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Abstract: We investigate Quantum Electrodynamics corresponding to the holographic brain theory
introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance
solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular
conformational states of water) for coherent light sources of holograms. Next, we estimate memory
capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally,
we introduce a control theory to manipulate holograms involving biological water’s molecular
conformational states. We show how a desired waveform in holography is achieved in a hierarchical
model using numerical simulations.
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1. Introduction

The human brain is one of the most complex and fascinating structures in the world.
The question about the molecular mechanisms involved in the human brain’s functioning
has been of great interest to not only neurophysiologists but also information scientists,
biophysicists and psychologists for decades. While much is known about the types, organi-
zational structure of brain cells, and their electrical and biochemical activities, much less is
known about such enigmatic issues as where our memories are stored, or which molecular
mechanisms are involved in information processing by brain cells. Speculations about
these molecular mechanisms behind cognition abound. Recently, heated debates centered
on the possibility that at least some cognitive functions operate at a quantum level.

Nobel-Prize winning neuroscientist Eric Kandel discovered that as we learn, chemical
signals change the structure of synaptic connections [1]. He also showed that short-term
and long-term memories are formed by electrical signals transmitted across synapses in a
process called long-term potentiation (LTP). Specifically, repetitive pre-synaptic stimulation
increases post-synaptic sensitivity and hence strengthens synapses. This is aptly expressed
by saying that neurons that fire together, wire together. While LTP has provided a glimpse
into the nature of learning and memory, the issue appears to be much more complicated.
First, while long-term memory endures, LTP does not make permanent changes to synaptic
strength but decays over hours to months. Second, LTP-based memory models suffer from
the loss of signal fidelity. Third, memory requires the assimilation of information across
different sensory inputs involving huge neural circuits that need to be somehow integrated.
Finally, external stimuli are associated within their context, so that new experiences are
influenced by the current context, previous experiences, and even anticipation of the future.
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To explain this with only synaptic-based computing may easily exceed the capabilities
of the brain. This suggests that another level of computation in the brain is needed for
learning and memory functions.

Questions such as whether classical physics is adequate to properly explain the com-
plexity of human mind are hotly debated with sharp division lines between supporters of
classical neurophysiology and their opponents who strongly favor quantum approaches to
consciousness as the ultimate explanation of how the brain really works when it creates
conscious experience. One of the first attempts to describe the brain using quantum physics
was made by Ricciardi and Umezawa in 1967 [2]. Based on experimental observations of
brain activity they proposed that the brain can be excited into particular quantum states by
stimuli from the external environment. Thus, information can be thought of as being coded
into the brain as quantum excited states representing short-term memory. This code would
then be later on transferred to the lowest quantum energy state by means of a Bose–Einstein
condensation accounting for learning and long-term memory represented by macroscopic
quantum fields. Memory in the brain is stored in a diffused unlocalized domain of a quan-
tum field theoretical vacuum acting like a single entity of the Bose–Einstein condensate
as that in superconducting media [3]. This model, called quantum brain dynamics (QBD),
proposes that brain functions are manifestations of spontaneous symmetry breaking in the
dynamical state of the brain [4]. It was later extended to view the brain as a hybrid physical
system with the first part consisting of the classical electrochemical interactions in neurons,
and the second being the macroscopic quantum state responsible for the creation and
maintenance of memory. This was later fleshed out by Del Giudice and co-authors [5–7].
Jibu and Yasue included the dipolar field of water molecules in the brain interacting with
the internal electromagnetic field [4]. An extension of QBD included microtubules, as well
as dendritic and neural networks. Microtubules were predicted to form nonlinear optical
devices akin to lasers creating electromagnetic field inside their hollow core in a process
termed ‘super-radiance’. The optical computing proposed to occur in these microtubule
networks was viewed to provide the basis for cognitive functions.

What is the physical mechanism of memory involving our subjective experience in
the brain? It is still an open question. We know several features of memory produced in
the human brain, which are distinguished from computer memory [8]. We recall a song
or a melody in the forward direction, not backward, (sequential patterns). When part
of information is given, we recall the whole memory auto-associatively (auto-associative
recalling). Memory is processed in a hierarchy in the neocortex, namely in regions V1, V2,
· · · , V5, for visual processing (storage in a hierarchy). Memory is stored in patterns in an
invariant form. In taking a cup and drinking tea, all motions are different each time, but we
recognize them as a single movement. Memory has diffused nonlocal features and is not
localized in a particular region of the brain [9]. Even if part of a brain is damaged, memory
is recalled by remaining undamaged areas [10], which is known as equipotentiality [11].
Whether or not particular memory is lost depends on the magnitude of widespread lesions
in the brain, known as the mass action principle [9]. Memory is robust against damages
done to the brain. To explain these features of memory, Pribram proposed the holographic
brain theory as a candidate of theory of memory and perception [12,13]. Holography, a
technique to record 3-dimensional information on medium invented by Gabor [14], can
describe various features on memory in a brain as listed above. Simultaneous optical
information processing can be achieved due to super-position of optical waves even in
classical holography. Holonomy (quantum holography) adopted by Pribram provides the
useful properties that a great amount of information is stored within a small region repre-
senting patches of dendritic receptive fields in ‘cellular’ phase space, and that though the
information in the patch is entangled, cooperative information processing among patches
is achieved coherently, and decoherence can induce the localization of the process [15].
Cavaglia et al. recently proposed a holographic paradigm in the brain involving neuronal
membrane dipole oscillations with quantum coherence [16]. The collaborators of Pribram
were Jibu and Yasue who proposed the concrete degrees of freedom in Quantum Brain
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Dynamics (QBD), that is Quantum Field Theory (QFT) of the brain, namely water electric
dipole fields and photon fields [4,17–21]. Quantum Field Theory (QFT) of the brain is one
of the hypotheses expected to explain formation of memory in the brain. QFT, which is
distinguished from quantum mechanics, is applied to describe both microscopic degrees
of freedom in quantum mechanical sense and macroscopic matter in the sense of classical
physics [22]. This is called the Jibu–Yasue approach, which is distinguished from the
Penrose–Hameroff approach to consciousness [23,24].

The QBD theory is originated with the monumental work by Ricciardi and Umezawa
in 1967 [2]. It is further developed by Umezawa, Stuart and Takahashi in 1978–1979 [25,26].
In 1968, Fröhlich proposed the Bose–Einstein condensation an biological systems with
quantum coherence involving long-range correlations, called Fröhlich condensation [27,28].
In 1976, Davydov and Kislukha proposed a coherent dipolar solitary wave solution propa-
gating along the one-dimensional chain of alpha-helix structures in protein molecules such
as protein filaments, called the Davydov solution [29]. In QFT, a coherent solitary wave
propagates as a localized degree of freedom storing and transferring energy without loss
due to thermal effects [3]. The Fröhlich condensation and the Davydov soliton solution
represent static and dynamic features, respectively, emerging in a non-linear Schrödinger
equation with an equivalent Hamiltonian [30]. In 1980s, Del Giudice et al. proposed
to use a quantum field theoretical method in the description of dynamics of biological
systems [31–34]. They investigated the laser-like behaviors in Quantum Electrodynamics
(QED) of water dipoles and photons by considering water molecules’ rotational degrees of
freedom [33]. Within the QED framework, Preparata argued about coherent super-radiance
solutions which were first introduced by Dicke in 1954 [35–37]. Recently, Keppler adopted
the QED theory formulation introduced by Preparata to investigate the feasibility of co-
herent domains of glutamates in the human brain [38]. A recent experimental study by
Kerskens suggests the presence of quantum entanglement of excited states emerging in
a brain [39]. Dotta et al. showed that photon emission from the head increased while
subjects imagined light in a very dark environment [40]. Kauffman et al. proposed that
measurements by our mind convert possibilities manifested in quantum superpositions of
states to actual events [41,42]. In QBD, memory corresponds to the vacua emerging in the
breakdown of rotational symmetry of quantum degrees for freedom [4]. Therefore, it is a
logical conclusion to suggest integration of QBD with the holographic brain theory [19,43].
Or, we might adopt a dissipative quantum brain theory with squeezed coherent states of
Nambu–Goldstone bosons in open systems [44], which is equivalent to fractal functional
representations as earlier proposed by Vitiello [45,46].

The main criticism levelled at QBD is about the role of thermal decoherence phenom-
ena of the proposed quantum states [47]. It was claimed that quantum coherence in the
brain cannot be maintained since the brain system is too warm, too wet and too noisy. The
order of magnitude of the decoherence time is 10−20 s as estimated by Tegmark. However,
his analysis has several major problems. First, he adopts the mass of a water molecule
as ∼ 18 × 940 MeV. To estimate the macroscopic order of water rotational degrees of
freedom in QBD, we should use the inverse of the moment of inertia ∼ 4 meV or the mass
of polaritons formed from water fields and photon fields. Moreover, he adopts a strange
procedure where time scales for decoherence are divided by the number of relevant Na
ions 106. In addition, we need to consider the brain as an open system, which is constantly
supplied with metabolic energy for it stay alive. In the Fröhlich model, the physical system
is connected with an energy supply and a heat bath [30]. In the open system, we should
investigate the balance of decoherence and error corrections for quantum coherence in the
flow of energy from the energy supply through the physical system to the heat bath. His
approach for decoherence lacks these types of analysis and hence the resultant estimates of
the decoherence times are unrealistically small.

