNAs were considerably more altered in males compared to
females [91]. Another study completed by Chum et al. investigated 599 miRNAs in brain
vessels extracted from male and female 3xTg-AD mice [86]. The study revealed extensive
alterations in miRNA profiles associated with age and AD pathology. Notably, several
miRNAs were significantly differentially expressed between male and female mice at
various stages of AD-type pathology progression in this mouse model (Figure 1).
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Figure 1. Example of sex-dependent miRNA expression in the 3xTg-AD mouse model. Chum
et al. [86] analysis of 599 miRNAs in 3xTg-AD mice brain and cerebral vessels, showing sex-specific
expression changes with age and degree of pathological progression.

Several miRNAs (miR-137, miR-181c, miR-9, miR-29a, and miR-29b-1) have been
found to participate in the ceramide biosynthesis pathway, regulating rate-limiting enzyme
serine palmitoyltransferase (SPT) in the brain [88]. Increased levels of ceramide have
been associated with AD and other neurodegenerative diseases [121,122]. It was revealed
that expressions of miR-137, miR-181c, miR-29a, and miR-29b-1 (but not miR-9) were
downregulated, while SPTLC1/2 (SPT long chain 1/2) protein expression levels increased
in female mice [88]. Furthermore, miR-137, miR-181c, and miR-29b-1 were downregulated
in the serum of female mice relative to male mice [87]. Nevertheless, whether these miRNAs
show sexually dimorphic expression in the human brain is currently unknown.

There are multiple relevant human studies defining sexually dimorphic changes in
miRNAs in people with ALS, PD, and frontotemporal dementia (FTD) (Figure 2). In ALS, a
set of miRNAs (miR 206, miR-133a, miR133b, miR27a, miR-155, miR-146a, and miR-221)
were significantly more upregulated in males compared to females [92]. The levels of
several miRNAs also exhibited gender biases in PD [93]. Specifically, miRNA-34a-5p and
miR-146a-5p were significantly upregulated in men compared to women. Interestingly,
these expression patterns were observed in PD patients who were never treated with
levodopa [93]. Another study conducted in PD patients indicated downregulation of
the miR-29 family (miR-29a, miR-29b, miR-29c) in the serum of PD patients compared
to controls, and these levels were significantly more downregulated in males compared
to females [94]. In a separate study involving circulating miRNAs in humans, it was
observed that plasma miR-663a, miR-502-3p, and miR-206 were significantly reduced in
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FTD patients compared to healthy controls [95]. However, when analyzed by sex, miR-206
was only found to be significantly downregulated in male patients, while its levels in
females remained comparable to healthy controls. The same study revealed that there
was a significant difference in Let-7e-5p levels when comparing female FTD patients with
healthy controls, and no difference was found in males or in the overall population. In an
attempt to discriminate FTD from other neurodegenerative diseases, an additional plasma
miRNA biomarker, miR-127-3p, was proposed [123]. Plasma miR-127-3p was able to help
distinguish FTD from healthy controls and AD patients; however, no difference between
males and females was detected.
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Figure 2. Sex-specific miRNA changes reported in men with ALS, PD, and FTD. In ALS, a specific set
of miRNAs including miR-206 and miR-146a exhibited higher upregulation in males [92], while in
PD, miRNAs like miR-34a-5p showed a similar male bias [93]. Conversely, in FTD, certain miRNAs
such as miR-206 were significantly downregulated only in males [95].

Neurodegenerative disease and cognitive impairment are hypothesized to have cross-
talk with neuroinflammation. For example, sepsis can induce severe and long-term cogni-
tive deficits affecting memory, attention, verbal fluency, and executive function [124,125],
and results in worse outcomes in older AD and AD-related dementia (AD/ADRD)
patients [126]. Sex-biased miRNA expression patterns were reported in the hippocam-
pus of a sepsis mouse model [89]. While miR-320 was downregulated in female old mice
(24 months) on day 1 and increased on day 4 following treatment, no change was reported
in males. Interestingly, X-linked miRNAs responded differentially in male and female
brains. Particularly, miR-222-3p, miR-221-3p, and miR-652-3p were downregulated in both
young and aged females 1 day following treatment. By contrast, three different X-linked
miRNAs, miR-223-3p, miR-98-3p, and miR-662-5p, were upregulated in older males.

