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Abstract: Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There
are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The
main object of this study was to identify candidate genes for the red-eyed phenotype in domestic
guppies. We hope to provide molecular genetic information for the development of new domestic
guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this
study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified.
Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially
expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes.
Through GO and KEGG enrichment, we identified some important terms or pathways mainly related
to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential
expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between
red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we
propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.

Keywords: guppy; albinism; genomic analysis; transcriptomic analysis; OCA2

1. Introduction

Guppies (Poecilia reticulata) are small (adult size: 15–25 mm) ornamental fish with a
wide range of colors and are very popular with consumers. They are native to freshwater
streams in the West Indies, South American islands, Venezuela, Guyana, etc. [1–3]. In
Singapore, about 30 guppy strains with different domesticated color patterns and/or
tail-shape varieties are reared [4]. The male guppy is smaller and more colorful than
the female of the same strain. The ages at maturity in the laboratory are two or three
months [5]. Female guppies generally give birth once a month, and the generation interval
of guppies in nature is around 100 days in complex fish communities and 180–200 days
in fish communities living in smaller streams [6]. Guppies are a model fish in genetics
and breeding for aquaculture studies [7–9] and are often used to investigate genetic drift,
inbreeding, heterosis, adaptation, and the inheritance of quantitative traits [8,9]. Some
researchers have focused on using guppies as an experimental model in evolution and sex
selection [6,7]. In Trinidad, guppies were divided into two communities: high-predation
and low-predation [10,11]. High-predation guppies were smaller and younger at sexual
maturity and produced more offspring per litter [5], and female guppies of low predation
showed stronger preferences for males with more orange/red coloration than females from
high-predation environments [12,13].

Some domestic guppy strains appear to have a red-eyed phenotype, characteristic of
albinism (Figure 1B). Human albinism is a group of heritable disorders associated with
decreased or absent melanin in neural crest ectoderm-derived tissues, most notably in the
skin, hair, and eyes [14]. Additionally, in human and zebrafish studies, it can be observed
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that eye color depends on the iris, and the iris has two layers: the IPE (iris pigment
epithelium) and the iris stroma. The IPE originates from neuroectodermal and melanocytes,
which are derived from the neural crest in the iris stroma [15,16]. The reason why the eyes
appear red in this context is due to a lack of pigmentation, which causes the iris to become
transparent and allows the color of the blood vessels in the eye to be reflected, resulting in
an increased amount of light passing through the iris [17,18]. There are 12 kinds of albinism-
associated disorders [14]: oculocutaneous albinism type 1 (OCA1), oculocutaneous albinism
type 2 (OCA2), oculocutaneous albinism type 3 (OCA3), oculocutaneous albinism type 4
(OCA4), oculocutaneous albinism type 5 (OCA5), oculocutaneous albinism type 6 (OCA6),
oculocutaneous albinism type 7 (OCA7), Hermansky–Pudlak syndrome (HPS), Chediak–
Higashi syndrome (CHS), Angelman syndrome (AS), Prader–Willi syndrome (PWS), and
Ocular albinism (OA1). To date, 22 genes are known to be related to albinism in animals [19].
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Figure 1. (A) black-eyed domestic guppy; (B) red-eyed domestic guppy.

There have been few reports of research on albinism in fish, and most of these in-
volved medaka, zebrafish, and goldfish. The TYR mutation was shown to be the cause of
albinism in medaka fish [20,21]. In total, seven loci of the TYR gene affecting melanin
pigmentation have been described, and the corresponding mechanisms include dele-
tion and transposable element insertion in the TYR gene [20–25]. Zebrafish constitute
a model animal for studying albinism [26]. By constructing gene mutation models re-
lated to melanin production and transportation, the regulatory relationship between
genes and albinism can be further unveiled [26,27]. At present, mutation models have
been established for genes related to albinism [26], including the zebrafish models of
GPR143(OA1) [28], TYR(OCA1a and b) [29,30], OCA2/p(OCA2) [30], TYRP1(OCA3) [31],
SLC45A2(OCA4) [30–33], SLC24A5(OCA6) [34], C10ORF11(OCA7) [35], Hermansky–Pudlak
Syndrome [36], Griscelli Syndrome [37,38], and other lysosome-related organelle disor-
ders [39–42]. In goldfish studies, it has been found that two homologs of OCA2 collectively
control the albino phenotype [43,44]. These pattern studies of albino fish suggest that
many genes, such as GPR143, TYR, OCA2, TYRP1, SLC45A2, SLC24A5, and C10RRF11, play
important roles in the synthesis of fish eye pigments and that disturbances in their function
lead to albinism and therefore may also be responsible for changes in fish eye color.