We should also comment on the reasons why we focus on water molecules. In the main
stream of neuroscience and physiology, most researchers investigate constituent elements
of the human brain, such as neurones, proteins, DNA, ions, and so on, for physiological
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processes, and consider water molecules as merely an inert solvent medium. In this view,
water plays a role of a supporting actor, not one of the main actors. However, to achieve
long-range correlations in the whole brain, we need degrees of freedom present in the
entire brain. Lashley indicated an unsolved problem for nervous system organization and
masses of excitations in the limited paths of nerve cells, which is Referred to as Lashley’s
dilemma [48]. The most likely candidates for such degrees of freedom are photons and
water molecules. Quantum Brain Dynamics adopts photons and water as main actors
covering the whole brain involving their internal organization in the formation of our
conscious experiences. Brain is a mixed system of classical neurons and glial cells on
the one hand, and quantum degrees of freedom of photons and water molecules on the
other hand. The latter obey the laws of quantum field theory (QFT). In QFT, we adopt
spontaneous symmetry breaking (SSB) representing macroscopic order in a physical system.
Order is maintained by long-range correlations by massless Nambu–Goldstone quanta
emerging in SSB. We can adopt macroscopic order in QFT in the brain to describe masses of
excitations. Moreover, water is also an amplifier of dynamical effects of charged ions, and
the dipolar degrees of freedom of the cytoskeleton. Sizeable dipoles affect orientations of
water dipoles [33]. Electric dipoles of tubulin dimers in a microtubule affect surrounding
water dipoles due to their dipole-dipole interactions. Conversely, surrounding water
molecules as a group also affect the dynamics of the cytoskeleton, especially in neutrons
where microtubules form parallel bundles. Water dipoles and constituents of ions, proteins,
and so on, are hence dynamically correlated. It should also be stressed that the cerebrospinal
fluid is a high electric conductivity medium, very well suited for the transmission of
electromagnetic signals across all areas of the brain. This, local events in the constituents
might be readily and faithfully transferred via water dipoles across the whole brain. A
recent experimental study of microtubule excitations has shown the presence of quantum
effects on a nanometer and nanosecond scale [49].

Whether or not our brain adopts the language of holography might be investigated by
manipulating holograms by external stimuli. A recently reported experiment for invasive
stimulation to manipulate our visual subjective experience was described in [50], for
example. We prefer non-invasive methods. Non-invasive neural stimulation methods have
been developed over several decades [51], and originated from a seminal work by Barker
as transcranial magnetic stimulation (TMS) [52]. Transcranial electric stimulation with
direct current [53] and alternating current [54], photonic methodology with near-infrared
photons [55,56], and an ultra-sound method [57–59] have been also developed and applied
to treat neuropsychiatric diseases. Our approach in this paper is based on non-invasive
manipulation of holograms within the holographic brain theory. We adopt reservoir
computing or morphological computation [60–62] as a control theory of holograms.

The aim of this paper is to derive a super-radiance solution in the holographic brain
theory, estimate memory capacity of a neocortex and to introduce a control theory to
manipulate holographic memory involving our subjective experiences. First, we adopt
the QED theory with non-relativistic charged bosons, corresponding to the holographic
brain theory proposed by Pribram [13]. The QED theory corresponds to a model of water
molecules’ molecular conformational states involving super-radiant coherent photon emis-
sions expected to achieve interference patterns in holography. Next, using the wavelength
of super-radiant emission, we can estimate memory capacity in a holographic brain model.
Finally, we propose a control theory manipulating holograms by adopting morphological
computational approach [62]. We adopt a hierarchy of multiple layers as a model of neocor-
tex covered by cerebrospinal fluid, dura and skull. We find that binary holograms involving
step-function-like distributions of density distribution of water molecular conformational
states are realized by external input electromagnetic fields propagating through multiple
layers in a hierarchy.

This paper is organized as follows. In Section 2, we derive a super-radiance solution in
the framework of QED corresponding to holographic brain theory by Pribram. In Section 3,
we show holographic aspect in QED and derive memory capacity of a brain neocortex.
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In Section 4, we derive time-evolution equations in QED in background field gauge and
show how a desired waveform (hologram) of coherent charged Bose fields is achieved in
numerical simulations. In Section 5, our results are discussed. In Section 6, concluding
remarks and perspectives are provided. We adopt the natural unit with the light speed and
the Planck constant h̄ set to be 1. The metric tensor is set to be ηµν = diag(1,−1,−1,−1)
with space-time subscript µ, ν = 0, 1, 2, 3 and spatial subscript i, j = 1, 2, 3.

2. Super-Radiance Solution

In this section we show a super-radiance solution in Quantum Electrodynamics (QED)
with non-relativistic charged bosons (a model of water molecular conformational states) as
a resource of super-radiant coherent light to achieve hologram memory in a brain. We adopt
water molecules inside microtubules as sources of super-radiance as shown in Figure 1.

Figure 1. Super-radiant emission from a microtubule.

Derivation of super-radiance solution is given in Appendix A. The amplitude of
electric field E3 is,

E3 =
gΩ2N

4π

[
cosh

(
x0 − τ0

τR

)]−1

, (1)

where g represents the coupling defined in Appendix A, N represents the number of water
molecules, Ω represents energy difference between the ground state and 1st excited state in
two-energy level approximation, x0 represents time, τR represents,

τR =
2π

g2ΩN
, (2)

with τ0 = −τR ln tan θ0
2 (definition of θ0 is in Appendix A). Since N molecules in the 1st

excited state decay with τR ∼ 1/N time scales, the intensity of coherent light is the order of
N2. We find the solution of the flash light, namely super-radiance representing cooperative
spontaneous emission of light via a microtubule.
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3. Memory Capacity

In this section, we evaluate the memory capacity for neocortex for a given wavelength,
and introduce the theory of computer generated holograms. Holographic aspect is shown
in Appendix B.

We shall estimate limitations of hologram memory storage in the neocortex. The
limitation is determined by whether or not binary signals can be divided in changing
radiation angles of coherent laser lights [63]. The limitation of 2-dimensional holograms
is 4

λ2 with wavelength of laser light λ. When holograms have a finite thickness d of the
neocortex, the factor nrd

λ with the refractive index of holograms nr is multiplied. The
capacity per unit area is calculated as,

Capacity per unit area =
4nrd
λ3 = 8 × 1010 bit/mm2, (3)

where we have used nr = 1.3, d = 2 mm for neocortex and an example of wavelength
λ = 500 nm. Multiplying the area of the neocortex 2500 cm2, we arrive at

Capacity = 2.5 PB. (4)

We shall compare the above value with the memory capacity estimated in conventional neu-
roscience.The number of synapses is 250 × 1012 per brain. When we memorize information
1 bit per synapse, the capacity of memory storage for whole brain is,

Capacity in conventional neuroscience = 30 TB. (5)

Memory capacity in the holographic brain theory is huge compared with its capacity
estimated using conventional neuroscience.

Finally, we denote computer-generated binary holograms introduced by Lohmann,
Brown and Paris [64–66]. We introduce a brief summary of how binary figural information
is recorded in holograms in their method. We adopt binary gradation of holograms with
high and low transmittance. First, we divide holograms into square cells as depicted in the
left of Figure 2. Next, we make rectangular holes in (n1, n2) cell involving 2-dimensional
ν1-ν2 plane in the right of Figure 2. The center of the rectangular hole is the position
((n1 + Pn1n2)δν, n2δν). The area of the hole is represented by,

|ν1 − ((n1 + Pn1n2)δν| ≤ C
2

δν, (6)

|ν2 − n2δν| ≤ Wn1n2

2
δν, (7)

for high transmittance. When the binary figural information (as a picture) to be re-
constructed is given by U (x1, x2) and its Fourier transformation Ũ (n1/X1, n2/X2) ∝
Bn1n2 exp(iΦn1n2) with the size of the picture X1 × X2 is given, we set,

Wn1n2 = Bn1n2 , (8)

and,

2πN Pn1n2 = Φn1n2 , (9)

where N is an arbitrary integer. We shall adopt binary holograms to manipulate optical
signal transfer in a brain. In the next section, we see how rectangular holes are constructed
in a control theory based on morphological computation.
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Figure 2. Method for computer-generated binary holograms. (Left: Square cells, and Right: Hole in
the cell).

4. Control Theory

In this section, we use a control theory applied to the holographic brain theory given
in Appendix C and show how holograms involving density distributions of charged bosons
are manipulated by external input functions. We adopt quantum fields in a hierarchy given
in Figure 3. Time-evolution equations are given in Equations (A82)–(A86) with (A87). The
input functions are calculated by Equations (A88) and (A89) for given target functions
A1,target and A2,target.

Figure 3. Quantum fields in a hierarchy involving input 0th layer, intermediate I = 1, 2, · · · , N − 1th
layers and output Nth layer.

