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Abstract: Congenital factor VII (FVII) deficiency is a rare genetic bleeding disorder characterized
by deficient or reduced activity of coagulation FVII. It is caused by genetic variants in the F7 gene.
We aimed to evaluate the rate of detection of pathogenic variants in the F7 gene in a large group
of patients with FVII deficiency and investigate the correlations between the F7 genotype and
FVII activity (FVII:C). Moreover, the influence of the common genetic variant rs6046: c.1238G>A;
p.(Arg413Gln), designated as the M2 allele, on FVII:C was investigated. Genetic analysis of the
F7 gene was performed on 704 index patients (IPs) using either direct Sanger- or next-generation
sequencing. Genetic variants were detected in 390 IPs, yielding a variant detection rate (VDR) of 55%.
Notably, the VDR exhibited a linear decline with increasing FVII:C levels. We identified 124 genetic
variants, of which 48 were not previously reported. Overall, the frequency of the M2 allele was
considerably higher in patients with mild deficiency (FVII:C > 20 IU/dl). Furthermore, IPs lacking
an identified pathogenic variant exhibited a significantly higher prevalence of the M2 allele (69%)
compared to IPs with a disease-causing variant (47%). These results strongly support the association
of the M2 allele with decreased FVII:C levels. This study shows the utility of FVII:C as a predictive
marker for identifying pathogenic variants in patients with FVII deficiency. The M2 allele contributes
to the reduction of FVII:C levels, particularly in cases of mild deficiency.

Keywords: coagulation factor VII; factor VII deficiency; genetic testing; hemostasis; high-throughput
sequencing

1. Introduction

Factor VII (FVII) is a zymogen of a vitamin K-dependent serine protease that is
synthesized in the liver and plays an important role in the coagulation network [1]. FVII
deficiency is a rare bleeding disorder characterized by deficient or reduced FVII activity
(FVII:C). An inherited FVII deficiency is the most common among the rare inherited
bleeding disorders, with a prevalence of 1:300,000 to 1:500,000 [2]. Clinical presentation
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of FVII deficiency is highly heterogeneous, ranging from asymptomatic to severe life-
threatening bleedings, often manifesting in early infancy [3].

Factor VII deficiency is caused by a heterogeneous spectrum of pathogenic genetic
variants of the F7 gene, following an autosomal recessive pattern of inheritance [4]. The
F7 gene is located at the terminus of chromosome 13 (13q34), 2.8 kilobases (kb) proximate
to the F10 gene, and therefore large rearrangements often involve both genes, leading
to combined FVII and factor X (FX) deficiency [5,6]. Pathogenic variants of the F7 gene
lead to the reduction of FVII activity levels in plasma. In contrast to the majority of
bleeding disorders, where disease severity often correlates with residual protein activity,
FVII deficiency does not consistently follow this pattern. The variability and insensitivity
of FVII:C assays may contribute to this discrepancy, alongside potential environmental and
genetic factors, within or beyond the F7 gene.

The European Association for Haemophilia and Allied Disorders (EAHAD) database
(https://f7-db.eahad.org/ accessed to on 1 July 2021) [7] reports over 271 different pathogenic
genetic variants within the F7 gene. These variants include missense, nonsense, small inser-
tion/deletion, splice site defects and large deletion, distributed throughout the entire F7
gene and affecting all protein domains, with the majority being missense variants.

Additionally, the F7 gene harbors several likely benign variants, which can modulate
FVII levels [8–10], potentially simulating heterozygous FVII deficiency in a homozygous
state [11]. The minor alleles of rs5742910 (−323 10 bp insertion) in the gene’s promoter
region and rs6046 (c.1238G>A; p.(Arg413Gln) in exon 9) have consistently shown a strong
correlation with lower levels of plasma FVII:C [11,12]. Given their capacity to lower FVII
plasma levels, these variants may contribute to the severity of disease, suggesting clinical
relevance in FVII-deficiency cases [13,14].

The present study aims to evaluate the variant detection rate (VDR) of pathogenic
variants in the F7 gene in a large group of patients subjected to molecular testing based on
reduced FVII activity levels. Additionally, we intend to investigate the correlation between
the F7 genotype and FVII coagulant activity and explore the influence of a common genetic
variant on residual FVII activity in our patient cohort compared to a control group.

