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Abstract: During the methanol-to-aromatics (MTA) process, a large amount of water is generated,
while the influence and mechanism of water on the activity and selectivity of the light olefin arom-
atization reaction are still unclear. Therefore, a study was conducted to systematically investigate
the effects of water on the reactivity and the product distribution in ethylene aromatization using
infrared spectroscopy (IR), intelligent gravitation analyzer (IGA), and X-ray absorption fine structure
(XAFS) characterizations. The results demonstrated that the presence of water reduced ethylene
conversion and aromatic selectivity while increasing hydrogen selectivity at the same contact time.
This indicated that water had an effect on the reaction pathway by promoting the dehydrogenation
reaction and suppressing the hydrogen transfer reaction. A detailed analysis using linear combina-
tion fitting (LCF) of Zn K-edge X-ray absorption near-edge spectroscopy (XANES) on Zn/HZSM-5
catalysts showed significant variations in the state of existence and the distribution of Zn species
on the deactivated catalysts, depending on different reaction atmospheres and water contents. The
presence of water strongly hindered the conversion of ZnOH+ species, which served as the active
centers for the dehydrogenation reaction, to ZnO on the catalyst. As a result, the dehydrogenation
activity remained high in the presence of water. This study using IR and IGA techniques revealed
that water on the Zn/HZSM-5 catalyst inhibited the adsorption of ethylene on the zeolite, resulting
in a noticeable decrease in ethylene conversion and a decrease in aromatic selectivity. These findings
contribute to a deeper understanding of the aromatization reaction process and provide data support
for the design of efficient aromatization catalysts.

Keywords: ethylene aromatization reaction; Zn/HZSM-5 catalyst; water co-feeding; dehydrogenation
reaction

1. Introduction

The methanol-to-aromatics (MTA) process, as an important non-petroleum conversion
route to produce aromatics, is of great strategic significance for optimizing the utilization
of carbon-containing resources such as coal, natural gas, and biomass and alleviating
petroleum shortages [1,2]. In the MTA reaction process, it is generally believed that the
methanol conversion route involves the dehydration of methanol on the catalyst, followed
by the formation of olefins via a direct or indirect mechanism, and then further conversion
of olefins to aromatics [3]. In all proposed methanol conversion mechanisms [4,5], water is
considered a primary reaction byproduct, and its presence is often overlooked in terms of
its impact on the catalyst and the methanol conversion process.

The methanol-to-aromatics process includes methanol dehydration, methanol-to-light
olefin conversion, and light olefin aromatization. Therefore, the presence of water may
have a considerable influence on the aromatization reaction in both the methanol-to-olefin
(MTO) reaction and the aromatization reaction of light olefins. This has been noted in
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a few reports in the literature. Studies have shown [6,7] that water co-feeding in the
MTO reaction process can prolong the methanol conversion induction period, increase the
olefin selectivity, and delay catalyst deactivation. Researchers believe that this is because
methanol, olefins, and water compete for adsorption at the acidic sites of the catalyst,
and the active sites have a stronger adsorption capacity for water, reducing the secondary
reaction of olefins and slowing down the rate of carbonaceous species formation. The
beneficial effects are usually attributed to the stronger adsorption of water at the active
site, which reduces secondary reactions of the desired hydrocarbon products from taking
place. Interestingly, water molecules have been found to not only partially facilitate the
conversion of hydrophilic molecules such as methanol, ethanol [8], and propanol [9] but
also significantly impact the activation of hydrophobic molecules such as isobutane. Chen
et al. [10] discovered that the presence of a small amount of water (<1 water molecule per
active site) significantly increased the rate of alkane C-H activation in isobutane, while a
high water content (2–3 water molecules per active site) slowed down the reaction rate.
These results indicate that water can also be an active participant in reactions involving
hydrophobic molecules in solid acid catalysts, possibly via transition state stabilization, as
long as the water concentration is essentially stoichiometric.

Light olefin aromatization is the main pathway for aromatic hydrocarbon generation
in the MTA process. In order to obtain a high-performance MTA catalyst, it is necessary
to improve its activity in the light olefins’ aromatization reaction. However, in the case of
light olefin aromatization, the water effect is rather complex according to the complexity
of the formation of aromatics via the oligomerization, cyclization, dehydrogenation, and
hydrogen transfer reaction [11–13]. In their study on the effect of water on the performance
of HZSM-5 catalyst in the aromatization reaction of ethylene, Wang et al. [14] found that
water preferentially adsorbs on the Brønsted acid sites of HZSM-5, forming (Z-OH...H2O)
hydrogen-bonded complexes and H+(H2O)n species. These species are located inside the
zeolite channels, preventing the oligomerization of ethylene, alkene-induced hydrogen
transfer reactions, and the progression of the hydrocarbon pool mechanism inside the
channels. They also observed that when most of the water desorbs from the Brønsted
acid sites, the conversion of ethylene recovers. This is because physically adsorbed water
enhances the channel effect of the catalyst and changes the operating mechanism of HCP
on HZSM-5 molecular sieves at high temperatures.