Early reports indicated autosomal Mendelian inheritance of albinism [45]. However,
the genes responsible for albinism in guppies have still not been identified. There is
great potential for the development of ornamental fish for the consumer market, and the
discovery of candidate genes that cause albinism in domestic guppies will provide new
ideas for breeding new ornamental fish species in the future. As a model animal for many
studies on evolution and fish genetics, the discovery of albino candidate genes will also fill a
gap in basic research on guppies. In this study, we use genomic and transcriptomic analyses
to identify candidate genes and propose that OCA2 is the most important candidate gene
for the red-eyed phenotype in domestic guppies.

2. Results
2.1. Overview of the Whole-Genome Sequencing Data

A summary of the whole-genome resequencing data is shown in Supplementary
Materials Table S1. The average clean base of each sample exceeded 10 G, and the Q20
value of each sample was above 94.72%. The average GC content was 39.76%. Through
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alignment with the reference genome of guppies (Guppy_female_1.0+MT), it was revealed
that the average alignment rate of the samples was above 90%. After filtering, 121 guppies
with 1,286,895 SNPs and 63 INDELs were retained for further analysis.

A summary of the transcriptome sequencing data is shown in Supplementary Ma-
terials Table S2. The average clean base of each sample exceeded 7 G, and the Q20 value
of each sample was above 95.41%. By aligning with the reference genome of guppies
(Guppy_female_1.0+MT), it was determined that the average alignment rate of the samples
was above 90%. These statistical data showed that the sequencing data were of good quality
and could be used for subsequent analyses.

2.2. Genome-Wide Association Studies

Before performing genome-wide association studies (GWASs), we conducted principal
component analysis (PCA) for all guppies. The results showed that the population distribu-
tion was relatively uniform, and there was no significant population stratification, as shown
in Supplementary Materials Figure S1. The GWASs were performed based on 1,286,895
SNPs and INDELs of 121 guppies to find genomic regions associated with guppy eye color.
We obtained an inflation factor of 0.981 based on the GWAS results, which showed that
our population lacked significant population stratification. We found that 149 variants
were significantly associated with guppy eye color (p < 3.885 × 10−8); a corresponding
Manhattan plot is shown in Figure 2. The main association signal was in the region from
position 13.91 Mb to 18.17 Mb on Chr4, containing 44 genes, namely, NLGN1, NAALADL2,
BARHL2, LRRC8DB, LRRC8C, KYAT3, LMO4B, SOX14, HDLBPA, BOKA, ATG4B, DTYMK,
AGXTA, TTC39C, KIF1AA, KLHL30, SNED1, RYK, SLCO2A1, RAB6BA, CEP63, SAP130A,
BCL6AA, LPP, TPRG1, TP63, ZBTB11, DPT, ATP1B1A, NME7, ZGC:172121, BIVM, SI:CH211-
201H21.5, TMEM131, CNGA3A, UBE3A, CNGA3A, ATP10A, GABRB3, GABRA5, GABRG3,
OCA2, HERC2, and ENSPREG00000018047. A descriptive summary of the associated
variants is shown in Table 1, and detailed information is provided in Table S3.
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Int. J. Mol. Sci. 2024, 25, 2175 4 of 14

Table 1. A descriptive summary of significant variants associated with the eye color of guppies
in GWAS.