We shall consider N = 4 layers. We set a 2-dimensional spatial lattice for each layer in
Figure 3 by xi = −Nsas,−(Ns − 1)as, · · · , nias, · · · , (Ns − 1)as, Nsas with discrete integer
ni for xi with i = 1, 2, lattice size 2Ns = 128 and lattice spacing mas = 1.0 scaled by mass
m. We adopt periodic boundary conditions for spatial coordinates xi. We set time step at
with at/as = 0.001. We set coupling e = 0.3, transmittance v/m2 = 0.8, damping factor
γ/m = 0.2, effective mass added M2 = 2m2, and the damping factor for input functions
γ2/m = 0.01. To investigate the time-evolution of the prepared system in a hierarchy, we
adopt 4th-order Runge–Kutta method.
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We set the desired target function A1,target and A2,target scaled by mass m as,

A1,target = u(N)
1 (n1, n2) =


0.1 n1+Ns

Ns−N1
(n1 ≤ −N1)

−0.1 n1

N1
(−N1 < n1 < N1)

0.1 n1−Ns
Ns−N1

(N1 ≤ n1)

(10)

A2,target = u(N)
2 (n1, n2) =


0.1 n2+Ns

Ns−N2
(n2 ≤ −N2)

−0.1 n2

N2
(−N2 < n2 < N2)

0.1 n2−Ns
Ns−N2

(N2 ≤ n2)

(11)

with N1 = 30, N2 = 20 and u(N+1)
1 = u(N+1)

2 = 0. The A1,target and A2,target represent
distributions of 3 polygonal lines.

The input function A(0)
1 = u(0)

1 at mx0 = 0.0 for N = 4 is depicted in Figure 4. We find

distribution with polygonal lines in u(0)
1 since terms ∂2

2u(n)
1 and ∂1∂2u(n)

2 in Equation (A88)
is zero for given target function in Equation (10). The maximum value is approximately 3

due to the factor 0.1 × (M2/m2)4

vN = 0.1 × 24/0.84 = 3.9 in deriving input function u(0)
1 .

We set initial conditions |φ̄(n)(x0 = 0, x)| = 1.0 scaled by mass m, A(n)
1 = A(n)

2 = 0

and E(n)
1 = E(n)

2 = 0 with A(n)
0 = 0 (n = 1, 2, · · · , N). We fix A(N+1)

1 , A(N+1)
2 , E(N+1)

1 and

E(N+1)
2 to zero for any time point.
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Figure 4. Distribution of input function u(0)
1 for N = 4.

In Figure 5, we depict the time-evolution of distributions A(N)
1 (x0, x1, x2 = 0). At

mx0 = 0.0, we begin with zero A(N)
1 . At mx0 = 5.0, we find polygonal lines with its

maximum value larger than the maximum value of target function. The distribution A(N)
1

approaches the target function at mx0 = 20 due to damping term −γE(N)
1 in Equation (A82).

At later times mx0 = 40, 100 and 200, the distribution A(N)
1 decays in passage of time since

the input function A(0)
1 decays exponentially due to factor exp(−γ2x0) with γ2 = 0.01.

At mx0 = 200 = 2/γ2, the A(N)
1 converges to zero due to damping term −γE(N)

1 in

Equation (A82) and damping of input function A(0)
1 . Using distributions of polygonal lines,

we can manipulate density distributions of charged Bose fields |φ̄(N)|2.
We show the time-evolution of density distributions of charged Bose fields corre-

sponding to holograms in Figure 6. The initial distribution represents homogeneity
with initial value 1.0 as shown in Figure 6a. As time goes by, distributions in the area
−N1as < x1 < N1as with N1 = 30 and −N2as < x2 < N2as with N2 = 20 start decreasing.
The decrease is small (around 1.3%) at mx0 = 5.0 in Figure 6b compared with the initial
value 1.0 in Figure 6a, and distributions in the area are nearly homogeneous. At mx0 = 20.0
when A(N)

1 is near target function A1,target, the decrease the area is approximately 4.5%. At
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mx0 = 40.0 the decrease is near 9.1%, and the shape is approximately step-function. The
decrease is 16% is at mx0 = 100.0. The decrease is 21% at mx0 = 200.0, but step-function is
slightly distorted. The deviation of the total number of charged bosons from its initial value
is less than 10−6% in the output layer (N = 4) according to our numerical simulations,
representing the number conservation on lattice simulations. Step-function-like rectangular
holes are adopted as binary holograms in the holographic brain theory.
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Figure 5. Time−evolution of distributions A(N)
1 (x0, x1, x2 = 0) for N = 4 at mx0 = 5.0, 20.0, 40.0,

100.0 and 200.0 with target function A1,target.

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=0.0

x
1

x
2

|ϕ
(N)

|
2

 0.95
 0.96
 0.97
 0.98
 0.99
 1
 1.01
 1.02
 1.03
 1.04

(a)

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=5.0

x
1

x
2

|ϕ
(N)

|
2

 0.95
 0.96
 0.97
 0.98
 0.99
 1
 1.01
 1.02
 1.03
 1.04

(b)

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=20.0

x
1

x
2

|ϕ
(N)

|
2

 0.95
 0.96
 0.97
 0.98
 0.99
 1
 1.01
 1.02
 1.03
 1.04

(c)

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=40.0

x
1

x
2

|ϕ
(N)

|
2

 0.9
 0.92
 0.94
 0.96
 0.98
 1
 1.02
 1.04
 1.06
 1.08

(d)

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=100.0

x
1

x
2

|ϕ
(N)

|
2

 0.8
 0.85
 0.9
 0.95
 1
 1.05
 1.1
 1.15

(e)

-60 -40 -20  0  20  40  60 -60
-40

-20
 0

 20
 40

 60

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

mx
0
=200.0

x
1

x
2

|ϕ
(N)

|
2

 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1
 1.05
 1.1
 1.15
 1.2

(f)
Figure 6. Distribution of |φ̄(N)(x)|2 at (a) mx0 = 0.0, (b) mx0 = 5.0, (c) mx0 = 20.0, (d) mx0 = 40.0,
(e) mx0 = 100.0 and (f) mx0 = 200.0.
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5. Discussion

The existence of a “quantum mind” could bridge the gap between mind and brain
through quantum mechanics. The quantum degrees of freedom of the mind would repre-
sent a separate dynamical sector and would determine the state of the brain at a quantum
level (the quantum brain), which could access the sensory inputs from the various receptors
in addition to the classical physiological mechanism for the remaining degrees of freedom
of brain dynamics. Traversing in the opposite direction, the quantum mind would affect
the macroscopic classical brain and result in directed actions commanded by the quantum
mind. The profound insights given by the laws of quantum physics can aid in solving
the mystery of consciousness in several ways. Quantum physical systems possess both
wave and particle properties, which is referred to as the particle-wave duality principle.
As waves, quantum systems act as a whole. The boundary of a quantum system, which is
described by a wave function, is somewhat blurred and there is no hard and fast rule how a
system ceases to be quantum and starts being classical as its size increases. As waves, these
quantum systems are extended over physical space and occupy multiple physical states
simultaneously. This extension can be reduced to a single classical state through interaction
with its environment or spontaneously, which is called a wave function collapse. While
quantum systems operate deterministically in the Schrödinger equation governing the
wavefunction of the system and hence the occupation probabilities for individual quantum
states, they evolve not deterministically due to the random nature of the measurement
and decoherence processes. Hence, quantum systems exhibit a blend of deterministic
evolution and probabilistic measurement outcomes, making them fundamentally different
from classical deterministic systems. Also, due to the Heisenberg uncertainty principle,
they are never completely knowable. These are attractive properties for implementation in
the context of understanding the human mind.

But how a quantum mind could perceive the macro-world is yet another mystery
altogether. After all, information also travels from our senses to our consciousness. The
brain gathers sensory input data, processes this information, after which an answer is
consciously decided on, and transformed into action such as producing sound waves using
one’s voice. These activations then cause changes in the quantum state of individual atoms.
A quantum mind would have to:

1. Register quantum level changes in neurons caused by sensory inputs,
2. Decipher this information and translate into high-level concepts,
3. Make a decision on the quantum level about the reaction to the inputs,
4. Encode that decision back into the quantum level to produce a macroscopic effect.

In this paper, we have adopted Quantum Electrodynamics (QED) with non-relativistic
charged Bose fields corresponding to the holographic brain theory by Pribram. Beginning
with the Lagrangian density, we have shown a super-radiance solution around neuronal
microtubules in the brain, and provided a holographic aspect within the QED framework
with estimates of the memory capacity and the introduction of binary holograms. We
also introduced a control theory of binary holograms using morphological computation.
Manipulating holograms by external electric fields, we might be able to affect our memory
and subjective experiences. When super-radiant waves from microtubules are imposed
on binary holograms manipulated by external electric fields, optical information can be
reconstructed and artificial memory induced by external electromagnetic fields might be
recalled with our subjective experiences.

Quantum coherence in microtubules might provide saltatory coupling between spines
and induce saltatory conduction in axons via solitary waves covering a longer range for
maintaining coherence, as proposed independently by Davydov, Adey, and
Pribram [3,13,15,67]. Quantum computation within the brain was predicted by Penrose
and Hameroff to occur within neuronal microtubules [24]. Tubulin is the building block of
microtubules and it has been considered to carry biological quanta of information, qubits.
Tubulin proteins are envisaged to interact with their neighboring tubulin molecules in a
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microtubule and by doing so perform quantum computations using entanglement effects.
The biological conditions in the brain, including synaptic activity, are considered to influ-
ence the quantum computations thus orchestrating the collapse of such qubits giving rise
to a conscious event when that happens. Water can then be a key element for amplification
of local events for qubits to macroscopic phenomena covering the whole brain. The QFT
of water and photons can provides a framework in both microscopic and macroscopic
properties in a brain.