Zn/HZSM-5 possesses both acidic and dehydrogenation active sites, which results in a
distinctive shape-selective effect and remarkable activity in aromatization reactions [15–19].
Due to the dehydrogenation reactions that occur during aromatization, the reaction is
carried out at high temperatures in a H2 atmosphere, resulting in the dynamic change of
the state and distribution of Zn species. Triwahyono et al. [20] found that Zn2+ species
located in ion-exchange sites are difficult to completely reduce to metallic Zn0 even at high
temperatures of 900 ◦C. Biscardi et al. [21] found that under a hydrogen atmosphere, Zn2+

species in Zn/HZSM-5 zeolite are not easily reduced to metallic Zn due to the confinement
effect of the zeolite, while ZnO species have a weak interaction with the catalyst and are
easily reduced to metallic Zn and evaporate in the form of steam. Gao et al. [22] found that
H2 pretreatment can activate the Zn/HZSM-5 catalyst, significantly increasing the activity
of the ethylene aromatization reaction. However, when the pretreatment temperature is
above 600 ◦C, large ZnO species in the zeolite are reduced and sublime, resulting in the loss
of Zn in the catalyst. Geng et al. [23] found that the main Zn species present at different
stages of the ethylene aromatization reaction include ZnOH+, ZnO clusters, ZnO particles,
and metallic Zn species. The composition of these species undergoes significant changes
throughout the reaction, with ZnO clusters migrating to the external surface of the zeolite,
forming ZnO particles, and then being reduced and sublime. However, there is a lack of
research on the influence of water on the aromatization reaction behavior of Zn/HZSM-5
and the composition of Zn species during the reaction process.

In the process of producing aromatics from methanol and light olefins, the presence
of water is often unavoidable, and it greatly influences the structural stability of zeolite
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catalysts, the state of metallic active centers, and the catalytic mechanism. Therefore, this
paper uses the ethylene aromatization reaction as a probe to study the influence of water
on the catalytic activity centers and catalytic mechanism of the Zn/HZSM-5 zeolite catalyst
during the aromatization reaction in order to provide data support for the design of efficient
MTA catalyst.

2. Results and Discussion
2.1. Comparison of H2O and N2 Atmosphere on the Performance of Zn/HZSM-5 in ETA

Figure 1 depicts the changes in the ethylene conversion and product selectivity with
time on stream (TOS) over Zn/HZSM-5 catalyst under different atmospheres (pure ethy-
lene feed, ethylene–water co-feed, and ethylene–nitrogen co-feed). Regardless of the
atmosphere, the ethylene aromatization products on the Zn/HZSM-5 catalyst mainly con-
sist of aromatics dominated by benzene, toluene, and xylene (BTX); light olefins (C3

=~C4
=);

light alkanes (C1
0~C4

0); and C5+ hydrocarbons; as well as hydrogen produced from the
dehydrogenation reaction. However, atmospheric conditions significantly influence the
conversion, product distribution, and stability.
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Figure 1. The conversion and product selectivity at different reaction times of ethylene aromatiza-
tion reaction with the feed of (A) pure C2H4, (B) C2=:H2O = 3:1 (75%C2H4–25% H2O), and (C) C2=:N2 
= 3:1 (75%C2H4–25%N2) over Zn/HZSM-5. Reaction conditions: 470 °C, 0.1 MPa, WHSV = 1.8 h−1. 

In the case of 100% ethylene feed (Figure 1A), the ethylene conversion on the 
Zn/HZSM-5 catalyst reaches over 99.6%, with a selectivity toward aromatics of 66.6% and 
a stability of nearly 60 h. When ethylene is co-fed with either water or nitrogen gas (Figure 
1B,C), although the reaction behavior and product selectivity trends with TOS are similar 
to that in pure ethylene, the presence of water and nitrogen gas exerts different influences. 
It seems that the N2 atmosphere has little influence on the ethylene conversion, while the 

Figure 1. The conversion and product selectivity at different reaction times of ethylene aromatization
reaction with the feed of (A) pure C2H4, (B) C2

=:H2O = 3:1 (75%C2H4–25% H2O), and (C) C2
=:N2 = 3:1

(75%C2H4–25%N2) over Zn/HZSM-5. Reaction conditions: 470 ◦C, 0.1 MPa, WHSV = 1.8 h−1.

In the case of 100% ethylene feed (Figure 1A), the ethylene conversion on the Zn/
HZSM-5 catalyst reaches over 99.6%, with a selectivity toward aromatics of 66.6% and
a stability of nearly 60 h. When ethylene is co-fed with either water or nitrogen gas
(Figure 1B,C), although the reaction behavior and product selectivity trends with TOS are
similar to that in pure ethylene, the presence of water and nitrogen gas exerts different
influences. It seems that the N2 atmosphere has little influence on the ethylene conversion,
while the selectivity toward aromatics decreases slightly to 62%, and the stability decreases
to approximately 50 h. However, under a H2O atmosphere, the ethylene conversion
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decreases considerably, with a maximum conversion of only 95.9%. The selectivity toward
light alkanes (24.5%) and aromatics (63.0%) also decreases, while the selectivity toward
olefins (9.1%) increases significantly. Notably, the selectivity toward hydrogen gas in the
presence of water (49.6%) is significantly higher than in pure ethylene (36.1%) or nitrogen
atmospheres (42.3%), suggesting a potential change in the pathway of aromatics formation
under these conditions (Figure 1B).

The impact is more significant with a further increase in the water content in the
feed (Figure 2). By increasing the relative proportion of H2O to 50% without changing the
ethylene feeding rate, the ethylene conversion and aromatic selectivity dropped to 78.1%
and 58.1%, respectively, accompanied by a further increase in hydrogen selectivity to 56.1%
(Figure 2A,B). This indicates that the presence of water inhibits the conversion of ethylene
and the formation of aromatics but accelerates the dehydrogenation reaction. However,
the effects of co-feeding N2 gas on ethylene conversion and product selectivity are not
as significant as those observed in a water atmosphere. When the relative proportion of
N2 increases to 50%, the ethylene conversion is still maintained at 97.9%, maintaining the
aromatic selectivity of 65.6% and hydrogen selectivity of 42.9%. Comparing the changes
in ethylene aromatization reaction behavior in the presence of the same proportion of
H2O and N2, it is shown that the change in ethylene contact time on the Zn/HZSM-5
catalyst does indeed affect reaction stability, but it is not the main factor leading to changes
in product distribution when water and ethylene are co-fed. Therefore, the changes in
ethylene reaction behavior, especially changes in product distribution, in the presence of
water may be due to the altered ethylene adsorption behavior on the catalyst or changes in
the state of active sites on the catalyst.
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Figure 2. Comparison of ethylene aromatization reaction on Zn/HZSM-5 with the presence of H2O 
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Figure 2. Comparison of ethylene aromatization reaction on Zn/HZSM-5 with the presence of
H2O (filled bars) and N2 (sparsely filled bars). (A) The ethylene conversion (red circle: C2H4; blue
star: C2H4+H2O) and product selectivity, (B) the H2 selectivity, and (C) the proportion of hydrogen
transfer pathway and dehydrogenation pathway in ethylene aromatization reaction in H2O or N2