2. Results
2.1. Association of Variant Detection Rate with FVII:C Levels

A cohort of 704 IPs with reduced FVII:C (<70 IU/dl) [15] underwent genetic analysis
(Figure 1). We investigated the capacity to identify variants (pathogenic, likely pathogenic
and VUS) in relation to FVII:C, termed the Variant Detection Rate (VDR). In 390 IPs, we
identified a genetic variant, yielding a total VDR of 55%. The cohort was categorized into
three groups: (i) severe FVII deficiency (FVII:C < 10 IU/dl), (ii) moderate FVII deficiency
(FVII:C of 11–20 IU/dl) and (iii) mild FVII deficiency (FVII:C of 21–70 IU/dl).

The first group encompassed 31 IPs, where at least one pathogenic genetic variant was
identified, leading to a VDR of 100% (Figure 2). These genetic variants were predominantly
found in exon 9, existing in either homozygous or compound heterozygous states. The
second group comprised 40 IPs with moderate FVII deficiency from which genetic variants
were detected in 34 patients, leading to a VDR of 85% (Figure 2). The zygosity of the identi-
fied variants exhibited a diverse pattern, with nearly 50% in homozygous or compound
heterozygous states, and the remainder displaying heterozygosity.

The last and the largest group involved 634 IPs. In approximately half (325 IPs), genetic
variants were identified, defining a VDR of 51% (Figure 2). All identified variants were in
heterozygous states. In the majority of patients, the genetic variant was found in exon 9, due
to the high prevalence of a recurrent variant, c.1061C>T, p.Ala354Val (MAF: 5.6 × 10−4).
Interestingly, when patients were further sub-divided into two subgroups based on FVII:C
levels (21–50 IU/dl and 51–70 IU/dl), a decline in the VDR was observed, dropping
from 60% to 26%, respectively. Furthermore, 87% of all detected genetic alterations were
identified in the group of patients with FVII:C 21–50 IU/dl, while only 13% were identified
in patients with FVII:C 51–70 IU/dl (Figures 1 and 2).

https://f7-db.eahad.org/
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Figure 1. Patient cohort with FVII deficiency. Overall prevalence of patients with an identified genetic
defect (positive IPs, blue colored boxes) and patients with no identified genetic defect in the F7
gene coding sequence and exon–intron boundaries (negative IPs, purple colored boxes). IPs—index
patients. Factor VII activity is given in IU/dl.
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Figure 2. Variant detection rate (VDR) in patients with FVII deficiency.

2.2. Impact of the rs6046 Variant on FVII Activity

We explored the impact of the rs6046 variant (p.Arg413Gln, previously Arg353Gln),
also known as the M1/M2 polymorphism, on FVII activity levels. The p.Arg413 and
the minor allele p.Gln413 were assigned further as M1 and M2 alleles, respectively. We
evaluated the frequency of M1 and M2 alleles in patient groups with identified variants
excluding the patients with large deletions (381 IPs), those without genetic variants (314 IPs)
and a control group (217 samples).

In the overall patient cohort, no significant difference in the frequency of the M2 allele
was observed between those with and without genetic defects (49% vs. 51%) (Figure 3A).
For patients with severe FVII deficiencies, the association of the M2 allele with FVII:C
was challenging to establish due to the homozygous or compound heterozygous state of
the identified genetic defect. Thus, the impact of the minor M2 allele was masked by the
disease-causing variant.

Data from patients with moderate FVII deficiencies indicated that nearly all patients
with identified disease-causing variants in homozygous or compound heterozygous states
displayed an M2 allele in heterozygous combination with the M1 allele. Conversely, in 60%
of IPs with only one disease-causing variant in the heterozygous state, the M2 variant was
found in a homozygous state. In this group, patients without genetic defects were notably
underrepresented (6 form 314), limiting conclusions about the M2 allele.
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Figure 3. Frequency of the M2 allele: (A) M2 distribution in whole cohort and controls. Patients were
divided based on identification of genetic lesion (positive) or not (negative); (B) M2 distribution in
mild FVII-deficient IPs—positive—with detected genetic variant, negative—without detected genetic
variant; (C) allele frequency of M1 and M2 alleles in mild FVII-deficient patients with detected genetic
variant—group 1 FVII:C 21–50 IU/dl, group 2 FVII:C 51–70 IU/dl; (D) allele frequency of M1 and M2
alleles in mild FVII-deficient patients without detected genetic variant—group 1 FVII:C 21–50 IU/dl,
group 2 FVII:C 51–70 IU/dl.