We have adopted microtubules as coherent super-radiant light sources in the holo-
graphic brain theory. Super-radiance suffers from the dephasing effect and as a result
cooperative property of super-radiance is weakened [68] due to asymmetry of van der
Waals interactions among atoms or dipoles, which correspond to water molecular con-
formational states in the present case. To overcome the dephasing effect, the geometry
of the system composed by water molecules plays a significant role. Arranging water
molecules on a ring, van der Waals interactions induce symmetric property and dephasing
effect is expected to diminish. Checking the shape of microtubules, they are found to
have cylindrical structures involving rings of tubulins. The cylindrical structures are made
use of to arrange water molecules on rings to diminish the dephasing effect. We should
also emphasize the energy supply to microtubules by mitochondria in a cell such as a
neutron [69,70]. We can consider at least three types of energy supply to microtubules,
namely energy released from hydrolysis of guanosine triphosphate (GTP), energy supplied
from the motion of motor proteins (dynein and kinesin), and the Waste-product energy
released from mitochondria. In these forms of energy supply, wasted energy from mito-
chondria is the largest, that is on the order of 10−13 W. Energy from mitochondria might be
used as a supply for emission of super-radiant light of microtubules. Microtubules work as
single mode waveguides with a cutoff wavelength 21 nm, in brief they should be able to
guide light from strong ultra-violet to near-infrared region. Mitochondria with filamentous
structures act like lasers dependent on their metabolic state [71].

Memory capacity is estimated by using the wavelength of coherent super-radiant
waves. Water is an ultimate light source inducing coherent lasers [33]. Water is also
an ultimate sensor of photons [72]. Coherence in water was experimentally determined
using Near-Infrared spectroscopy [73]. Holograms of water media might be achieved
by interference patterns of object and reference waves irradiated by water media around
microtubules, and other structures in the brain. Using wavelength λ = 500 nm for visible
light, memory capacity is 2.5 PB which is much larger than 30 TB in a whole brain estimated
by the total number of synaptic connections as used by conventional neuroscience. Even if
we adopt near-infrared regions with wavelength λ = 1500 nm, the capacity is ∼ 0.1 PB since
memory capacity is proportional to 1/λ3. Although Vitiello has estimated a huge memory
capacity in QBD using squeezed coherent states for dissipative Quantum Field Theory [44],
we have shown the above values for the neocortex in our holographic approach. We should
compare our analysis with the Landauer principle [74–77]. The Landauer principle suggests
that the recording and erasure of one bit of information require minimum energy kBT ln 2
with the Boltzmann constant kB and temperature T. Physiological temperature T = 310 K
indicates kBT ln 2 = 20 meV. In case we adopt super-radiant waves with wavelength
λ = 500 nm, the energy of the photon used to record holographic images is 2.4 eV. This
energy scale is much larger than kBT ln 2 = 20 meV with h̄·2π/λ

kBT ln 2 ≫ 1, so that information
can be recorded at physiological temperatures with no risk of thermal degradation. If
the Landauer principle is applied for holographic information processing, the maximum
wavelength for information processing will be 60 µm. We will focus on photons with
shorter wavelengths than this value to investigate holographic information processing.

A control theory was developed based on morphological computation using input–
output equations in [62]. Adopting multiple layers in a hierarchy as a model of neocortex
covered by celebrospinal fluid, dura and skull, we have checked how target photon fields
A(N)

i inducing step-function-like distributions of charged Bose fields |φ̄(N)|2 are achieved

by external photons fields. In numerical simulations, we adopt damping input functions A(0)
i
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to achieve step-function-like distributions of charged bosons by factor γ2 in Equations (A90)
and (A91). We explain the reason why we adopt damping input functions as follows. Our
control theory corresponds to manipulation of the density distributions ρ in the equation of
continuity in hydrodynamics,

∂

∂x0 ρ(x) = ∂i(ρ(x)V i(x)), (12)

by the velocity distributions V i(x). What we can manipulate is the velocity corresponding
to the vector potential Ai −

∂i β
e multiplled by e

m in Equation (A69). Hence, the velocity
is nonzero at later times mx0 ∼ 200 in Section 4, charged bosons will collect into the
peripheral regions around |x1| ∼ Nsas and |x2| ∼ Nsas. Using damping input functions,
density distributions of charged bosons for holograms stops evolving over time, and
target binary holograms are achieved. We find slight distortions in the step functions in
Figure 6f at mx0 = 200. Although distortions originate from the Laplacian of (∂2

i )|φ̄(N)| in
A0 − ∂0β/e in Equation (A87) can gradually become comparable to damping Ai − ∂iβ/e
over time elapsed, they do not seriously affect the step functions of binary holograms in
present numerical simulations.

We also need to consider geometry to develop a proper control theory. In this work,
we have investigated a 2-dimensional flat surface with multiple layers. We then proposed
non-invasive manipulation of holograms by external electromagnetic fields penetrating
thorough multiple layers. However, we encounter various structures of holograms for in-
formation storage by water molecular conformational states around spherical, toroidal and
cylindrical forms for neurons, glia cells, microfilaments and microtubules. To manipulate
holograms with various forms of water states, we have to adopt a hemispherical or spheri-
cal surface headset covering our head to achieve target functions of electromagnetic fields
and holograms composed of water molecular conformational states around 3-dimensional
cells and the cytoskeleton.

Once our subjective experiences and memory are manipulated by external stimuli, we
find one-to-one correspondence between holograms induced by external input functions
and our subjective experiences. Our approach might indicate the reductionism of subjective
experiences to holograms of water media.

6. Concluding Remarks and Perspectives

Vision is perhaps the most important link between the outside world of the observable
phenomena and the inner life of our mind. We more or less know how it works based on
the photoreceptors of the eye’s retina and the subsequent optic nerve activation. But where
is the image of the outside world formed inside the brain? Ruppert Sheldrake hypothesized
that we actually send waves outside our body to probe the space around us. On the other
hand, Karl Pribram proposed a holographic image formation within our brains. Which of
these ideas is closer to the truth? We argue that the holographic brain hypothesis has merits
that have not yet been fully explored. One of the possible benefits would be simultaneous
integration and synchronization of sensory inputs into a coherent whole.

Karl Pribram’s holonomic brain theory (quantum holography) invoked quantum
mechanics to explain higher-order processing by the mind. He argued that his holonomic
model solved the binding problem. Pribram collaborated with the famous physicist David
Bohm in his work on quantum approaches to the functioning of the mind [78]. He proposed
that ordered water at dendritic membrane surfaces undergoes Bose–Einstein condensation
forming a large-scale coherent quantum state, which would support ideas such as quantum
brain dynamics proposed earlier by Umezawa and collaborators. This, somewhat far-
fetched prediction received a boost after decades of silence. In 2022, neuroscientists [39]
reported experimental MRI results obtained from human participants, which imply the
involvement of nuclear proton spins of brain water molecules in an entangled quantum
state. This is a major step toward providing evidence that at least some brain functions
have hallmarks of non-classical, quantum behavior and are involved in consciousness.
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We have investigated Quantum Electrodynamics with non-relativistic charged bosons
(a model of water molecular conformational states) corresponding to holographic brain
theory by Pribram. A super-radiance solution in holographic brain theory is derived, and
holographic aspect has been shown with deriving the limitation of memory capacity of
a neocortex. We can propose a control theory of holograms by adopting morphological
computation. We have shown how binary holograms are manipulated by external photon
fields in a hierarchical model with multiple layers (input layer: scalp, intermediate layers:
skull, dura, and celebrospinal fluid, and output layer: neocortex). We intend to apply
our approach to manipulate holographic memory and subjective experiences by external
electromagnetic fields in a future experimental study.
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Appendix A. Derivation of Super-Radiance Solution

We shall derive a super-radiance solution via a microtubule.
The Lagrangian density for QED without gauge fixing is,

L = −1
4

Fµν[A]Fµν[A] + φ∗
[

i
∂

∂x0 + eA0 +
(∇i − ieAi)

2

2m
− U(x)

]
φ, (A1)

with electromagnetic field tensor Fµν[A] = ∂µ Aν − ∂ν Aµ, scalar potential A0, vector poten-
tial Ai (i = 1, 2, 3), charged Bose fields φ and its complex conjugate φ∗, potential energy
U(x), mass m and effective charge e for ionized water degrees of freedom.

We shall adopt the Coulomb gauge, namely A0 = 0 and ∇i Ai = 0. Time-evolution
equations are then derived by the Euler–Lagrangian equations for Lagrangian given in
Equation (A1) as,(

i
∂

∂x0 +
∇2

i
2m

− U(x)−
e2 A2

i
2m

− ieAi∇i
m

)
φ(x) = 0, (A2)

with its complex conjugate, and,

∂νFνi = Ji, (A3)

with,

Ji = − ie
2m

[φ∗(∇i − ieAi)φ − ((∇i + ieAi)φ∗)φ]. (A4)

We call Equation (A2) Schrödinger-like equation in the framework of QFT with modeling
dynamics of water molecular conformational states. We also use the Klein–Gordon equation
in Equation (A3). The Schrödinger-like Equation (A2) represents the extension of neural-
wave equation adopted by Pribram [13] with involving the coupling with photon fields.
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Using the Schrödinger-like Equation (A2) and its complex conjugate, we can derive the
charge conservation law as represented by,

∂0 J0 = −∂i Ji, (A5)

J0 ≡ −eφ∗φ. (A6)

Using the above equation and Equation (A3), we can derive,

∂0 J0 = −∂i Ji = −∂i∂νFνi = ∂ν∂µFνµ − ∂i∂νFνi = ∂0∂νFν0,

or, ∂νFν0 = J0, (A7)

where time-independent terms that might represent boundary conditions are set to be zero.
Next we shall expand φ by eigenfunctions bn(x0)ϕn(x) for conformational energy En

(for vibrational motion, and so on) as,

φ(x) = ∑
n

bn(x0)ϕn(x), (A8)(
−
∇2

i
2m

+ U(x) +
e2 A2

i
2m

)
ϕn = Enϕn. (A9)

Then normalization condition is expressed as
∫

x |φ(x)|2 = ∑n |bn(x0)|2 = N with the
number of water molecules N.