atmospheres with different C2H4 contents. Reaction conditions: 470 ◦C, 0.1 MPa, WHSV = 1.8 h−1,
TOS of 12 h.
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2.2. Analysis of the Formation of Aromatics over HZSM-5 and Zn/HZSM-5

It is generally believed that the formation of aromatic hydrocarbons can be achieved
through two pathways: the hydrogen transfer (HT) reaction between cycloalkenes and
light alkenes to produce aromatic hydrocarbons and light alkanes or the dehydrogena-
tion (DH) of cycloalkene molecules to produce aromatic hydrocarbons and hydrogen
(Scheme 1) [12,24]. Therefore, based on the selectivity of aromatic hydrocarbons, hydrogen
gas, and light alkanes in the product, the relative proportions of the dehydrogenation
pathway and the hydrogen transfer pathway in the ethylene aromatization reaction were
calculated, as shown in Figure 2C. It can be seen that with the increase in the proportion of
H2O in the reactants, the proportion of the dehydrogenation reaction significantly increases,
while the proportion of the hydrogen transfer reaction decreases on the Zn/HZSM-5 molec-
ular sieve. However, in the presence of N2, the relative proportions of the dehydrogenation
reaction and the hydrogen transfer reaction are basically fixed and do not change with the
variation of the composition of the reactants (Figure 2C). This further indicates that in this
process, H2O may affect the composition of the active centers in the Zn/HZSM-5 catalyst
and promote the occurrence of the dehydrogenation reaction.
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To make a clearer comparison of the influence of water on HZSM-5 and ZnZSM-5
catalysts, the above-mentioned data were further summarized in Table 1. It can be seen
that, on the HZSM-5 zeolite, the influence of water does not seem to have a significant
effect on the selectivity of hydrogen. A similar report by Wang et al. [12] also shows that,
on the HZSM-5 zeolite, although the presence of water significantly changes the conversion
of ethylene and the selectivity of products, the promotion effect on the generation of H2 is
neglectable. This may be related to the use of a HZSM-5 catalyst rather than a Zn/HZSM-5
catalyst. In the Zn/HZSM-5 zeolite, the ZnOH+ species formed by the interaction of zinc
species with the Brønsted acid site is considered the active site for dehydrogenation [25].
At the same time, the Brønsted acid center in the HZSM-5 zeolite is also responsible for
the dehydrogenation reaction. Therefore, the change in the relative distribution of the
dehydrogenation reaction and hydrogen transfer reaction infers that co-feeding H2O may
affect the content of dehydrogenation active sites on the catalyst. In order to further
explore the influence of H2O on the catalyst, the catalytic performance of HZSM-5 zeolite
in ethylene co-feeding systems with different water contents was studied (Figure 3A). It
can be observed that when water and ethylene are co-fed for aromatization reaction on
HZSM-5, the conversion and selectivity of aromatic hydrocarbons decrease with increasing
water content, similar to those observed on Zn/HZSM-5. Wang et al. [14] found the same
results (Table 1) when studying the effect of water on ethylene aromatization reaction
using a HZSM-5 catalyst. They believed that when water is co-fed, a hydrogen-bonded
complex (Zeo-OH···H2O) is formed from the adsorbed H2O and the Brønsted acid site,
competing with ethylene for adsorption, thus inhibiting the occurrence of aromatization
reaction. However, it is worth noting that with an increase in water content in the feed, the
H2 selectivity on the HZSM-5 catalyst significantly decreases, and the proportion of the
dehydrogenation pathway decreases with increasing water content (Figure 3B–D). This is
in contrast to the change in H2 generation on Zn/HZSM-5, indicating that the presence
of water may promote the formation of the dehydrogenation active species ZnOH+. To
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elucidate the reasons for the influence of water on the ethylene aromatization reaction,
research was conducted on the effect of water on the existence state of the active centers of
Zn species.

Table 1. The effect of water on the performance of HZSM-5 catalyst in the aromatization reaction
of ethylene.

Sample Feed Composition Conversion (%)
Hydrocarbon Selectivity (C Molar%) H2 Selectivity.

(Molar %)C1
0–C4

0 C3
=–C4

= C5+ Arom.

Zn/HZSM-5

ethylene 99.6 31.3 1.1 0.9 66.6 36.1
C2

=:H2O = 3:1 95.9 19.5 9.9 5.3 65.1 49.5
C2

=:H2O = 3:2 87.3 18.6 15. 7 6 59.6 52.2
C2

=:H2O = 1:1 78.1 16 19.9 5.9 58.1 56.1

HZSM-5

ethylene 98.9 48.4 2.0 3.1 46.5 14.2
C2

=:H2O = 3:1 96.3 45.6 10 3.8 40.5 6.2
C2

=:H2O = 3:2 93.9 39.2 18.2 9.5 32.6 5.6
C2

=:H2O = 1:1 85.7 24.9 35.6 14.7 23.9 3.7

ethylene [14]

(500 ◦C, TOS 3.2)
86 42 12 / 46 /

C2
=:H2O = 1:3.73 [14]