Chr Position (bp) N_Sig a Lead Variant b p c Genomic Location Corresponding Genes

4 13,919,679 1 13,919,679 2.13 × 10−8 intergenic NLGN1-NAALADL2
4 15,579,097–157,04,885 2 155,79,097 3.34 × 10−9 intergenic BARHL2-LRRC8DB
4 15,728,116 1 157,28,116 3.05 × 10−8 upstream LRRC8C
4 15,735,128 1 15,735,128 3.23 × 10−8 intergenic LRRC8C-KYAT3
4 15,815,011–15,929,479 28 15,908,422 2.87 × 10−13 intergenic KYAT3-LMO4B
4 16,159,568 1 16,159,568 2.36 × 10−8 intergenic SOX14-HDLBPA

4 16,365,953–16,388,992 5 16,379,136 1.89 × 10−10
upstream; intron;

intergenic;
downstream

BOKA

4 16,384,579–16,391,411 3 16,385,964 1.03 × 10−10 upstream; intron; ATG4B

4 16,394,845–16,403,441 2 16,403,441 8.71 × 10−10 upstream;
downstream DTYMK

4 16,410,980–16,411,725 2 16,411,725 1.31 × 10−8 upstream AGXTA
4 16,430,204 1 16,430,204 2.34 × 10−8 downstream TTC39C
4 16,431,698–16,455,327 6 16,431,698 9.91 × 10−11 upstream; intron KIF1AA
4 16,525,371–16,566,144 3 16,525,371 1.41 × 10−9 intergenic KLHL30-SNED1
4 16,574,314–16,600,468 3 16,574,314 6.58 × 10−9 intron; CDS SNED1
4 16,613,965–16,632,460 2 16,632,460 1.25 × 10−9 intron RYK
4 16,675,710 1 16,675,710 3.32 × 10−9 intron SLCO2A1
4 16,722,251 1 16,722,251 3.54 × 10−8 intron RAB6BA
4 16,749,558–16,756,105 7 16,752,127 5.82 × 10−11 intron; downstream CEP63
4 16,814,130 1 16,814,130 2.90 × 10−8 upstream SAP130A
4 16,920,982–16,976,594 2 16,920,982 3.33 × 10−8 intergenic BCL6AA-LPP
4 17,001,755 1 17,001,755 3.76 × 10−8 CDS LPP
4 17,192,862 1 17,192,862 6.27 × 10−9 intron TPRG1
4 17,243,325–17,250,077 2 17,250,077 9.00 × 10−9 intergenic TPRG1-TP63

4 17,250,825–17,282,572 3 17,282,572 1.05 × 10−10 upstream; intron;
downstream TP63

4 17,276,094–17,292,722 5 17,289,603 6.20 × 10−15 upstream;
downstream ZBTB11

4 17,295,315–17,299,997 2 17,299,997 2.71 × 10−8 intergenic ZBTB11-DPT

4 17,302,046–17,310,860 3 17,302,046 2.30 × 10−17 downstream; CDS;
intron DPT

4 17,317,551–17,328,988 8 17,320,328 1.89 × 10−16 intergenic DPT-ATP1B1A

4 17,331,317–17,348,850 7 17,348,850 1.66 × 10−15 upstream; intron;
downstream ATP1B1A

4 17,356,626–17,372,435 8 17,369,146 2.26 × 10−17 downstream NME7
4 17,366,454–17,378,171 3 17,378,171 7.54 × 10−16 downstream ZGC:172121
4 17,381,538–17,383,905 3 17,381,538 4.39 × 10−13 intron; CDS BIVM
4 17,398,644 1 17,398,644 1.57 × 10−11 downstream SI:CH211-201H21.5
4 17,402,571–17,433,938 12 17,433,938 4.80 × 10−13 intergenic; upstream TMEM131
4 17,446,682–17,446,995 2 17,446,682 2.20 × 10−9 intergenic TMEM131-CNGA3A
4 17,458,944 1 17,458,944 3.36 × 10−8 downstream UBE3A
4 17,461,407–17,462,566 2 17,462,566 3.36 × 10−8 downstream CNGA3A
4 17,511,176–17,516,034 3 17,514,805 2.46 × 10−8 intron ATP10A
4 17,548,494 1 17,548,494 4.67 × 10−9 intergenic ATP10A-GABRB3
4 17,558,221 1 17,558,221 2.94 × 10−8 intron GABRB3
4 17,594,093 1 17,594,093 3.29 × 10−8 intron GABRA5
4 17,626,784–17,660,211 2 17,660,211 2.66 × 10−9 intron GABRG3
4 17,703,618–17,709,085 2 17,703,618 1.26 × 10−8 intron OCA2
4 17,770,644 1 17,770,644 1.25 × 10−8 CDS HERC2
4 18,167,098 1 18,167,098 2.68 × 10−9 intron ENSPREG00000018047

a The number of significant variants, with p < 3.885 × 10−8; b The SNP with the smallest p at the corresponding
position; c The p of lead variant.
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2.3. RNA Sequencing Analysis and Quantitative Real-Time PCR