Interesting data were attained when comparing the frequency of the M2 variant in
patients with mild FVII deficiencies with and without pathogenic variants to the control
group. The frequency of the M2 allele was calculated as 46%, 69% and 10%, respectively
(Figure 3B). The M2 allele was overrepresented in patients without genetic defects with
mild FVII deficiencies compared to the entire cohort. Conversely, the M2 allele was notably
underrepresented in the control group compared to the patient cohort (Figure 3A,B).

Furthermore, we explored the frequency of the M2 allele after sub-dividing the group
of mildly deficient patients, as described earlier. When a genetic defect was identified,
no difference was observed in the frequency of the M1 and M2 alleles when FVII:C was
between 21 and 50 IU/dl. Conversely, the M1 allele was overrepresented (67%) in FVII
activity levels of 51–70 IU/dl (Figure 3C). Despite the low frequency of the M1 allele in the
group of patients without genetic defects, the relationship of the M1/M2 alleles in both
subgroups remained similar (Figure 3D).

Finally, we compared the M2 allele frequency in the group of patients with and without
genetic alterations with FVII:C 51–70 IU/dl. The data showed a twofold higher frequency
of the M2 allele in patients without detected genetic variants. Patients were further sub-
divided into two subgroups based on FVII:C levels (21–50 IU/dl and 51–70 IU/dl).

2.3. Profile of Identified Genetic Variants

Within the entire cohort, 124 distinct genetic variants with a minor allele frequency
(MAF) of less than 1% (pathogenic, likely pathogenic and VUS) were identified in 390 IPs.
Of these, 71 were reported in the EAHAD database as pathogenic, while 53 were assigned
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as VUSs. Subsequently, a portion of the latter were reclassified based on segregation family
analyses and type of genetic defect (Table 1).

Table 1. Genetic variants that were identified in the cohort of 704 IPs that were not reported in the
FVII deficiency databases.

Nr. Exon/Intron HGVS
(Nucleotide Position)

HGVS
(Protein Position) Type of Variant Classification FVII:C (IU/dl)

1 Promotor c.-4C>A - regulatory VUS 31
2 1 c.44T>C p.Leu15Pro ++ missense likely pathogenic 37
3 1 c.48_64dup17ins p.Gly17Alafs dup/ins likely pathogenic 38
4 1 c.65G>A p.Gly22Asp missense VUS 43
5 3 c.143A>T p.Gln48Leu + missense likely pathogenic 20
6 3 c.218T>C # p.Leu73Pro missense VUS 1
7 3 c.220dupG p.Glu74Glyfs duplication likely pathogenic 35
8 3 c.281_291del10bp p.Ala94Glyfs deletion likely pathogenic 40
9 4 c.316+1G>A - splice-site likely pathogenic 43
10 5 c.343T>G p.Cys115Gly + missense likely pathogenic 30
11 5 c.408C>G p.Phe136Leu missense VUS 33
12 5 c.412G>C p.Gly138Arg missense VUS 35
13 6 c.430C>G p.His144Asp missense VUS 43
14 6 c.512C>T § p.Ser171Phe ++ missense likely pathogenic 1
15 6 c.514T>C p.Cys172Arg missense VUS 32
16 6 c.526G>A p.Glu176Lys missense VUS 48
17 6 c.538_539delCT p.Leu180Alafs deletion likely pathogenic 54
18 6 c.557C>T p.Ser186Phe missense VUS 29
19 6 c.565C>T p.Pro189Ser ++++ missense likely pathogenic 50
20 6 c.548A>T p.Asp183Val missense VUS 28
21 7 c.587G>C p.Gly196Ala missense VUS 33
22 7 c.665G>A p.Gly222Glu missense VUS 30
23 7 c.667G>T p.Glu223Ter nonsense likely pathogenic 57
24 7 c.676T>G p.Trp226Gly missense VUS 36
25 7 c.681+1G>T - splice-site likely pathogenic 52
26 8 c.691_693delTTG # p.Leu231del deletion likely pathogenic 8
27 8 c.718G>T p.Gly240Trp + missense likely pathogenic 30
28 8 c.728T>C p.Ile243Thr missense VUS 29
29 8 c.739T>C p.Trp247Arg missense VUS 26
30 8 c.806-3C>G - splice-site likely pathogenic 54
31 9 c.808G>A p.Glu270Lys missense VUS 48
32 9 c.823G>A p.Glu275Lys missense VUS 41
33 9 c.843G>T # p.Gln281His missense VUS 1
34 9 c.903C>G p.His301Gln +++ missense likely pathogenic 59
35 9 c.904G>A p.Asp302Asn missense VUS 30
36 9 c.911C>T p.Ala304Val missense VUS 30
37 9 c.930G>T p.Gln310His ++ missense likely pathogenic 43
38 9 c.944C>T p.Thr315Ile +++ missense likely pathogenic 19
39 9 c.955G>A p.Val319Met missense VUS 50
40 9 c.977G>A p.Arg326Gln missense VUS 37
41 9 c.1160T>C p.Met387hr missense VUS 42
42 9 c.1168G>A p.Ala390Thr missense VUS 43
43 9 c.1078C>T p.Leu360Phe missense VUS 64
44 9 c.1089_1090delCC p. Arg364Alafs deletion likely pathogenic 19
45 9 c.1235A>G p.Tyr412Cys ++ missense likely pathogenic 43
46 9 c.1250A>G p.Tyr417Cys missense VUS 45
47 9 c.1274G>C p.Gly425Ala missense VUS 40
48 9 c.1262T>C p.Ile421Thr missense VUS 45
49 9 c.1306G>A p.Val436Met missense VUS 47
50 9 c.1313C>A # p.Thr438Asn missense VUS 8
51 9 c.1316G>C # p.Arg439Thr missense VUS 2
52 9 c.1329C>G p.Tyr443Ter nonsense likely pathogenic 14
53 9 c.1354C>T p.Arg452Cys missense VUS 37