(500 ◦C, TOS 3.2)
81 42 14 / 44 /

/: The cited literature does not provide the relevant data.
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Figure 3. The ethylene conversion and product selectivity at different reaction times of ethylene
aromatization reaction on HZSM-5 (A) and comparison of the aromatic selectivity (B), H2 selectivity
(C), and proportion of hydrogen transfer pathway and dehydrogenation pathway (D) on Zn/HZSM-5
(filled bars) and HZSM-5 (sparsely filled bars). Reaction conditions: 470 ◦C, 0.1MPa, WHSV = 1.8 h−1,
TOS of 12 h.
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2.3. Effect of the Presence of H2O on the Zn Species

It is widely recognized that the Zn species in zeolites are highly complex and may
include ZnO particles, ZnO nanocrystals, ZnO clusters, ZnOH+, and Zn2+ with the structure
of O-Zn2+-O or [Zn-O-Zn]2+ [26]. Due to the high dispersion of Zn species in the zeolite,
accurately characterizing and determining their composition and existence state poses
a significant challenge. XAFS technique is an effective method for characterizing the
local geometry and providing detailed information about the fine structure of Zn species.
XAFS data analysis includes X-ray absorption near-edge structure (XANES) and extended
X-ray absorption fine structure (EXAFS) methods [23]. EXAFS can selectively observe
the specific chemical composition of Zn and detect its site environment based on bond
length and coordination number. On the other hand, XANES is sensitive to the local
structure of the metal ion and can quantitatively analyze the specific compositional forms
of standard compounds [27,28]. In the previous work, based on the characteristics of XAFS,
we have established a method to accurately analyze the distribution of Zn species in zeolites
using LCF analysis of XANES spectra [29]. In order to investigate the effect of water on
the ethylene aromatization reaction, we characterized the fresh catalyst and deactivated
Zn/HZSM-5 catalysts used in the ETA reaction under different atmospheres.

Figure 4 shows the background-subtracted and normalized XANES at the Zn K-edge
and the plots of the Fourier transforms of the EXAFS spectra (k2 weighted over k range from
2.3 to 11.7 Å−1) of the fresh and used Zn/HZSM-5 catalysts under different atmospheres.
It is obvious that the Zn K-edge absorption peak, the white line peak centered at 9669 eV,
varies in shape and intensity on different catalysts. The absorption peak of the fresh catalyst
is sharper, while the reacted catalysts show significant splitting and broadening of the
absorption edge peak. This indicates that the state of Zn species in the fresh catalyst is closer
to the ionic state, while the reacted catalysts show more covalent bonding characteristics. It
is worth noting that with the increase in water content in the reaction system, the proportion
of ionic state of Zn in the reacted catalysts is higher, such as the absorption peak of the
catalyst (used Zn/HZSM-5, C2

=:H2O = 1:1) is close to that of the fresh catalyst.
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Figure 4. Zn K-edge XANES (A) and EXAFS spectra (B) of Zn/HZSM-5 fresh catalyst and deactivated
Zn/HZSM-5 catalysts used in ETA reaction with different atmospheres.

The variation of E0 values illustrates the same issue (Table 2). Compared to fresh
catalysts, the E0 values of deactivated catalysts shift toward lower energies, indicating a
decrease in the electron density and valence state of Zn. Similar phenomena were observed
by Geng et al. [23] during the investigation of the migration of Zn species on Zn/HZSM-
5 catalysts in the ethylene aromatization reaction. As the reaction proceeds, both the
coordination environment and oxidation state of Zn species change. In fresh catalysts and
deactivated catalysts, the dominant species are ZnOH+ and ZnO clusters, respectively,
resulting in a shift of E0 value to lower energy with the reaction process. It is interesting
that in the presence of water, the changes in electron density and oxidation state of Zn in
deactivated catalysts are significantly suppressed, most notably in the reaction system with
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the highest water content (used Zn/HZSM-5, C2
=:H2O = 1:1) where the E0 value of the

catalyst is almost identical to that of the fresh catalyst (9664.43 eV). This indicates that the
presence of water slows down the transition of Zn species.

Table 2. Zn K-edge XANES and EXAFS fit parameters of Zn/HZSM-5 samples.

Samples E0
Zn K-Edge EXAFS Fit Parameters a

Contribution CN R (Å) σ2 R Factor

Fresh Zn/HZSM-5 9664.43 Zn-O 6.49 2.03 0.013 0.005
Used Zn/HZSM-5

(pure C2
=) 9663.48 Zn-O 3.66 1.97 0.009 0.006

Used Zn/HZSM-5
(C2

=:H2O = 3:1) 9663.50 Zn-O 4.04 1.98 0.008 0.004

Used Zn/HZSM-5
(C2

=:H2O = 3:2) 9663.76 Zn-O 4.76 1.99 0.010 0.004

Used Zn/HZSM-5
(C2

=:H2O = 1:1) 9664.42 Zn-O 6.09 2.03 0.001 0.005

Used Zn/HZSM-5
(C2

=:N2 = 3:1) 9663.41 Zn-O 3.74 1.97 0.009 0.005

a: CN: coordination number; R: distance between absorber and back scatterer atoms; σ2: Debye–Waller factor;
R-factor: ∑i (datai − f iti)

2/(datai)
2.

The Zn-O coordination parameters obtained from the EXAFS fitting (Figure 4B) show
that the coordination number (CN) of the fresh Zn/HZSM-5 catalyst is 6.49, suggesting
the octahedral coordination structure of Zn in zeolite. This may be attributed to the
presence of ZnOH+, which is formed from the interaction of the Zn species with the
Brønsted acid in the zeolite [30]. However, the CN of O atoms around Zn atoms on the
deactivated catalysts significantly decreases, indicating a transition from a 6-fold to a 4-fold
coordination structure of Zn species on the catalyst. Nevertheless, the trend of decreasing
coordination number of Zn-O structure in the deactivated catalysts is significantly slowed
down with increasing water content in the ethylene reaction, with the used Zn/HZSM-5
(C2

=:H2O = 1:1) catalyst having a coordination number of 6.09 and a coordination distance
of 2.03, which is close to that of the fresh catalyst.