Before investigating the differences between red-eyed and black-eyed guppies at the
transcriptional level, we designed a cross-experiment involving two strains of red guppies.
The F1 results all showed red eyes. Next, we conducted differential expression analysis
using the pipeline of HISTA2-StringTie-DESeq2, and the input file of the gene_count_matrix
data (Supplementary Materials Table S4) for DESeq2 was obtained using the following
Python script: prepDE.py (https://ccb.jhu.edu/software/stringtie/index.shtml?t=manual,
accessed on 4 July 2022). A total of 874 differentially expressed genes (DEGs) were iden-
tified (Supplementary Materials Table S5), of which 357 were upregulated, and 517 were
downregulated, as shown in Figure 3A. Some DEGs related to melanin expression between
black-eyed and red-eyed guppies are shown in Figure 3B.
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eyed guppies. The blue dots represent genes downregulated in red-eyed compared to black-eyed
guppies, and the red dots represent genes upregulated in red-eyed compared to black-eyed guppies.
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(B) Heatmap of some DEGs between red-eyed and black-eyed guppies. (C) Some enriched GO terms
of DEGs related to melanin biosynthetic, melanin metabolism, and vision. The small dots represent
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The functional annotation of DEGs was performed using DAVID under default set-
tings, and the results are shown in Figure 3C,D as well as in Supplementary Materi-
als Tables S6 and S7. In Figure 3C and Table S6, we can see that the GO enrichment of many
terms related to melanin biosynthesis processes, melanosome transmembrane transport,
and vision are obviously enriched, such as ion transport (GO:0006811), melanosome mem-
brane (GO:0033162), melanin biosynthetic process from tyrosine (GO:0006583), transmem-
brane transporter activity (GO:0022857), visual perception (GO:0007601), and photoreceptor
activity (GO:0009881). In Figure 3D and Table S7, we can see that the KEGG enrichment
of some pathways mainly related to melanin biosynthesis and vision, such as tyrosine
metabolism (hsa00350), melanogenesis (hsa04916), and retinol metabolism(hsa00830), are
enriched, which is consistent with the above GO terms.

Many DEGs, such as OCA2, TYR, SLC45A2, SLC24A5, PMEL, and MC1R, with func-
tions related to melanin biosynthesis and metabolism [46–51], were mainly enriched in
terms of the melanin biosynthetic process (GO:0042438), melanin biosynthetic process from
tyrosine (GO:0006583), melanocyte differentiation (GO:0030318), melanosome membrane
(GO:0033162), and melanosome (GO:0042470) in the present study. Among these DEGs,
only OCA2 was detected via GWAS (Table 1).

As the TYR gene is the key enzyme of the biosynthesis of melanin [46,52,53] and OCA2,
SLC452A, and SLC24A5 are involved in the ion transport of melanosomes [46,54–56], we
performed qRT-PCR to verify the differences in the gene expressions levels of these genes
between red-eyed and black-eyed guppies. In Figure 4, we can see that the expression
level of OCA2 was significantly lower in red-eyed guppies than in black-eyed guppies,
while TYR, SLC45A2, and SLC24A5 showed the opposite expression patterns to OCA2 in
red-eyed and black-eyed individuals. These findings are consistent with the results of the
RNA sequencing analysis.
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3. Discussion