We consider vibrational motion in x3 direction and set,

|∇3ϕn| ≫ |∇1ϕn|, |∇2ϕn|. (A10)

We then adopt A1 = A2 = 0. Time-evolution equation for A3 is derived from Equation (A3)
as, (

∂2
0 −∇2

1 −∇2
2

)
A3 +

e2|φ|2
m

A3 = − ie
2m

(φ∗∇3 φ − φ∇3 φ∗). (A11)

We adopt two-energy-level approximation for charged Bose field φ(x) with n = 0, 1
and set,

bn(x0) = e−iEnx0
χn(x0), (A12)

where E0 and E1 represent energy eigenvalues in molecular conformational states for
the ground state and 1st excited state, respectively. The energy difference Ω ≡ E1 − E0
corresponds to a mode of absorption in water spectroscopy. We find ∑n=0,1 |χn(x0)|2 = N,
the number of water molecules in particular conformational states.

We next expand vector potential A3(x) by,

A3(x) =
∫

k1,k2

1
2

[
α3,k(x)e−i(ωkx0−k·x) + α∗3,k(x)ei(ωkx0−k·x)

]
, (A13)

with integration of two-dimensional momenta k = (k1, k2, 0), namely
∫

k =
∫ dk1

2π
dk2

2π . Here

we set ωk =

√
(k1)2 + (k2)2 + e2|φ̄|2

m with spatial average |φ̄|2 = N
V with the 3-dimensional

volume V = L1L2L3 (with size Li, i = 1, 2, 3). Here the bar represents the spatial average in
this section.
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Using relations (A12) and (A13), definition Ω ≡ E1 − E0, and integration with∫
x ϕ∗

0,1(x)×, the Schrödinger-like Equation (A2) includes time-evolution equations for
modes χ0 and χ1 as,

i
∂χ0

∂x0 =
e
m

∫
x

∫
k1,k2

[
1
2

[
α3,k(x)e−i(ωkx0−k·x) + α∗3,k(x)ei(ωkx0−k·x)

]
×
[
e−iΩx0

(ϕ∗
0 i∇3ϕ1)χ1 + (ϕ∗

0 i∇3ϕ0)χ0

]
, (A14)

i
∂χ1

∂x0 =
e
m

∫
x

∫
k1,k2

[
1
2

[
α3,k(x)e−i(ωkx0−k·x) + α∗3,k(x)ei(ωkx0−k·x)

]
×
[
eiΩx0

(ϕ∗
1 i∇3ϕ0)χ0 + (ϕ∗

1 i∇3ϕ1)χ1

]
. (A15)

We adopt the rotating-wave approximation where we leave only resonant mode Ω = ωk
and neglect non-resonant modes. The above equations are then rewritten by,

i
∂χ0

∂x0 =
e

2m

∫
k1,k2;ωk=Ω

α∗3,k

∫
x

e−ik·x(ϕ∗
0 i∇3ϕ1)χ1, (A16)

i
∂χ1

∂x0 =
e

2m

∫
k1,k2;ωk=Ω

α3,k

∫
x

eik·x(ϕ∗
1 i∇3ϕ0)χ0. (A17)

Next we use the relation,

∂2

∂(x0)2 A3 =
∫

k1,k2
e−i(ωkx0−k·x)

(
−ω2

k − 2iωk
∂

∂x0 +
∂2

∂(x0)2

)
1
2

α3,k + · · · . (A18)

the Fourier transformation with momenta l = (l1, l2, 0) of e2|φ|2
m A3 expanded by,

∫
x

e−il·x e2|φ(x)|2
m

A3 =
∫

x
e−il·x e2|φ(x)|2

m

∫
k1,k2

[
1
2

α3,ke−i(ωkx0−k·x) + c.c.
]

(k ∼ l dominant)

∼ e2

m

∫
x
|φ(x)|2 1

2
α3,le−iωlx0

∫
k1,k2;k=l

+(term with α∗3,−l)

=
e2|φ̄|2

m
L1L2L3

1
2

α3,l
1

L1L2
e−iωlx0

+ · · ·

=
e2|φ̄|2

m
L3 ×

1
2

α3,le−iωlx0
+ · · · , (A19)

with
∫

k1,k2;k=l =
1

L1L2
∑k1k2;k=l =

1
L1L2

, the relation(
−ω2

l + (l1)2 + (l2)2 +
e2|φ̄|2

m

)
L3e−iωlx0

= 0, (A20)

due to the relation ωl =

√
(l1)2 + (l2)2 + e2|φ̄|2

m , the conditions,∣∣∣∣∂α3,l

∂x0

∣∣∣∣≪ ωl|α3,l|,
∣∣∣∣∂α3,l

∂xi

∣∣∣∣≪ |liα3,l|. (A21)
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We then rewrite the Fourier transformation in Equation (A11) as,(
−iωl

∂

∂x0 − il1 ∂

∂x1 − il2 ∂

∂x2

)
α3,le−iωlx0

L3

= − ie
2m

∫
x

e−il·x
[
eiΩx0

χ∗
1χ0(ϕ

∗
1∇3ϕ0) + e−iΩx0

χ∗
0χ1(ϕ

∗
0∇3ϕ1)

−e−iΩx0
χ∗

0χ1(ϕ1∇3ϕ∗
0 )− eiΩx0

χ0χ∗
1(ϕ0∇3ϕ∗

1 )
]
. (A22)

Taking the resonant mode ωl = Ω in rotating-wave approximation and replace l by k in
notation, we arrive at,[

∂α3,k

∂x0 +
k1

ωk

∂α3,k

∂x1 ++
k2

ωk

∂α3,k

∂x2

]
= −i

e
ωkL3

χ∗
0χ1

∫
x

e−ik·xϕ∗
0

i∇3

m
ϕ1. (A23)

Next we use the dipole approximation eik·x ≃ 1 where the system size is sufficiently
small compared with the wavelength of photons. Then Equations (A16), (A17) and (A23)
are rewritten by,

i
∂χ0

∂x0 =
e
2

∫
k1,k2;ωk=Ω

α∗3,k

∫
x

(
ϕ∗

0
i∇3

m
ϕ1

)
χ1, (A24)

i
∂χ1

∂x0 =
e
2

∫
k1,k2;ωk=Ω

α3,k

∫
x

(
ϕ∗

1
i∇3

m
ϕ0

)
χ0, (A25)

and, [
∂α3,k

∂x0 +
k1

ωk

∂α3,k

∂x1 ++
k2

ωk

∂α3,k

∂x2

]
= −i

e
ωkL3

χ∗
0χ1

∫
x

ϕ∗
0

i∇3

m
ϕ1. (A26)

We shall define,

Jn1n2 ≡
∫

x
ϕ∗

n1

i∇3

m
ϕn2 , (A27)

with n1, n2 = 0, 1 and define,

A ≡
∫

k1,k2;ωk=Ω
α3,k. (A28)

We next adopt the relation,

∫
k1,k2;ωk=Ω

= 2πΩ2
∫

wdwδ

w2 −
Ω2 − e2|φ̄|2

m
Ω2

 1
(2π)2

=
Ω2

4π
, (A29)

where we have used w =

√
(k1)2+(k2)2

Ω and considered the case when Ω ≥ e2|φ̄|2
m is satisfied.

Using Equations (A27)–(A29), time-evolution Equations (A24)–(A26) can be simplified to,

∂χ0

∂x0 = −i
e
2

J01χ1A∗, (A30)

∂χ1

∂x0 = −i
e
2

J10χ1A, (A31)

∂A
∂x0 = − ieΩ

4πL3
J01χ∗

0χ1. (A32)
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We shall consider the real J01 = J10, set g ≡ eJ10
2 . We also replace A → −iA and assume

real A. The above equations are then rewritten by,

∂χ0

∂x0 = gAχ1, (A33)

∂χ1

∂x0 = −gAχ0, (A34)

∂A
∂x0 =

gΩ
4πL3

× (2χ∗
0χ1). (A35)

We find the number conservation law of water molecules ∂0(|χ0|2 + |χ1|2) = 0 from above
equation.