To further determine the distribution of Zn species on different catalysts, the LCF
analysis on the Zn K-edge XANES spectra of the catalysts was performed. To accurately
describe the structure of Zn species, several typical Zn compounds are chosen as reference
samples to represent the potential structure of Zn species that may exist. The identified
Zn species in the present work include ZnO particles with a grain size of approximately
50 nm, Zn/HZSM-5-IE-0.66% representing ZnOH+ species, Zn/silicalite-1–0.1% represent-
ing confined ZnO clusters in pore channels, Zn/silicalite-1–5% representing crystalline
ZnO attached to the outer surface, and Willemite referred to as Zn-O-Si structure [23].

Figure 5 shows the LCF analysis of the XANES spectra of fresh and deactivated
Zn/HZSM-5 catalysts after ethylene aromatization under different atmospheres. The rela-
tive content of the fitted Zn species is shown in Figure 6. In the fresh catalyst, Zn species
composed of multi characteristics from ZnOH+, Zn-O-Si structure, and ZnO clusters were
detected with relative contributions of 85.7%, 10.9%, and 3.4%, respectively. This result
confirms the findings from the EXAFS analysis, which suggests that the Zn species in the
fresh catalyst mainly consist of octahedral coordinated Zn cations (Table 2). However, the
change in the reaction atmosphere significantly affects the existence state and structural
distribution of Zn on the deactivated catalysts. In the reaction with pure ethylene or a
certain amount of N2 gas, the deactivated Zn/HZSM-5 catalyst consists of crystalline ZnO
and ZnO clusters with a changing composition depending on the velocity of ethylene.
Nevertheless, the disappearance of ZnOH+ species in these samples may explain the weak
catalytic performance in the dehydrogenation reaction (Figure 6). Similar observations
were made by Geng et al. [23] during their study on the migration of Zn species in the
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ethylene reaction process, where ZnOH+ species were observed to transform into ZnO
clusters and ZnO crystals. The latter can easily be reduced to metallic Zn and sublime,
resulting in the loss of Zn species in the H2 atmosphere. However, when water is co-fed
with ethylene, an increase in water content leads to an increase in ZnOH+ species and
a decrease in ZnO content on the deactivated Zn/HZSM-5 catalysts. The concentration
of ZnOH+ species on deactivated Zn/HZSM-5 catalysts varies from 0% to 10.9%, 34.3%,
and 51.4% when used in pure ethylene, C2

=:H2O of 3:1, C2
=:H2O of 3:2, and C2

=:H2O of
1:1 atmospheres, respectively. This indicates that the presence of water in the reaction
atmosphere helps to maintain the ZnOH+ active site of the catalyst. On the contrary, the
proportion of ZnO clusters and crystalline ZnO on deactivated Zn/HZSM-5 catalysts used
in a water atmosphere significantly decreases, which suggests that the presence of water
during the reaction inhibits the transformation of ZnOH+ to ZnO clusters, ZnO crystals,
and other structural species, thereby maintaining a higher concentration of ZnOH+ species.
It is widely known that the ZnOH+ species is responsible for the dehydrogenation reaction
of alkanes and alkenes [23]. In the ethylene aromatization reaction, the ZnOH+ species
may serve as active sites for the dehydrogenation of C6~C8 alkyl cyclohexene, promot-
ing the formation of aromatics and the generation of hydrogen (Scheme 1). Therefore,
the higher concentration of ZnOH+ species on the deactivated Zn/HZSM-5 catalysts in
the reaction system likely contributes to their superior dehydrogenation activity during
ethylene aromatization.
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collected for the Zn/HZSM-5 samples of (a) fresh Zn/HZSM-5, (b) Zn/HZSM-5 used in pure ethylene,
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2.4. Effect of H2O Adsorption on ETA

While the precise characterization of Zn species explains the increase in dehydrogena-
tion ratio in the presence of water to some extent, the reason for the decrease in ethylene
conversion remains unclear. In order to investigate the effect of water on the ethylene
reaction, comparative experiments were conducted in different reaction stages with water
switching. In the reaction with an atmosphere of ethylene to water ratio of 3, the water feed
was terminated after 6 h, 48 h, and 72 h of reaction. The ethylene conversion and product
distribution can be seen in Figure 7.
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absorption. 

Figure 7. The conversion and product selectivity at different reaction times of ethylene aromatization
reaction of ethylene aromatization reaction with switching off 25% water content at reaction times
of (A) 6 h, (B) 48 h, and (C) 72 h, further denoted by the orange dashed line. Reaction conditions:
470 ◦C, 0.1 MPa, WHSV = 1.8 h−1.

It can be seen that in different stages of the reaction, switching off the water feed results
in a significant recovery of the ethylene conversion and aromatic selectivity. Particularly,
after 72 h of reaction, when the ethylene conversion decreases to about 70%, the removal
of water leads to a rapid recovery of the conversion to 99%. This indicates that the main
reason for the decrease in ethylene conversion is that water occupies the active sites,
making it difficult for ethylene to effectively contact the active centers and resulting in a
lower conversion. Removing water restores the active sites, promoting efficient ethylene
conversion. Interestingly, although the stability of the ethylene aromatization reaction is
poor in a water atmosphere (Figure 1B), cutting off the water feed after a certain period
of time in a water atmosphere not only leads to the recovery of reaction activity but also
significantly increases the stability of the catalyst.