Melanin is converted from tyrosine, which is derived from phenylalanine catalyzed by
phenylalanine enzymes. Tyrosine enters the melanosome and is subsequently converted
into dopaquinone by tyrosinase [57]. One portion of dopaquinone forms CysteinylDOPA
in the presence of L-cysteine, which further transforms into pheomelanin [58]. Another
portion first forms dopachrome, which then transforms into DHICA and DHI and, finally,
transforms into eumelanin under the action of TYRP1, TYRP2, and TYR [52,59,60]. pH plays
a critical role in melanogenesis [46,61]. Melanosome biogenesis involves the process of
melanosome development and maturation, which comprises four distinct stages, each with
a different internal pH [55,62]. Due to the proton-importing activity of the ubiquitously
expressed vacuolar-type H(+)-ATPase, stage I and II melanosomes are acidic [46,54], and
stage III–IV melanosomes exhibit a neutral pH [56]. Tyrosinase only exerts its optimal
activity at a neutral pH, so the melanosomes must be neutral as they mature in order
to promote optimal TYR activity [54–56]. It is highly possible that H+, Na+, Ca2+, Cu+,
and Cl− participate in melanosome stages III–IV [46,63]. The genes OCA2, SLC45A2,
SLC24A5, and TPC2 encode a variety of key proteins of ion transporters that are important
in maintaining the pH of melanosomes [46,48,64–66].

OCA2 and SLC45A2 proteins are reported to be positive regulators of pH neutraliza-
tion [64,67]. OCA2 variants generate OCA2 in humans and pink-eyed dilution in mice [68].
OCA2 is an essential component of a melanosome-specific anion channel and mediates Cl−

conductance [46,64]. Tyrosinase activity is disrupted in albino zebrafish with a SLC45A2
mutation but can be rescued via the re-injection of SLC45A2 mRNA or treatment with
bafilomycin [67]. SLC45A2 is a member of the H+/sugar cotransporter family, making it
the most promising H+ efflux transport protein [66]. “Golden” is a zebrafish mutant of
SLC24A5. It has severely reduced pigmentation both in the skin and in the retinal pigment
epithelium [34]. SLC24A5 is thought to be a K+-dependent Na+/Ca2+ exchanger [48]. In
addition, it may mediate Ca+ transport if expressed in melanosomes [69]. TPC2 encodes
the two-pore channel 2 protein. TPC2 is expressed in melanocytes and localizes to the
melanosome-limiting membrane, and it likely regulates melanosomes’ pH and size by
mediating Ca2+ levels [65,70]. Therefore, changes in the expression of these genes may
affect the synthesis of melanin.

In the present study, we used GWAS to identify the candidate genes for the red-eye
trait in guppies. As shown in Figure 2 and Table 1, the association signals are mainly
located in the genomic region from 13.91 to 18.17 Mb on Chr 4. A total of 44 genes were
identified, and further functional studies were performed. Two genes, OCA2 and HERC2,
caught our attention.

OCA2 (oculocutaneous albinism type II) is a type of oculocutaneous albinism, and
its occurrence rate makes it the most common in the world (1:39,000) [14]. OCA2 is
autosomal-recessive and is caused by mutations in the OCA2 gene [50,71]. OCA2-encoding
melanosomal transmembrane protein, also called p protein, is recognized as the homolog
of pink-eyed dilution (p) in mice, constituting one of the first genes linked to hypopig-
mentation [68,72]. p protein is predicted to have 12 transmembrane domains and shares
homology with anionic transport proteins [46,71]. Several researchers have proposed that
OCA2 protein affects the pH level of melanosomes by mediating the conduction of Cl−,
leading to the inactivation of tyrosinase (TYR) and subsequently preventing melanin syn-
thesis [46,64,73]. Bellono et al. [64] used direct skin patch–clamp and eye melanosomes
to identify novel chloride-selective anion conductance mediated by OCA2 required for
melanin production. OCA2 expression increased pH, suggesting that chloride transport
correlates with the pH of the melanosomes.

HERC2, also called HECT and RLD domain-containing E3 ubiquitin protein ligase 2,
is a major contributor to human eye color variations [59,74,75]. Through a genome-wide
association study, Eiberg et al. [76] found that the SNP in the intron 86 region of HERC2
(rs12913832) has a higher association with blue eyes compared to SNPs on OCA2 in Eu-
ropeans [74,75]. The HERC2 gene does not directly participate in melanin synthesis but
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plays an important role in regulating OCA2 expression levels [75–79]. rs12913832 is located
upstream of the OCA2 promoter in a highly conserved sequence in the 86th intron of
HERC2. In the case of the mutation of this SNP (rs12913832 A/G), the expression of the P
protein encoded by OCA2 decreases, effectively decreasing its effects on pigmentation [76].