4. Sex-Biased miRNAs in Cerebral Vascular Diseases

The prevalence, symptoms, treatment responses, and outcomes of strokes are known
to have strong sex-bias [127,128]. MiRNA regulation has been demonstrated to make contri-
bution to the sex differences in response to stroke. In a study of sex-biased vulnerability to
cerebral ischemia [75], it was found that miR-23a targets an X-linked inhibitor of apoptosis
(XIAP). XIAP, encoded on the X chromosome, is a member of the potent endogenous
human inhibitor of apoptosis (IAP) family [129]. XIAP was shown to contribute to the
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sex difference following cerebral ischemia, where it was reduced significantly in females
post-ischemia [75]. Concomitantly, miR-23a was significantly increased in the female brain
in response to cerebral ischemia. Thus, it was suggested that enhanced miR-23a expression
is likely to be responsible for the decreased XIAP in females [75]. Sex-biased miRNA
expression was reported in another cerebral ischemia study [90]. The study found that
many miRNAs were induced following ischemia in the cortices of both male and female
mice. However, several miRNAs exhibited sex differences in the degree of changes as
well as the direction of changes. For example, miR-509-3p levels were increased in males
and decreased in females, and miR-883b-3p levels were decreased in males and elevated
in females [90]. Florijn et al. have shown that several X-linked and estrogen-regulated
miRNAs were expressed in the neurovascular unit and may play a role in sex-specific
responses to ischemic stroke [130]. However, it remains speculative as to whether these
miRNAs exhibit a sexually dimorphic response to ischemic stroke, and these issues will
need to be further examined.

5. Sex-Biased miRNAs in Traumatic Brain Injury (TBI)

TBI is defined as any external impact that results in brain function alteration [131]. TBI
is a major cause of death and disability [132]. According to the CDC, about 190 Americans
died from TBI-related injury each day in 2021. For those who survive the immediate primary
injury, there may be a secondary injury (which may take days or months) consisting
of complex molecular and biochemical responses [133–137]. Moreover, there is a clear
association between a history of TBI and an increased risk of developing neurodegenerative
diseases, including AD, later in life [138–144], suggesting there may have overlapping
pathophysiological pathways between TBI and neurodegenerative diseases [145–147].

Numerous studies suggest a sexual dimorphism in TBI responses (see details in review
by Gupte et al., 2019). Men are three-times more likely than women to die from TBI, and
women often have worse symptom burdens and take longer time to recovery [31–37].
Multiple factors impact the outcome measurement of a TBI. For example, when studying
gender difference, the injury severities and the circumstances of brain injury—whether
civilians injured in a motor vehicle accident, military personnel experienced blast-induced
TBI, or athletes developed chronic traumatic encephalopathy following repeated head
injury—are the primary factors in the outcome of TBI. Other biological factors (age, sex
hormones, injury characteristics, etc.) and extrinsic factors (size of a study cohort, clinical or
physiological markers used in the study, social and behavioral elements) can all contribute
to the sex-biased outcomes following TBI. Although it remains debated [32,148–151], human
studies often report worse experiences (recovery, cognitive function, overall quality of life)
in women following TBI [31–34,150,152]. Nevertheless, recent reports in sport-related
concussion (SRC) found no differences overall in return-to-play time between male and
female collegiate athletes [149], although females in contact and males in limited-contact
sports experienced longer times in recovery [149]. In contrast, animal studies often present a
different narrative in that better outcomes were reported more in female animals [153–156].
These mixed observations further underscore the importance of identifying sex/gender
interacting cofounders in a given study, and translating animal data to human clinical
studies should be performed with caution.

MiRNAs are widely altered following TBI and are involved in various pathophys-
iological processes, such as neuroinflammation in the injured brains [157–160]. Clinical
studies using extracellular biofluids have suggested that miRNAs are abundantly present
in biofluids and may serve as biomarkers for diagnosis, prognosis, and distinguishing
TBI subtypes (e.g., mild vs. severe) [161–167]. For example, extracellular vesicle miRNAs
are differentially associated with TBI history in military personnel [161]. Interestingly, the
altered miRNAs in biofluids were found to be commonly implicated in neuroinflammation,
apoptosis, vascular remodeling, BBB integrity, and cellular repair pathways [161–167].
Despite the sex-biased nature of TBI response, past studies, especially experimental TBI and
TBI-related clinical trials, have been largely focused on male animals and men [32,168–171],
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whereas only limited prior studies have reported on miRNA sex-related differences in TBI.
Some studies have reported no difference in miRNA expression profiles between males and
females [158]. Nevertheless, it is encouraging that gender/sex has now been integrated as
a biological variable in many recent TBI-related miRNA clinical studies [31–38,148–152].