VUS: variant of uncertain significance; HGVS: Human Genome Variation Society. #: variants identified in a
compound heterozygous state. §: variants identified in a homozygous state. FVII:C: FVII activity. Variants
reclassified as likely pathogenic due to the type are in bold; +: variants reclassified as likely pathogenic due to
family segregation analysis. Each + represents one family member carrying the same variant and reduced FVII:C
levels. +: 1 family member, ++ two family members, +++: three family members, ++++: four family members.
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The profile of identified defects comprised nearly all types of genetic alterations,
including missense, nonsense, splice-site and regulatory variants, small deletion/insertion
and large deletions, except large duplications. The most frequent types of defects were
missense variants, accounting for 71% of all alterations (Figure 4). The distribution of the
remaining defects was as follows: small deletions/insertions (11%), splice-site variants
(6%), nonsense variants (5%), regulatory variants (5%) and large deletions (2%). In terms
of localization, the majority of the detected variants were located in exon 9, the largest
segment of the F7 gene. However, genetic alterations were observed in all other exons.
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2.4. Genetic Variants Detected in Multiple IPs

Forty-five variants were detected in more than one IP, encompassing 85% of our cohort
(331 IPs). The identified genetic defects within this large group of patients included all
types of genetic alterations (missense, nonsense, splice-site, small deletions/insertion and
large deletions). The IPs with variants were further categorized into three sub-groups
based on the incidence of the same genetic variant: genetic variants detected in (i) 2 to
5 IPs, (ii) 6 to 9 IPs and (iii) more than 10 IPs (Supplementary Table S1). Among these, four
variants (p.Ala304Val, p.Gly157Ser, p.Val312Met and p.Ala354Val) in the last group were
recurrent and found in a large number of patients. Notably, the variant p.Ala354Val was
detected in 105 IPs, either alone or linked to a small deletion (p.Pro464Hisfs) in the same
exon. The majority of the identified variants were reported in the databases as pathogenic
and only five were classified as VUSs. Two variants were reclassified as likely pathogenic
due to their type and family segregation analyses. Three alterations remained with an
uncertain pathogenicity. A constellation of two missense variants resulting from three
substitutions in exon 3 was inherited simultaneously in 10 IPs (p.Cys82Phe(;)Glu86Val).
Moreover, this group included 10 IPs with large deletions, with the most prevalent being a
complete deletion of the F7 gene (observed in 5 IPs). In six IPs, the deletion of the F7 gene
was combined with complete or partial deletion of the F10 gene.