In order to verify the effect of the co-adsorption of water on the ethylene reaction,
IR studies of ethylene and water adsorption were conducted (Figure 8). It can be seen
that when only ethylene is adsorbed (0 kPa H2O), the IR spectra of Zn/HZSM-5 and
HZSM-5 samples show symmetric and asymmetric stretching vibration peaks belonging to
the CH2 groups of ethylene at 2950 and 2840 cm−1, respectively [31,32]. When ethylene
and water are co-adsorbed, the absorption vibration peak of ethylene decreases, and a
bending vibration peak belonging to water appears at 1640 cm−1 [33,34]. Furthermore, as
the water content further increases, the intensity of the ethylene vibration peak decreases
while the intensity of the water vibration peak increases. This further indicates that water
competes with ethylene for adsorption, which is the main reason for the decrease in
ethylene conversion.

The comparative adsorption of water and ethylene on HZSM-5 and Zn/HZSM-5
molecular sieves was analyzed by IGA characterization (Figure 9). The IGA profile suggests
that, as the desorption temperature elevates from 50 ◦C to 250 ◦C with a half-hour dwell
at 120 ◦C, changes in catalysts’ masses are observed at 120 ◦C and 250 ◦C. The mass
spectrometry analysis indicates that the decrease in weight at 120 ◦C is attributed to water
desorption, while the decrease in weight at 250 ◦C corresponds to the co-contributions
of water and ethylene desorption. For water desorption, the two desorption peaks at
120 ◦C and 250 ◦C correspond to physically adsorbed water and chemically adsorbed water,
respectively [34]. However, only chemically adsorptive ethylene can be identified on the
zeolite samples. The fact that water and ethylene have the same desorption temperature
of 250 ◦C suggests that water and ethylene have similar chemical adsorption strengths on
these two catalysts, indicating competitive adsorption between them.
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The relative adsorption amounts of water and ethylene on the HZSM-5 catalyst and
Zn/HZSM-5 catalyst were calculated based on mass spectrometry signals (Table 3). Accord-
ing to weight analysis, the weight loss on the HZSM-5 catalyst (33.79 mg) is significantly
higher than on the Zn/HZSM-5 catalyst (11.09 mg). Therefore, the total adsorption capacity
of HZSM-5 (339.89 mg/gcat.) is much higher than that of Zn/HZSM-5 (110.90 mg/gcat.),
indicating that the introduction of Zn species decreases the adsorption capacity. On the
other hand, although there is a larger amount of water adsorption compared to ethylene on
both catalysts, this phenomenon is particularly pronounced on the Zn/HZSM-5 catalyst,
where the adsorption capacity of water is 15 times higher than that of ethylene. This
denotes that the existence of Zn species in the zeolite greatly alters its adsorption properties,
reducing the adsorption capacity while enhancing the selective adsorption of water. This
selective adsorption, particularly on the Zn/HZSM-5 catalyst, significantly reduces the
chances of ethylene coming into contact with active centers, such as acidic centers, thereby
decreasing the reaction possibility. This observation also explains the higher ethylene
conversion on the HZSM-5 zeolite catalyst compared to the Zn/HZSM-5 zeolite catalyst
in the presence of water (Figure 3A). The competitive adsorption of water on ethylene
is a crucial factor in the decrease in ethylene conversion in the presence of water. From
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IR and IGA experiments, it has been found that water adsorption includes both physical
and chemical adsorptions and its competitive adsorption with ethylene mainly occurs on
the active centers of the zeolite, primarily the acidic centers. Since Zn/ZSM-5 has fewer
Brønsted acidic sites (BAS), it intensifies the competitive adsorption behavior between
water and ethylene, leading to a significant decrease in ethylene conversion on Zn/HZSM-5
catalysts in the presence of water. Furthermore, the competitive adsorption of water not
only decreases the possibility of ethylene reaction and thus reduces the ethylene conversion
but also greatly inhibits the adsorption of other intermediate reactant species on the acidic
sites and the occurrence of secondary reactions. Since the formation of aromatics requires
the processes of ethylene oligomerization, cyclization, dehydrogenation, and hydrogen
transfer reactions, the decrease in the adsorption capacity of BAS acidic sites caused by the
presence of water also greatly reduces the formation of aromatics and lowers the selectivity
of aromatics.

Table 3. The adsorption capacity of water and ethylene on Zn/HZSM-5 and HZSM-5.

Sample Weight Loss a

(mg)

Chemical Adsorption Capacity b

(mg/gcat.)

H2O C2H4

Zn/HZSM-5 11.09 103.46 7.44
HZSM-5 33.79 186.59 151.30

a calculated from the weight loss above 120 ◦C. b chemical adsorptive quantity of H2O and C2H4.

3. Experimental
3.1. Catalyst Preparation

NaZSM-5 zeolite (Si/Al = 30) was prepared from silica sol, sodium alumina, tetrapropy-
lammonium hydroxide (TPAOH), and deionized water with the molar composition of
SiO2:0.0167Al2O3:0.033NaO2:0.15TPAOH:30H2O. The crystallization was conducted at
170 ◦C for 48 h under rotation. The solid product was recovered by centrifugation, washing,
drying overnight at 100 ◦C, and then calcining at 560 ◦C for 13 h. The HZSM-5 zeolite was
obtained by ion-exchanging NaZSM-5 zeolite with aqueous NH4NO3 solution (1 mol/L)
two times at 80 ◦C for 4 h and then calcining at 560 ◦C for 8 h.

Zn/HZSM-5 with Zn content of 1.8 wt.% was prepared by incipient wet impregnation
of HZSM-5 in Zn(NO3)2 solution at room temperature for 12 h, followed by drying at
100 ◦C overnight and calcination at 560 ◦C for 8 h in air.