Studies by Kodama et al. have shown that miRNAs were expressed differently by
sex, which influences function in mouse microglia, the major immune cells in the brain;
furthermore, these differences were more pronounced in aging brains [91]. Sex-specific
alterations were recently reported in several inflammatory miRNAs in brain CD11b+ cells
isolated from naïve and TBI mice [98]. Among the tested inflammatory miRNAs (miR-146-
5p, miR-150-5p, miR-155-5p, and miR-223-3p), higher levels of miR-150-5p and miR-155-5p
were observed in male brain CD11b+ cells isolated from naïve animals. Interestingly, the
response of these inflammatory miRNAs to TBI was distinct. For example, miR-155-5p was
elevated in the brain CD11b+ cells of both female and male mice, but female mice showed
a greater induction at an early time point (3 h) compared to male mice following TBI. On
the other hand, miR-150-5p levels only increased in female mice and at more chronic time
points of 7 and 14 days following TBI. Despite no significant sex-biased expression having
been demonstrated with miR-146a-5p and miR-223-3p in CD11b+ cells isolated from naïve
mice, these miRNAs also exhibited sex-biased responses following TBI. Late increased
levels of miR-146a-5p were demonstrated in females relative to male CD11b+ cells following
TBI. The levels of X-linked, anti-inflammatory miR-223-3p were markedly elevated in the
brain CD11b+ cells of both sexes at 3 and 24 h following TBI, with the levels in females
being significantly higher than those males at 24 hr. Further analysis has demonstrated
a corresponding greater reduction in miR-223-3p-validated targets TRAF6 and FBXW7
in female relative to male CD11b+ cells. These data suggest that miR-223-3p and other
inflammatory-responsive miRNAs may play key roles in sex-specific neuroinflammatory
response following TBI.

In an ionizing-radiation-induced brain injury mouse model, a study showed that
miRNA changes were sex-biased, with larger changes observed in females than males [72].
Specifically, the miR-29 family members miR-29a and miR-29c were shown to be exclusively
downregulated in female mice’s frontal cortices at 6 and 96 h post-exposure in response to
ionizing radiation. The study further confirmed that the protein levels of a miR-29 target,
DNA methyltransferase 3a (DNMT3a), were correspondingly upregulated. This suggests
that in response to environmental cues and insults, sex-specific changes in miRNAs and
their target proteins may undergo sex-dependent changes, influencing the degree of injury
and outcome in males and females.

6. Impacts of X Chromosome-Linked miRNAs

Genetic background and hormonal profiles are markedly different in males and fe-
males, which significantly impacts the expression and function of miRNAs and their
machinery [50,172–174]. The human X chromosome contains roughly 10-times more pro-
tein genes compared to the Y chromosome. Accordingly, the human X chromosome contains
higher numbers of miRNAs compared to the Y chromosome and autosomes [175–177].
There are currently 118 annotated miRNA genes on the human X chromosome and
62 mature miRNAs have been confirmed with high confidence (source: miRBase ver-
sion 22.1) [176,178]. It is predicted that the human Y chromosome contains only four
miRNA genes. No miRNA is identified on mouse or rat Y chromosomes. For the readers
convenience, we have compiled a full list of the currently annotated human, mouse, and
rat X-linked miRNAs in Supplemental File S1 (source: miRbase version 22.1).

The difference in X chromosome gene dosage between females (two X chromosomes)
and males (one X chromosome) is balanced by a mechanism known as X-chromosome
inactivation (XCI) [179–181]: one copy of the two X chromosomes in females is randomly
and permanently inactivated during early embryogenesis. Nevertheless, about 15–25%
of human X-linked genes escape inactivation to some degree, which is linked to some
diseases [182–186]. A number of miRNAs reside in the intronic regions of their host coding
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genes that are known to escape XCI. This suggests that the intronic miRNAs residing in
XCI-escaped genes can potentially be reactivated [97,187]. However, very few examples
of X-linked miRNA escape have been experimentally verified. Data analysis has revealed
that miR-548am-5p might potentially escape XCI, and it was experimentally verified to
express significantly higher levels in human primary dermal fibroblasts of females relative
to males [97]. Remarkably, it has been shown that the immunity-related genes in the
inactive X chromosome in female lymphocytes are susceptible to being partially reactivated,
resulting in a higher level of immunity-related gene expression [188]. This raises the
possibility that immune-related miRNAs (such as miR-223-3p) could escape XCI, especially
upon altered physiological (e.g., development, aging) or pathological (e.g., cell injury,
inflammation, infection) conditions [85,101,176,189–191].