2.5. Genetic Variants Detected in a Single IP

The remaining 79 genetic variants were considered unique as they were exclusively
detected in a single IP, either alone or in combination with another defect in the F7 gene.
Thirty-one variants were classified as pathogenic based on database reports, while the
remaining variants were defined as VUSs (Table 1). Further data evaluation led to the
reclassification of several variants as likely pathogenic due to the type of genetic alteration
(insertion/deletion, consensus splice-site affecting position +/−3, nonsense) or family
segregation analyses.
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3. Discussion

In this study, we evaluated the association of the molecular profile and FVII:C in a large
cohort of 704 unrelated FVII deficiency patients. The genotype–phenotype relationship
in FVII deficiency has already been analyzed in several smaller cohorts showing the
high clinical, laboratory and genetic variability of the disease [9,16,17]. Our findings
reinforce the inconsistent relationship between the F7 genotype and residual FVII coagulant
activity, shedding light on this complex interplay within a large, well-characterized genetic
cohort. We categorized our patient cohort into three groups based on FVII:C levels [17–19],
as recommended by Peyvandi et al.: severe deficiency (FVII:C < 10 IU/dl), moderate
deficiency (FVII:C 11–20 IU/dl) and mild deficiency (FVII:C > 20 IU/dl) [20–22].

The profile of pathogenic variants in our cohort is in concordance with the findings of
other studies, with missense variants being the most prevalent (71%) [7,17]. The majority
of pathogenic variants are located in exon 9. Whether this is due to the size of the exon
(the largest) or a higher variant rate can be speculated [7]. Additionally, p.(Ala354Val),
identified in 105 Ips, is also located in this exon.

It is important to indicate that in the majority of cases large deletions in the F7 gene
were coupled with a partial or complete deletion of the F10 gene, often due to a larger
deletion involving a bigger part of the long arm of chromosome 13 [5]. This raises the
question of whether, in patients with large identified deletions in the F7 gene, it would be
worth additionally testing for FX deficiency.

We identified 53 genetic variants initially classified as VUSs. After re-classification,
31 variants remained VUSs for which the pathogenicity prediction programs (MaxEntScan,
NNSPLICE, SIFT and PolyPhen-2) showed inconsistence in pathogenicity estimation and
put into question the reliability of these methods. Conformational data from in silico and
in vitro analysis and evaluations of variant frequencies from larger population data sets or
families are needed to confirm the role of these lesions on the function of the FVII protein.

We identified an underlying genetic defect in 390 IPs estimating a VDR of 55%, which
linearly declines with the increase in the FVII:C and zygosity of the genetic defects. Com-
pared to the VDR analyses of other deficiencies by Caspers et al., the estimated VDR for
FVII deficiency was found close to that for protein S deficiency [23]. While in patients with
FVII:C<10 IU/dl all genetic lesions were in homozygous or compound heterozygous states,
with the increase in FVII:C, the proportion of the heterozygous presentation of defects
expands and reaches nearly 100% in mild FVII deficiencies.

An interesting group comprised patients with FVII:C levels between 21 and 70 IU/dl,
in whom no underlying genetic variant was detected (309 IPs). One possible explanation
for this observation may be linked to recently described deep intronic variants in the F7
gene, which are not routinely tested, or other genetic modifiers outside the F7 gene [13].
Additionally, the accuracy of FVII:C assays, related to the sensitivity of the thromboplastin
reagent of different sources [24] and the quality of the FVII-deficient plasma and calibra-
tors used, may explain some inconsistencies in patients with relatively low FVII:C levels
(11–20 IU/dl) where no genetic defect was identified, potentially leading to misdiagnosis
of patients [15]. It is important to note that a limitation of this study is that FVII:C was
not centrally tested, and we rely on the data reported by local labs. The availability of
FVII:Ag levels and more standardized test methods such as the chromogenic FVII assay [15]
could improve the diagnosis of FVII deficiency. Moreover, an acquired FVII deficiency, the
concurrent presence of genetic defects in pro- and anti-coagulation factors, age and blood
group [25] could not be ruled out.