We shall define Z(x0) ≡ |χ1|2 − |χ0|2 and R(x0) ≡ 2χ∗
0χ1. Using Equations (A33)–(A35),

the Z and R are found to satisfy,

∂Z
∂x0 = −2gAR, (A36)

∂R
∂x0 = 2gAZ, (A37)

∂A
∂x0 =

gΩ
4πL3

R. (A38)

The above equations correspond to the Maxwell–Bloch equations in Quantum Electrody-
namics [36,68,79]. We can derive the energy conservation law represented by,

∂

∂x0

[
1
2
A2 +

Ω
8πL3

Z
]
= 0, (A39)

and the number conservation law ∂0(Z2 + R2) = 0 or Z2 + R2 = N2.
We shall introduce θ(x0) with Z = N cos θ, and R = N sin θ. Substituting R = N sin θ

into Equation (A37), we find,

∂θ

∂x0 = 2gA. (A40)

Hence we find the relation

θ(x0) = θ0 + 2g
∫ x0

t0

A. (A41)

Setting the length L3 for release of radiation, Equation (A38) is rewritten by,

∂A
∂x0 +

1
L3

A =
gΩ

4πL3
N sin θ. (A42)

When we consider the case ∂0 ≪ 1
L3

, we find the relation,

∂θ

∂x0 =
g2ΩN

2π
sin θ. (A43)

The solution of the above equation is,

θ = 2 tan−1
(

exp
(

g2ΩN
2π

x0
)

tan
θ0

2

)
. (A44)
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We then find,

A =
1

2g
∂θ

∂x0

=
gΩN
4π

[
cosh

(
x0 − τ0

τR

)]−1

, (A45)

with,

τR =
2π

g2ΩN
, (A46)

and τ0 = −τR ln tan θ0
2 . Then the amplitude of electric field E3 is,

E3 ∼ ΩA =
gΩ2N

4π

[
cosh

(
x0 − τ0

τR

)]−1

, (A47)

with the necessary condition Ω ≥ e2|φ̄|2
m .

Appendix B. Holographic Aspect

We introduce holographic aspect in QED. The Klein–Gordon Equation (A3) in the
Coulomb gauge in Appendix A is rewritten by,[

(∂0)
2 − (∂j)

2 +
e2|φ|2

m
+ M2

]
Ai = M2 Ãi + O(∂φ, ∂φ∗), (A48)

where we have added the term M2 Ai for the contribution to Meissner effect with param-
eter M2 by ionic bioplasma in biological systems and the term with external input field
Ãi = bei(k0x0−kjxj) as coherent super-radiant waves. The special solution of the above
equation is,

Ai =
M2bei(k0x0−kjxj)

M2 + e2|φ|2
m

+ O(∂φ, ∂φ∗)

=

(
1 − e2|φ|2

M2m
+ · · ·

)
bei(k0x0−kjxj) + · · · . (A49)

We shall consider holographic memories are recorded on 2-dimensional surface in x1 and
x2 directions (with thickness for additional 1-dimensional direction). We set,

Ãi = r(x1, x2), (A50)

with reference wave r on the 2-dimensional surface. We shall then consider the case |φ|2
is a function of interference patterns of reference wave r(x1, x2) and object wave o(x1, x2)
given by,

|φ|2 ∝ |r(x1, x2) + o(x1, x2)|2. (A51)

Then the special solution in Equation (A49) can be rewritten by,

Ãi ∝ r(|r|2 + |o|2 + r∗o + ro∗) + (other terms). (A52)

The above solution involves the term |r2|o for image reconstruction in holography. When
super-radiant wave is imposed on 2-dimensional holograms, image o is reconstructed.
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Appendix C. Time-Evolution Equations in Control Theory

We shall derive time-evolution equations in the control theory in QED.
We introduce the Lagrangian density in QED with non-relativistic charged bosons cor-

responding to holographic brain theory by Pribram [13], derive time-evolution equations,
and extend the theory to that in a hierarchy.

We begin with the Lagrangian density in background field gauge [80–83] given by,

L(x) = −1
4

Fµν[A + a]Fµν[A + a]− 1
2ξ

(∂µaµ)2

+φ∗
(

i
∂

∂x0 + e(A0 + a0) +
(∇i − ie(Ai + ai))

2

2m

)
φ, (A53)

with electromagnetic field tensor Fµν[A] = ∂µ Aν − ∂ν Aµ involving background field Aµ(x)
and its quantum fluctuation aµ(x), gauge fixing parameter ξ, non-relativistic charged
boson fields φ(∗)(x), elementary charge e and mass of bosons m. The above Lagrangian is
invariant under the type-I gauge transformation written by,

φ(x) → eiα(x)φ(x), φ∗(x) → e−iα(x)φ∗(x), Aµ(x) → Aµ(x) +
1
e

∂µα(x), aµ(x) → aµ(x). (A54)

We shall set the gauge-fixing condition for quantum fluctuation aµ as,

a0 = 0, ξ = 1. (A55)

Using the Lagrangian density in Equation (A53) and adopting 2-Particle-Irreducible
(2PI) Effective Action Technique [84–86] in the closed-time path formalism [87,88], we can
derive the following 2PI effective action,

Γ2PI[A, ā, φ̄, φ̄∗, ∆, D] =
∫
C

d4x

[
− 1

4
Fµν[A + ā]Fµν[A + ā]− (∂i āi)

2

2

+φ̄∗
(

i
∂

∂x0 + eA0 +
(∇i − ie(Ai + āi))

2

2m

)
φ̄

]

+
i
2

Tr ln D−1 +
1
2

Tr(iD−1
0 D) + iTr ln ∆−1 + Tr(i∆0∆)

+
1
2

Γ2[A + ā, φ̄, φ̄∗, ∆, D], (A56)

where bar represents the expectation values ā = ⟨a⟩ = Tr(ρa) and φ̄(∗) = ⟨φ(∗)⟩ =
Tr(ρφ(∗)) with density matrix ρ, and C represents the closed-time path involving contour 1
from −∞ to ∞ and contour 2 from ∞ to −∞. In the 3rd term, i∆−1

0 represents,

i∆−1
0 (x, y) =

δ2
∫

w L(w)

δφ∗(x)δφ(y)

=

(
i

∂

∂x0 + eA0 +
(∇i − ie(Ai + āi))

2

2m

)
δC(x − y). (A57)

In the 5th term in Equation (A56), iD−1
0 represents,

iD−1
0,ij(x, y) =

δ2
∫

w L(w)

δai(x)δaj(y)

= −
(

∂2
x +

e2|φ̄(x)|2
m

)
δijδC(x − y), (A58)
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with subscripts for spatial cordinates i, j = 1, 2, 3. The D in the 2nd and 3rd terms in
Equation (A56) represents the Green’s functions for for photon fields given by,

Dij(x, y) = ⟨TC(ai(x)aj(y))⟩. (A59)

The ∆ in the 4th and the 5th terms in Equation (A56) represents the Green’s function for
charged Bose field given by,

∆(x, y) = ⟨TC(δφ(x)δφ∗(y))⟩, (A60)

with quantum fluctuations δφ(∗) = φ(∗) − φ̄(∗). It is possible to express ∆ by 2 × 2 matrix
notation in the closed-time path as,

∆(x, y) =
[

∆11(x, y) ∆12(x, y)
∆21(x, y) ∆22(x, y)

]
=

[
⟨Tδφ(x)δφ∗(y)⟩ ⟨δφ∗(y)δφ(x)⟩
⟨δφ(x)δφ∗(y)⟩ ⟨T̃δφ(x)δφ∗(y)⟩

]
, (A61)

with time-ordered product T and anti-time-ordered product T̃. The Γ2 in Equation (A56)
represents all the 2PI diagrams [89].

Differentiating 2PI effective action by fields A (or ā), φ̄(∗) and Green’s functions
D and ∆ and setting āi = 0, we can derive time-evolution equations. The equation
δΓ2PI
δāi

∣∣∣
āi=0

= δΓ2PI
δAi

∣∣∣
āi=0

= 0 gives the following equation,

∂νFνi = − ie
2m

[φ̄∗(∇i − ieAi)φ̄ − ((∇i + ieAi)φ̄∗)φ̄]− 1
2

δΓ2

δAi

− ie
2m

[(
∇x1,i − ieAi(x1)

)
∆11(x1, x)

∣∣∣
x1=x

−
(
∇x2,i + ieAi(x2)

)
∆11(x, x2)

∣∣∣
x2=x

]
. (A62)

Using the relation δΓ2PI
δφ̄∗

∣∣∣
āi=0

= 0, we can derive the Schrödinger-like equation,

[
i

∂

∂x0 + eA0 +
(∇i − ieAi)

2

2m
−

e2D11
ii (x, x)
2m

]
φ̄(x) +

1
2

δΓ2

δφ̄∗ = 0. (A63)

Using the relation δΓ2PI
δφ̄

∣∣∣
āi=0

= 0, we can derive,

[
−i

∂

∂x0 + eA0 +
(∇i + ieAi)

2

2m
−

e2D11
ii (x, x)
2m

]
φ̄∗(x) +

1
2

δΓ2

δφ̄
= 0. (A64)

Using Equations (A63) and (A64), we can derive the conservation law of charge,

∂J0

∂x0 = ∇i Ji, (A65)

where charge density J0 and current Ji are given by,

J0 = −eφ̄∗ φ̄, (A66)

Ji = − ie
2m

[φ̄∗(∇i − ieAi)φ̄ − ((∇i + ieAi)φ̄∗)φ̄]. (A67)

Using the conservation law for coherent fields and Equation (A62), we can derive,

∂0 J0 = −∂i Ji

= −∂i∂νFνi

= ∂µ∂νFνµ − ∂i∂νFνi

= ∂0∂νFν0, → ∂νFν0 = J0, (A68)
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where we have integrated by time x0 in the last line, and time-independent constant term
interpreted as an initial condition is set to be zero.