The expression of male-biased miRNAs appears to preferentially enrich for X-linked
miRNAs [83,192]. Ro et al. have reported that ~39% of testis-specific or testis-preferential
miRNAs are X-linked miRNAs [193], suggesting a potential role of X-linked miRNAs
in spermatogenesis [193–195]. Several studies have shown that many X-linked miR-
NAs escape meiotic sex chromosome inactivation (MSCI) and suggest that these escaped
miRNAs may be specifically required during the meiotic stages of spermatogenesis in
males [195–198]. However, recent work by Royo et al. has argued that X-linked miRNA
expressions are highly stage-dependent during MSCI and that the observed ‘MSCI escaped’
X-linked miRNAs may be a result of long half-life of the miRNAs [194].

Dysregulation of X-linked miRNAs is also associated with a number of diseases and
pathological conditions [77,199]. The X-linked miRNA, miR-223-3p, has been demonstrated
to play critical roles in immunity, inflammation, and lipid metabolism in various disease
conditions [200–205]. Although no sex-biased expression is reported under physiological
conditions, it has been shown that miR-223-3p exhibits sex-specific alterations in mouse
brain CD11b+ cells in response to TBI [98]. Many other X-chromosome-located miRNAs
(including miR-18b, miR-19b, miR-20b, miR-106a, miR-221, miR-222, miR-424, and miR-503)
have not been investigated in the context of sexual dimorphism but potentially could pro-
vide additional understanding in the mechanism of sex differences in disease phenotypes.
It is noteworthy that two X-linked miRNAs, miR-424 and miR-503, are members of the
miR-15/107 group [206], which has been implicated in regulating key proteins (BACE1,
GRN) in neurodegenerative diseases [119,207,208]. However, these miRNAs have yet to be
investigated for their roles in sex-biased diseases.

7. Conclusions and Perspectives

MiRNAs are critical gene mediators in development and post-development processes
as no known multi-cellular organisms can sustain viability and functionality when missing
essential miRNAs or miRNA machinery [49,209–211]. Moreover, mutations in miRNA
genes or the miRNA target site of a gene often cause diseases [212–219]. However, the
functional role of sex-biased miRNAs in neurological diseases and neurotrauma is under-
appreciated and understudied. Many questions remain unanswered. For example, in an
aged brain where sex hormones have declined, what drives sex-biased miRNA expression?
Which X-linked miRNAs escape XCI, and under what circumstances? Do human and
experimental animal models express the same sex-biased miRNAs in the brain? If not, how
can we better implement knowledge of animal sex-biased miRNAs in human studies?

Other important issues include considering sex-biased miRNA trafficking between
peripheral tissues and the CNS. Neurological diseases are a diverse group of disorders
associated with a variety of pathological and dysregulated physiological processes. Periph-
eral events, physiological or pathological, such as inflammation, diabetes, hypertension,
microbiome, and endocrine disorders, can have significant impacts on the CNS. In this
review, we mainly focused on the brain’s sex-biased miRNAs relevant to neurological
disease. However, sex-biased expression and response miRNAs in peripheral tissues may
also play an important role in the physiology and pathology of the brain, including immune
response and inflammation. Although the brain possesses ‘immune privilege’ to prevent
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damage mediated by inflammation [220], it is now clear that there is a dynamic immune
and inflammatory interaction between peripheral tissues and the brain, especially when
the brain undergoes pathological changes or is under abnormal conditions [221]. Consider-
ing that neuroinflammation is a common component of neurological diseases, peripheral
sex-biased inflammatory miRNA trafficking may be an important element dictating brain
responses to inflammation. Accumulated evidence has demonstrated that miRNAs can
be transported between brain and peripheral tissues via extracellular vesicles as well as
other protein complexes that readily cross the blood–brain barrier and exert functional
roles [222–224]. This evidence has also led to the novel development of using miRNAs as a
biomarker and therapeutic strategy for neurological diseases [225,226].

Given the broad impacts of miRNAs in normal neuronal physiology and pathology,
sex differences in miRNA functions have important implications for assessing the risk of
neurological disease, defining therapeutic intervention strategies, as well as in basic research
and clinical investigations. The relative paucity of extant sex-related miRNA studies and
reports in biomedical research is a limitation of the field and should be addressed.
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