3.2. Catalyst Characterization

Fourier-transform infrared spectroscopy (FTIR): IR studies of the co-adsorption of
ethylene and water on Zn/HZSM-5 and HZSM-5 were recorded on a Bruker VERTEX
70 spectrometer (MA, USA) equipped with CaF2 optics. Prior to measurement, the catalyst
was pretreated in an Ar flow (45 mL/min) at 450 ◦C for 1 h. After that, the sample cell was
cooled down to 30 ◦C in a flow of Ar, and the background spectrum was recorded. Then,
the sample was exposed to a xH2O/C2H4/Ar mixture (10 mL/min C2H4, 45 mL/min
Ar) for 0.5 h. H2O was continuously introduced into the in situ chamber by flowing Ar
(45 mL/min) through a H2O bubbling saturator kept at 0 ◦C or 25 ◦C. Subsequently, the
sample was purged with Ar (45 mL/min) for 1 h to remove the gaseous and physiosorbed
C2H4 and H2O. The spectra were recorded with a resolution of 4 cm−1 and cumulative
64 scans.

Intelligent gravitation analyzer (IGA): The competitive adsorption of ethylene and
water on the zeolite samples was measured using an intelligent gravitation analyzer from
Hiden Analytical(Warlington, England). A 20–40 mesh catalyst was loaded into sample cell
and pretreated at 300 ◦C for 2 h under an Ar atmosphere. The sample was then cooled to
30 ◦C and exposed to ethylene gas and water vapor for saturate adsorption. The samples
were thoroughly purged with an argon gas stream to remove physically adsorbed ethylene
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and excess water. The temperature program desorption was then conducted by heating the
sample from 30 to 250 ◦C at a rate of 4 ◦C/min while recording the mass spectrum. The
sample weight was recorded using buoyancy correction throughout the entire process. In
order to completely distinguish between the physical and chemical adsorption of water
on the catalyst, the temperature was maintained at 120 ◦C and 250 ◦C until there was no
further change in the quality of the catalyst.

X-ray absorption fine spectroscopy (XAFS): Zn K-edge XAFS was collected at the 1W1B
beam line in the Beijing Synchrotron Radiation Facility (BSRF) using a Si (111) double crystal
monochromator. The collected XAFS spectra were processed using the Athena program in
the Demeter software package (version 0.9.26) [35], and the photon energy was calibrated
using the K-edge of Zn in metal Zn foil. Athena software was used to perform linear
combination fitting (LCF) analysis on the near edge spectrum of 9650–9730 eV energy range.
The XANES spectra (µexp (E)) of each sample were linearly fitted from the XANES spectra
(µi

REF (E)) of four reference samples. µLCF (E) = w1µ1
REF (E) + w2µ2

REF (E) + w3µ3
REF (E) +

w4µ4
REF (E), w1 + w2 + w3 + w4 = 1 [36,37].
The extended X-ray absorption fine structure (EXAFS) spectra were obtained by using

a standard procedure of data reduction and least-squares fitting following the IFEFFIT
code; the phase and amplitude functions were analyzed using the FEFF 9.0 code. The
data used in the EXAFS fitting ranged from k = 2.3 to 11.7 Å−1. The fitting was carried
out in R space in the range of 1.0–3.5 Å, with a sine window and multiple kn weighting
(n = 2). The parameters describing electronic properties (e.g., correction of the photoelectron
energy origin) and local structural environment (coordination numbers, CN, bond length,
R, and their mean-squared relative derivation, σ2) around the absorbing atoms were varied
during fitting.

Several typical Zn compounds were selected as the reference samples, as listed in
Table 4, to analyze the structure and state of Zn species in zeolites [23]. Reference sam-
ple Zn/HZSM-5-IE-0.66%, which is Zn-containing HZSM-5 prepared by ion exchange,
represents zinc cations, which has been evidenced as Zn(OH)+ species by Pinilla-Herrero
et al. [30]. Reference sample Zn/silicalite-1–0.1% with Zn content of 0.1% represents
ZnO clusters in the pores of the zeolite, based on the weak interaction between ZnO and
silicalite-1, while reference samples Zn/silicalite-1–5% with Zn contents of 5% represent
ZnO crystallites on the external surface of the zeolite [38]. Reference sample willemite,
with the chemical composition of Zn2SiO4, has tetrahedral Zn-O species with Zn–O–Si
structure [39]. By fitting the EXAFS spectra, the coordination number (CN), interatomic
distance (R), Debye–Waller factor (σ2), and R-factor of the reference samples are obtained
and summarized in Table 4. ZnO shows a pronounced peak of 1.97 Å for the nearest
Zn-O scattering, which corresponds to four oxygen neighbors [25]. The Zn species in
Zn/silicalite-1–0.1% and Zn/silicalite-1–5% samples also exhibit tetrahedrally coordinated
structures [40]. The coordination number of Zn-O is around 6 in Zn/HZSM-5-IE-0.66%,
indicating an octahedral structure of Zn-O in zinc cation species with a strong interaction
with the acidic hydroxyl of ZSM-5 [21,30].

Table 4. Zn K-edge XANES and EXAFS fit parameters of reference samples.

Samples Description E0 (eV)
Zn K-Edge EXAFS Fit Parameters a

Contribution CN R (Å) S0
2 σ2 R Factor

Zn/HZSM5-IE-0.66% ZnOH+ 9664.1 Zn-O 5.74 2.07 0.91 0.010 0.005
Zn/silicalite-1–0.1% ZnO clusters 9663.7 Zn-O 3.77 2.02 0.91 0.007 0.010
Zn/silicalite-1–5% ZnO crystallite 9662.1 Zn-O 3.90 1.97 0.91 0.007 0.005

Willemite Zn-O-Si structure 9662.5 Zn-O 3.52 1.95 0.91 0.004 0.020
a: CN: coordination number; R: distance between absorber and back scatterer atoms; σ2: Debye–Waller factor;
R-factor: ∑i (datai − f iti)

2/(datai)
2; S0

2: the amplitude factor, which was fixed at a value of 0.91, forms the
model compound.
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3.3. Catalyst Tests and Analytic Procedures

The ethylene-to-aromatic (ETA) reaction was conducted in a continuous-flow fixed-
bed reactor with an inner diameter of 10 mm. The sample was compacted into wafers,
crushed, and sieved to 20–40 mesh size prior to use. In a typical run, 1.5 g of the zeolite
catalyst was loaded into the reactor and pretreated under a nitrogen flow (50 mL/min) at
the desired reaction temperature (470 ◦C) for 8 h. After the pretreatment, ethylene was
introduced into the reactor at a flow rate of 36 mL/min, with a gas weight hourly space
velocity (WHSV) of 1.8 h−1 and a reaction pressure of 0.1 MPa.