In the present study, 874 DEGs were detected via differential expression analysis.
Through GO and KEGG analyses, some important pathways or terms related to melanin
synthesis, melanin metabolism, and ion transport were identified, including the melanin
biosynthetic process (GO:0042438), tyrosine catabolic process (GO:0006572), melanin biosyn-
thetic process from tyrosine (GO:0006583), melanocyte differentiation (GO:0030318), ion
transport (GO:0006811), melanosome membrane (GO:0033162), melanosome (GO:0016020),
transmembrane transporter activity (GO:0022857), organic cation transmembrane trans-
porter activity (GO:0015101), tyrosine metabolism (hsa00350), and melanogenesis (hsa04916).
In addition, in this study, we also enriched pathways such as the chloride channel complex
(GO:0034707) and anion transmembrane transporter activity (GO:0008509). Based on the
above enrichment results, we speculate that the abnormal ion transmembrane transport in
the red-eyed guppy causes acidity in melanosomes and a complete lack of pigmentation in
the eyes of guppies [46,64].

In the present study, several DEGs, such as OCA2, TYR, SLC45A2, and SLC24A5,
were enriched in melanin biosynthetic processes (GO:0042438), transmembrane transport
(GO:0055085), melanin biosynthetic process from tyrosine (GO:0006583), melanosome
membrane (GO:0033162), and melanogenesis (hsa04916), and qRT-PCR was also performed
to verify the differential expression levels of these genes between the red-eyed and black-
eyed guppies. From Figure 3A,B and Figure 4, we observed a significant downregulation in
the relative expression of OCA2 and the expression of other genes involved in maintaining
the pH of the melanosome that were significantly upregulated in red-eyed guppies. In
a transcriptomic analysis of albino northern snakehead, some key melanogenesis genes
showed significantly higher levels than in the WT northern snakehead [80]. The results
were consistent with the gene expression trend of our identification of genes associated
with melanin synthesis. It is likely that the feedback in terms of melanogenesis is due to
the lack of melanin-based protection against UV radiation from light [80–82]. Integrated
genomic and transcriptomic analyses were carried out (Table 1 and Table S3 and Figure 4),
and we believe that it is possible that mutations in either the OCA2 gene or the HERC2
gene lead to the downregulation of OCA2 expression in red-eyed guppies, resulting in
melanosome acidity and tyrosinase being unable to catalyze the conversion of tyrosine
to melanin.

Human OCA2 patients generally have varying degrees of congenital nystagmus, re-
duced vision acuity, refractive errors, and some degree of color vision impairment [14,18,19].
In this study, some terms in relation to vision were also brought to our attention: retinol
metabolic process (GO:0042572), retinoic acid metabolic process (GO:0042573), visual per-
ception (GO:0007601), and photoreceptor activity (GO:0009881). Therefore, we speculated
that red-eyed guppies have similar eye symptoms in terms of ocular albinism.

4. Materials and Methods
4.1. Sampling and Sequencing

All domestic guppies used in this study were bred in the Laboratory of Animal
Genetics and Breeding of China Agricultural University. The breeding conditions were as
follows: 10 h of light, a 22–28 ◦C temperature range, and feeding twice a day. A total of
121 adult fish were sampled, including 62 red-eyed guppies and 59 black-eyed guppies.
The red-eyed domestic guppies were from four strains, and the black-eyed guppies were
from five strains, as shown in detail in Supplementary Materials Table S1. One tail fin
clip was collected from each guppy (adult guppies) and stored in ethanol. Genomic DNA
was isolated from each sample using the TIANamp Genomic DNA Kit (Cat. #DP304,
TIANGEN, Beijing, China) according to the manufacturer’s instructions. After quality
control, the DNA samples were sent to a commercial company (BGI, Shenzhen, China) for
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next-generation sequencing. Whole-genome resequencing data with 150 bp paired-end
reads were generated using a DNBseq platform. The resequencing depth of each sample
was greater than 10× (Supplementary Materials Table S1). Eye tissues were collected from
12 red-eyed and 9 black-eyed guppies of 6–8 months of age and immediately stored in
liquid nitrogen. The red-eyed guppies were from two strains, and the black-eyed guppies
were from three strains, as shown in detail in Supplementary Materials Table S2. Total RNA
was isolated using Trizol (Cat. #DP424, TIANGEN, Beijing, China) according to the Trizol
protocol [83]. A Nanodrop 2000 was used to assess RNA quality and concentration. After
quality control, RNA samples were sequenced using a DNBseq PE150 sequencing platform
in BGI, too.