We shall rewrite φ̄(x) = |φ̄(x)|eiβ(x) and φ̄∗(x) = |φ̄(x)|e−iβ(x) and neglect 1
2

δΓ2
δφ̄(∗)

terms since they are higher order contributions O(e4|φ̄|2) in the coupling expansion of e.
We then rewrite the following relations by using imaginary and real part of Equations (A63)
and (A64),

∂

∂x0 |φ̄|
2 =

e
m
∇i

[
|φ̄|2

(
Ai −

1
e

∂iβ

)]
, (A69)

A0 −
1
e

∂0β = −
∇2

i |φ̄|
2me|φ̄| −

e
2m

(
Ai −

1
e

∂iβ

)2
, (A70)

where we have neglected − e
2m D11

ii (x, x) term. The Equation (A69) represents conservation
law of charge, while Equation (A70) represents constraint of scalar potential A0. Further-
more the Equation (A62) is rewritten by,

[(
∂2

0 − ∂2
k

)
δij + ∂i∂j

](
Aj −

1
e

∂jβ

)
− ∂i∂0

(
A0 −

1
e

∂0β

)
+

e2|φ̄|2
m

(
Ai −

1
e

∂iβ

)
= −1

2
δΓ2

δAi . (A71)

We find Equations (A69) and (A70) and the left-hand side of Equation (A71) are invariant
under gauge transformation β → β + β′ and Aµ → Aµ + 1

e ∂µβ′. Using Equations (A63),
(A64), (A69), (A71) and the relation,

∂2
0

(
∂i

(
Ai −

∂iβ

e

))
= ∂0

(
∂2

i

(
A0 −

∂0β

e

))
− e2

m
∇i

(
|φ̄|2

(
Ai −

∂iβ

e

))
, (A72)

which is derived by differentiating Equation (A71) by xi, and neglecting quantum fluctua-
tions in the term 1

2
δΓ2
δAi , we can derive the conserved energy E,

∂E
∂x0 = 0, (A73)

E =
∫

d3x

[
1
2

(
∂0

(
Ai −

1
e

∂iβ

)
− ∂i

(
A0 −

1
e

∂0β

))2

+
1
2

(
∂j

(
Ai −

1
e

∂iβ

)2
)
− 1

2

(
∂j

(
Aj −

1
e

∂jβ

))2

+
1

2m
(∇i|φ̄|)2 +

e2

2m
|φ̄|2

(
Ai −

1
e

∂iβ

)2
]

. (A74)

Even in the presence of the terms − e
2m D11

ii (x, x) in Equations (A63) and (A64), and 1
2

δΓ2
δAi

in Equation (A71), we can derive the conserved energy in 2PI formalism by considering
time-evolution equations of Green’s functions ∆ and Dij, namely the Kadanoff–Baym

equations, derived by using δΓ2PI
δ∆

∣∣∣
āi=0

= 0 and δΓ2PI
δD

∣∣∣
āi=0

= 0. The derivation of conserved

energy in QED with relativistic charged bosons is in [90]. In a similar way to the case of ϕ4

model [91], the term 1
2

δΓ2
δAi can be written by,

−1
2

δΓ2

δAi =
∫ x0

−∞
dy0Σρ(x0, y0)

(
Ai(y0)− 1

e
∂iβ(y0)

)
≃ −M2

(
Ai(x0)− 1

e
∂iβ(x0)

)
− γ∂0

(
Ai(x0)− 1

e
∂iβ(x0)

)
+ O(∂2 A), (A75)

where Σρ represents spectral part of self-energy, and M2 and γ represent factors dependent
on temperature T and elementary charge e.
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We shall consider the case with A3 = 0 and homogeneity of x3-direction. Time-
evolution Equations (A69)–(A71) with Equation (A75) are rewritten by,

∂0E1 = ∂2
2 A1 − ∂1∂2 A2 −

e|φ̄|2
m

A1 − M2 A1 − γ(E1 + ∂1 A0) + vu1, (A76)

∂0 A1 = E1 + ∂1 A0, (A77)

∂0E2 = ∂2
1 A2 − ∂1∂2 A1 −

e|φ̄|2
m

A2 − M2 A2 − γ(E2 + ∂2 A0) + vu2, (A78)

∂0 A2 = E2 + ∂2 A0, (A79)

∂0|φ̄|2 =
e
m

(
∂1

(
|φ̄|2 A1

)
+ ∂2

(
|φ̄|2 A2

))
, (A80)

A0 = −
(∂2

1 + ∂2
2)|φ̄|

2me|φ̄| +
e(A2

1 + A2
2)

2m
, (A81)

where E1 and E2 represent electric fields in x1 and x2 directions, respectively. The v
represents transmittance between the system and the input layer, and u1 and u2 represent
input functions. Here we omit terms −∂µβ/e with µ = 0, 1, 2.

Finally we consider the model in a hierarchy involving n = 0 layer (input layer) and
n = 1, 2, · · · , N, N + 1 layers shown in Figure 3. Time-evolution Equations (A76)–(A81) are
extended as,

∂0E(n)
1 = ∂2

2 A(n)
1 − ∂1∂2 A(n)

2 − e2|φ̄(n)|2
m

A(n)
1 − M2 A(n)

1 − γ(E(n)
1 + ∂1 A(n)

0 )

+v
(

A(n−1)
1 + A(n+1)

1

)
, (A82)

∂0 A(n)
1 = E(n)

1 + ∂1 A(n)
0 , (A83)

∂0E(n)
2 = ∂2

1 A(n)
2 − ∂1∂2 A(n)

1 − e2|φ̄(n)|2
m

A(n)
2 − M2 A(n)

2 − γ(E(n)
2 + ∂2 A(n)

0 )

+v
(

A(n−1)
2 + A(n+1)

2

)
, (A84)

∂0 A(n)
2 = E(n)

2 + ∂2 A(n)
0 , (A85)

∂0|φ̄(n)|2 =
e
m

(
∂1

(
|φ̄(n)|2 A(n)

1

)
+ ∂2

(
|φ̄(n)|2 A(n)

2

))
, (A86)

A(n)
0 = −

(∂2
1 + ∂2

2)|φ̄(n)|
2me|φ̄(n)|

+

e
((

A(n)
1

)2
+
(

A(n)
2

)2
)

2m
, (A87)

with n = 1, 2, · · · , N.
We adopt morphological computation using input–output equations [62] in develop-

ing the control theory in holographic brain theory. We shall set target functions
u(N)

1 = A1,target and u(N)
2 = A2,target with u(N+1)

1 = u(N+1)
2 = 0. The input functions

u(0)
1 and u(0)

2 are calculated by,

u(N−J)
1 =

−∂2
1u(N−J+1)

1 + ∂1∂2u(N−J+1)
2 + M2u(N−J+1)

1
v

− u(N−J+2)
1 , (A88)

u(N−J)
2 =

−∂2
2u(N−J+1)

2 + ∂1∂2u(N−J+1)
1 + M2u(N−J+1)

2
v

− u(N−J+2)
2 , (A89)

with J = 1, 2, · · · N. The u(N−1)
1 in Equation (A88) is derived by substituting A(N)

1 by u(N)
1 ,

A(N+1)
1 by u(N+1)

1 , and A(N−1)
1 by u(N−1)

1 in Equation (A82) and neglecting terms with

time-derivatives and the term e2|φ̄(N) |2
m u(N)

1 . The u(N−2)
1 is derived by substituting A(N−1)

1

by u(N−1)
1 , A(N)

1 by u(N)
1 , and A(N−2)

1 by u(N−2)
1 in Equation (A82) and neglecting terms
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with time-derivatives and the term e2|φ̄(N−1) |2
m u(N−1)

1 . Repeat until u(0)
1 is derived. Similarly,

we derive u(0)
2 by Equation (A89). Finally, we set

A(0)
1 = u(0)

1 exp(−γ2x0), (A90)

A(0)
2 = u(0)

2 exp(−γ2x0), (A91)

with damping factor γ2 for input functions A(0)
1 and A(0)

2 .

References
1. Kandel, E.; Schwartz, J.; Jessell, T. Principles of Neural Science, 4th ed.; McGraw-Hill Companies, Incorporated: New York, NY,

USA, 2000.
2. Ricciardi, L.M.; Umezawa, H. Brain and physics of many-body problems. Kybernetik 1967, 4, 44–48. [CrossRef]
3. Jibu, M.; Yasue, K. Quantum brain dynamics and quantum field theory. In Brain and Being; Globus, G., Vitiello, G., Pribram, K.,

Eds.; John Benjamins: Amsterdam, The Netherlands, 2004.
4. Jibu, M.; Yasue, K. Quantum Brain Dynamics and Consciousness; John Benjamins: Amsterdam, The Netherlands, 1995.
5. Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breaking in biological matter.