Water or nitrogen gas was introduced into the ethylene aromatization reaction sys-
tem as an additional reaction atmosphere, with a molar ratio of ethylene to the reaction
atmosphere of 3:1, 3:2, and 1:1, corresponding to ethylene contents of 75%, 60%, and 50%, re-
spectively. During these processes, the flow rate of ethylene was maintained at 36 mL/min,
while the flow rate of water or ethylene was adjusted accordingly based on the ratio.

The gaseous and liquid products were separated using a cold trap. The gaseous prod-
ucts were analyzed online by an Agilent 7890A gas chromatograph (CA, USA) equipped
ith one thermal conductivity detector (TCD), two flame ionization detectors (FID), and
three capillary columns (DB-1, OxyPlot, and Al2O3/KCl). The liquid organic phase was an-
alyzed by another Agilent 7890A gas chromatograph equipped with an FID and a capillary
column (HP-PONA).

The ethylene conversion and product selectivity in carbon-based molar percentage
were calculated by the following equations:

conversion =
Finlet − Foulet

Finlet
× 100%

Selectivity(i) =
niFi

ΣniFi
× 100%

where Finlet and Foutlet are the inlet and outlet reactant carbon molar flow rates, respectively,
Fi represents the molar flow rate of product i with ni carbon atoms in the effluents, and
ΣniFi represents the sum of the carbon molar flow rates of all products in the effluents. The
selectivity is expressed as a carbon-based molar percentage.

4. Conclusions

The presence and impact of water in the ethylene aromatization reaction show a
complex trend. On the one hand, the conversion of ethylene significantly decreases, and
the selectivity toward aromatic hydrocarbons and light alkanes also decreases noticeably;
on the other hand, the selectivity toward hydrogen increases significantly, indicating that
the dehydrogenation pathway in the formation of aromatic hydrocarbons is promoted
while the hydrogen transfer pathway is inhibited. Based on this, this study examines the
influence of water from the perspectives of active site distribution of catalyst and reactant
adsorption characteristics.

The detailed LCF analysis of XANES on fresh and deactivated Zn/HZSM-5 catalysts
reveals substantial differences in the state and distribution of Zn species, depending on
the reaction atmospheres and water contents. Specifically, it is observed that in the pure
ethylene reaction system or nitrogen atmosphere, the zinc species present on the deactivated
catalyst predominantly consists of ZnO clusters and crystalline ZnO. However, in the
ethylene–water reaction system, the deactivated catalyst retains ZnOH+ species as active
sites for aromatization dehydrogenation. Notably, the concentration of ZnOH+ species
increases as the water content in the system increases. When the molar concentration
of water in the reaction system reaches 50%, the concentration of ZnOH+ species on the
deactivated catalyst is similar to that on the fresh catalyst, where the dehydrogenation
reaction in the ethylene aromatization process is significantly promoted. It has been
widely recognized that ZnOH+ plays a crucial role as the primary active site for the
dehydrogenation reaction. The notable enhancement of the dehydrogenation reaction in the
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ethylene aromatization process when water is added can be attributed to the suppression
of the transformation of ZnOH+ species on the catalyst to ZnO species. This inhibition
helps maintain a high dehydrogenation activity by preserving the ZnOH+ active sites.

Further investigations using IR and IGA techniques to study the simultaneous ad-
sorption of water and ethylene on HZSM-5 and Zn/HZSM-5 zeolites reveal a competitive
adsorption behavior between the two molecules. Specifically, when water is present on the
Zn/HZSM-5 catalyst, it greatly impedes the adsorption of ethylene and thus reduces the
secondary reaction of olefins and slowing down the rate of carbonaceous species formation,
resulting in reduced ethylene conversion and lower aromatic selectivity. However, it has
been observed that on the HZSM-5 catalyst, although there is competitive adsorption
between water and ethylene, water does not have a significant inhibitory effect on the
adsorption of ethylene. This finding explains why the presence of water on the HZSM-5
catalyst still maintains a favorable ethylene conversion.

This study reveals the effects of water on the reactivity and product distribution in
ethylene aromatization from both changes in the active center structure and the adsorption
of reactant species. Whether it is MTA or light olefin aromatization, the design of the
catalyst is based on the requirements of reaction activity and target product selectivity, but
little attention is paid to the impact of other products or byproducts in actual application
processes. Due to the large amount of water generated during the methanol conversion
process, its impact on the light olefin aromatization process cannot be ignored, but existing
studies have not paid attention to this aspect. Our work reveals that the presence of
water in the reaction process significantly affects the adsorption and reaction activity of
ethylene, leading to a decrease in ethylene conversion. From this perspective, increasing
the acidic density of the catalyst’s Brønsted acidic sites can promote the adsorption and
reaction of ethylene and intermediate species. The presence of water also has its benefits in
helping the catalyst maintain the amount of ZnOH+ species and excellent dehydrogenation
performance. From this perspective, reducing the zinc content appropriately can not only
maintain high dehydrogenation performance but also reduce the consumption of Brønsted
acidic sites and improve reaction activity and aromatic selectivity. These findings provide
valuable insights into the process of aromatization and support the development of efficient
aromatization catalysts.
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