The F7 gene is also known to harbor several common variants that exert a significant in-
fluence on FVII:C. The most reported one is the missense variant c.1238G>A p.(Arg413Gln)
(M1/M2 allele), associated with a 25% reduction in FVII:C [11]. The diverse distribution
of this variant in the analyzed cohorts in this study suggests that both a pathogenic vari-
ant and the M2 allele can serve as alternative modulators of FVII protein synthesis and
function. Our data showed that only 10% of individuals in the control group carried the
M2 allele, and in the majority of cases, it was in a heterozygous state with M1, aligning
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with the frequency of 0.1, similar to what has been reported for the general European popu-
lation [12]. In patients with severe and moderate deficiencies and an underlying genetic
defect affecting both alleles, the M2 allele was predominantly in a heterozygous state. It can
be speculated that in these cases the M2 variant might not significantly contribute to the
reduction in FVII:C, but rather intensify the impact of co-inherited variants. The frequencies
of the FVII:C-lowering M2 alleles were considerably high in patients with mild deficiencies
and even higher in those without a pathogenic variant (69%) compared to those with a
disease-causing variant (46%). This strongly indicates the association of M2 alleles with
decreased FVII:C levels. In cases where FVII:C levels exceed 50 IU/dl, the homozygous
status of the M2 allele might not lead to a clinical condition but rather mimic mild FVII
deficiency. In line with the findings reported by Bernardi et al. [11], these results highlight
the significance of assessing this genetic variant in the context of better interpretation of
mild FVII deficiency.

Based on our observations, genetic analysis plays an increasingly important role in
predicting and improving the diagnostic process of inherited FVII deficiency, especially
in cases in which genetic counselling is needed. Moreover, the co-inheritance of common
variants affects FVII:C and further complicates the diagnosis; thus, data interpretation
should include the M2 variant. Accurate genetic diagnosis, particularly in mild and
asymptomatic forms, is of importance, especially in preoperative conditions where the
patients could be at risk of prolonged bleeding.

4. Materials and Methods
4.1. Patient and Control Cohorts

Between 2013 and 2020, our laboratory received 904 blood samples from individuals
diagnosed with FVII deficiency for genetic analysis. The diagnosis of the FVII deficiency
was assigned based on FVII:C levels (<70 IU/dl) though a local laboratory. Sixty-three
index patients (IPs) were excluded due to the following criteria: a diagnosis of associated
liver disease, inconsistent laboratory data or incomplete documentation. Furthermore,
137 family members were excluded, resulting in a final cohort of 704 IPs. The mean age
of patients was 25 years, ranging from 1 to 86 years. Males comprised 54% (378 IPs) and
females 46% (326 IPs) of the cohort. The control cohort consisted of 217 individuals without
FVII deficiency (FVII:C > 70 IU/dl) and no pathogenic, likely pathogenic or variants
of uncertain significance (VUSs) in the F7 gene. The study was approved by the ethics
committee of Bonn University of Medical Sciences (approval number 183/07).

4.2. Molecular Genetics Analyses

Genetic analyses were performed in the Department of Molecular Hemostaseology,
University Hospital Bonn. Informed consent for molecular genetic analysis was obtained
from each patient. Genomic DNA was isolated from peripheral EDTA blood using a Blood
Core Kit (Qiagen, Hilden, Germany).

The F7 gene (NM_000131) analyses were carried out on an ABI Prism 3130 genetic
analyzer for Sanger sequencing (Thermo Fisher Scientific, Langenselbold, Germany) and a
Mini-Seq genome sequencer (Illumina, Santa Clara, CA, USA) was used for next-generation
sequencing (NGS). Data were evaluated by SeqScape Version 2.7 (Thermo Fisher Scientific)
and SeqPilot (JSI Medical Systems, Ettenheim, Germany) software version 5.2. For the
description of sequence variations at the DNA and protein level, the guidelines of the
Human Genome Variation Society (HGVS https://varnomen.hgvs.org/ accessed on 1 July
2021) [26,27] were applied and variants were filtered according to minor allele frequency
(MAF < 1% in gnomAD).

Large deletions and duplications were analyzed with multiplex ligation-dependent
probe amplification (MLPA) analysis or copy number variation (CNV) analysis. MLPA
was performed according to the manufacturer’s recommendations, using SALSA MLPA
Kits (MRC-Holland, Amsterdam, The Netherlands). Dosage analyses were performed by

https://varnomen.hgvs.org/
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Coffalyser (V5.2) software (MRC-Holland). CNV evaluation was achieved by SeqPilot (JSI
medical systems GmbH, Ettenheim, Germany).

The genetic variant classification and criteria used for assessment variant pathogenic-
ity was performed according to ACMG (American College of Medical Genetics, Bethesda,
MD, USA) and AMP (Association for Molecular Pathology, Rockville, MD, USA) guidelines
for the interpretation of sequence variants [28]. The disease causality of all genetic alter-
ations was compared to the Human Gene Mutation Database (HGMD) [29], the ClinVar
database [30] and the EAHAD database [7]).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25042384/s1.
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