Nucl. Phys. B 1986, 275, 185–199. [CrossRef]
6. Del Giudice, E.; Voeikov, V.; Tedeschi, A.; Vitiello, G. The origin and the special role of coherent water in living systems. In Fields

of the Cell; Research Signpost: Trivandrum, India, 2014; pp. 95–111.
7. Vitiello, G. My Double Unveiled: The Dissipative Quantum Model of Brain; John Benjamins Publishing: Amsterdam, The Netherlands,

2001; Volume 32.
8. Hawkins, J.; Blakeslee, S. On Intelligence; Macmillan: New York, NY, USA, 2004.
9. Lashley, K.S. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain; University of Chicago Press: Chicago,

IL, USA, 1929.
10. Kliemann, D.; Adolphs, R.; Tyszka, J.M.; Fischl, B.; Yeo, B.T.; Nair, R.; Dubois, J.; Paul, L.K. Intrinsic functional connectivity of the

brain in adults with a single cerebral hemisphere. Cell Rep. 2019, 29, 2398–2407. [CrossRef]
11. Bartlett, F.; John, E. Equipotentiality quantified: The anatomical distribution of the engram. Science 1973, 181, 764–767. [CrossRef]
12. Pribram, K.H. Languages of the Brain: Experimental Paradoxes and Principles in Neuropsychology; Prentice-Hall: Saddle River, NJ,

USA, 1971.
13. Pribram, K.H.; Yasue, K.; Jibu, M. Brain and Perception: Holonomy and Structure in Figural Processing; Psychology Press: London,

UK, 1991.
14. Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [CrossRef] [PubMed]
15. Pribram, K.H. Brain and Mathematics. In Brain and Being; Globus, G., Vitiello, G., Pribram, K., Eds.; John Benjamins: Amsterdam,

The Netherlands, 2004.
16. Cavaglià, M.; Deriu, M.A.; Tuszynski, J.A. Toward a holographic brain paradigm: A lipid-centric model of brain functioning.

Front. Neurosci. 2023, 17. [CrossRef] [PubMed]
17. Jibu, M.; Yasue, K. A physical picture of Umezawa’s quantum brain dynamics. Cybern. Syst. Res. 1992, 92, 797–804.
18. Jibu, M.; Yasue, K. Intracellular quantum signal transfer in Umezawa’s quantum brain dynamics. Cybern. Syst. 1993, 24, 1–7.

[CrossRef]
19. Jibu, M.; Hagan, S.; Hameroff, S.R.; Pribram, K.H.; Yasue, K. Quantum optical coherence in cytoskeletal microtubules: Implications

for brain function. Biosystems 1994, 32, 195–209. [CrossRef] [PubMed]
20. Jibu, M.; Pribram, K.H.; Yasue, K. From conscious experience to memory storage and retrieval: The role of quantum brain

dynamics and boson condensation of evanescent photons. Int. J. Mod. Phys. B 1996, 10, 1735–1754. [CrossRef]
21. Jibu, M.; Yasue, K. What is mind? Quantum field theory of evanescent photons in brain as quantum theory of consciousness.

Informatica 1997, 21, 471–490.
22. Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; AIP: College Park, MD, USA, 1993.
23. Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics; Oxford University Press: Oxford, UK,

1989.
24. Hameroff, S.; Penrose, R. Consciousness in the universe: A review of the ‘Orch OR’theory. Phys. Life Rev. 2014, 11, 39–78.

[CrossRef] [PubMed]
25. Stuart, C.; Takahashi, Y.; Umezawa, H. On the stability and non-local properties of memory. J. Theor. Biol. 1978, 71, 605–618.

[CrossRef] [PubMed]
26. Stuart, C.; Takahashi, Y.; Umezawa, H. Mixed-system brain dynamics: Neural memory as a macroscopic ordered state. Found.

Phys. 1979, 9, 301–327. [CrossRef]
27. Fröhlich, H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 1968, 26, 402–403. [CrossRef]
28. Fröhlich, H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 2, 641–649. [CrossRef]
29. Davydov, A.; Kislukha, N. Solitons in One-Dimensional Molecular Chains. Phys. Status Solidi B 1976, 75, 735–742. [CrossRef]

http://doi.org/10.1007/BF00292170
http://dx.doi.org/10.1016/0550-3213(86)90595-X
http://dx.doi.org/10.1016/j.celrep.2019.10.067
http://dx.doi.org/10.1126/science.181.4101.764
http://dx.doi.org/10.1038/161777a0
http://www.ncbi.nlm.nih.gov/pubmed/18860291
http://dx.doi.org/10.3389/fnins.2023.1302519
http://www.ncbi.nlm.nih.gov/pubmed/38161798
http://dx.doi.org/10.1080/01969729308961695
http://dx.doi.org/10.1016/0303-2647(94)90043-4
http://www.ncbi.nlm.nih.gov/pubmed/7919117
http://dx.doi.org/10.1142/S0217979296000805
http://dx.doi.org/10.1016/j.plrev.2013.08.002
http://www.ncbi.nlm.nih.gov/pubmed/24070914
http://dx.doi.org/10.1016/0022-5193(78)90327-2
http://www.ncbi.nlm.nih.gov/pubmed/661325
http://dx.doi.org/10.1007/BF00715185
http://dx.doi.org/10.1016/0375-9601(68)90242-9
http://dx.doi.org/10.1002/qua.560020505
http://dx.doi.org/10.1002/pssb.2220750238


Int. J. Mol. Sci. 2024, 25, 2399 24 of 25
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69. Cifra, M.; Pokornỳ, J.; Havelka, D.; Kučera, O. Electric field generated by axial longitudinal vibration modes of microtubule.

BioSystems 2010, 100, 122–131. [CrossRef]
70. Rahnama, M.; Tuszynski, J.A.; Bokkon, I.; Cifra, M.; Sardar, P.; Salari, V. Emission of mitochondrial biophotons and their effect on

electrical activity of membrane via microtubules. J. Integr. Neurosci. 2011, 10, 65–88. [CrossRef]
71. Rothe, G.M. Organisms—More Than Chemistry; Verlag Dr. Kovac: Hamburg, Germany, 2015.
72. Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near

Infrared Spectrosc. 2009, 17, 303–313. [CrossRef]
73. Renati, P.; Kovacs, Z.; De Ninno, A.; Tsenkova, R. Temperature dependence analysis of the NIR spectra of liquid water confirms

the existence of two phases, one of which is in a coherent state. J. Mol. Liq. 2019, 292, 111449. [CrossRef]
74. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [CrossRef]
75. Landauer, R. Information is physical. Phys. Today 1991, 44, 23–29. [CrossRef]
76. Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [CrossRef] [PubMed]
77. Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification?

Entropy 2019, 21, 918. [CrossRef]
78. Joye, S.R. The Pribram–Bohm Hypothesis. Conscious. Ideas Res. Twenty-First Century 2016, 3, 1.
79. Benedict, M.G. Super-Radiance: Multiatomic Coherent Emission; CRC Press: Boca Raton, FL, USA, 1996.
80. Kluberg-Stern, H.; Zuber, J. Renormalization of non-Abelian gauge theories in a background-field gauge. I. Green’s functions.

Phys. Rev. D 1975, 12, 482. [CrossRef]
81. Abbott, L.F. The background field method beyond one loop. Nucl. Phys. B 1981, 185, 189–203. [CrossRef]
82. Abbott, L.F. Introduction to the background field method. Acta Phys. Pol. B 1981, 13, 33–50.
83. Wang, Q.; Redlich, K.; Stöcker, H.; Greiner, W. From the Dyson–Schwinger to the transport equation in the background field

gauge of QCD. Nucl. Phys. A 2003, 714, 293–334. [CrossRef]
84. Cornwall, J.M.; Jackiw, R.; Tomboulis, E. Effective action for composite operators. Phys. Rev. D 1974, 10, 2428. [CrossRef]
85. Calzetta, E.; Hu, B.L. Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann

equation. Phys. Rev. D 1988, 37, 2878. [CrossRef]
86. Berges, J. Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 2004, 739, 3–62.
87. Schwinger, J. Brownian motion of a quantum oscillator. J. Math. Phys. 1961, 2, 407–432. [CrossRef]
88. Keldysh, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1965, 20, 1018–1026.
89. Baym, G. Self-consistent approximations in many-body systems. Phys. Rev. 1962, 127, 1391. [CrossRef]
90. Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable

Representation of Quantum Field Theory of the Brain. Entropy 2020, 22, 43. [CrossRef] [PubMed]
91. Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium ϕ4 Theory in a Hierarchy: Towards Manipulating Holograms in

Quantum Brain Dynamics. Dynamics 2023, 3, 1–17. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0278364920912298
http://dx.doi.org/10.1364/AO.15.000550
http://dx.doi.org/10.1364/AO.5.000967
http://dx.doi.org/10.1364/AO.6.001739
http://dx.doi.org/10.1147/rd.132.0160
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/j.biosystems.2010.02.007
http://dx.doi.org/10.1142/S0219635211002622
http://dx.doi.org/10.1255/jnirs.869
http://dx.doi.org/10.1016/j.molliq.2019.111449
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1063/1.881299
http://dx.doi.org/10.1126/science.272.5270.1914
http://www.ncbi.nlm.nih.gov/pubmed/8662490
http://dx.doi.org/10.3390/e21100918
http://dx.doi.org/10.1103/PhysRevD.12.482
http://dx.doi.org/10.1016/0550-3213(81)90371-0
http://dx.doi.org/10.1016/S0375-9474(02)01357-X
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.37.2878
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.3390/e22010043
http://www.ncbi.nlm.nih.gov/pubmed/33285818
http://dx.doi.org/10.3390/dynamics3010001

	Introduction
	Super-Radiance Solution
	Memory Capacity
	Control Theory
	Discussion
	Concluding Remarks and Perspectives
	Appendix A
	Appendix B
	Appendix C
	References