4.2. Genomic Variant Calling

After removing reads with low-quality bases containing adapters or poly-Ns from the
raw data, the clean data were aligned with the reference genome (Guppy_female_1.0+MT.105)
using bowtie2 software (v2.4.5) [84]; then, genome-wide single-nucleotide polymorphisms
(SNPs) and small insertion–deletions (INDELs) were detected using the SAMtools (v1.9)
“mpileup” module via the BCFtools (v1.9) “call” option [85].

4.3. Genome-Wide Association Studies

VCFtools (v0.1.17) was used to filter variants (SNPs and INDELs) according to the
following criteria: minDP, 8; maxDP, 30; maf, 0.1; max-missing, 0.9; min-alleles, 2; max-
alleles, 2; and thin, 300 [86]. Principal component analysis (PCA) was performed using
GCTA software (v1.93.2) [87]. Genome-wide association studies were performed using
GEMMA software (v0.98.1) with a mixed linear model (LMM) [88]. After Bonferroni
correction, SNPs with a p-value of less than 0.05/total SNP number were considered to
be significant SNPs. The Manhattan plot was created using the R package of qqman
(v0.1.8). The annotation of significant SNPs was carried out with snpEff (v5.0c) based on
the Guppy_female_1.0+MT assembly supported by Ensembl [89].

4.4. RNA Sequencing Analysis

To obtain high-quality reads, we performed quality-filtering procedures by removing
reads aligned with the barcode adapter, i.e., reads with >1% unidentified nucleotides
(N) and reads with >40% low-quality (Q ≤ 20) bases. After data quality control was
performed, all RNA samples were aligned with the reference genome of Poecilia_reticulata
(Guppy_female_1.0_MT.105) using Hisat 2 (v2.1.0) [90]. StringTie (v2.1.1) was used to
assemble transcripts and estimate the gene expression levels [91]. Finally, differential
expression analysis was performed using DEseq2 (v1.34.0) [92]. Genes with |log2(fold
change)| > 1 and p < 0.05 were considered differentially expressed (DEGs). To further
investigate the related functions of DEGs, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using DAVID (http:
//david.abcc.ncifcrf.gov/, accessed on 29 September 2022).

4.5. Quantitative Real-Time PCR

The eye tissues of 10 red-eyed and 10 black-eyed guppies at the age of about 6 months
were collected. The total RNA of each sample of eye tissue was isolated as described
above. About 500 ng RNA of each sample was used for cDNA synthesis using a reverse
transcription kit (cat. #KR118, TIANGEN, Beijing, China). Gene β-actin was set as a
reference control [93]. Primer sequences were designed using Primer3Plus (https://www.
primer3plus.com/, accessed on 10 November 2022) and are shown in Table 2. Quantitative
real-time PCR (qRT-PCR) was performed using qTOWER3 touch (Bio-Rad Laboratories,
Inc., Hercules, CA, USA) with a 20 µL reaction system containing 10 µL of 2× SuperReal
PreMix Plus (SYBR Green; Cat. #FP209, TIANGEN, Beijing, China), 0.6 µL of the forward
primer (10 pmoL/µL), 0.6 µL of the reverse primer (10 pmoL/µL), 1 µL of cDNA template,
and 7.8 µL of RNase free water. Each sample had two replicates. The thermal cycling

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
https://www.primer3plus.com/
https://www.primer3plus.com/


Int. J. Mol. Sci. 2024, 25, 2175 10 of 14

process was as follows: 95 ◦C for 3 min and 40 cycles of amplification (95 ◦C for 5 s, Tm for
10 s, and 72 ◦C for 15 s). The relative expression quantification of each gene was calculated
using the 2−∆∆Ct method [94]. We used the t-test method to test the expression differences
of the target genes using GraphPad Prism (v9.5.1; GraphPad Software, La Jolla, CA, USA).

Table 2. Primers used in qRT-PCR.

Primers Forward Primer Reverse Primer References Tm Product Size (bp)

β-actin gcttgtgcgggatatcatttg gaatccggctttgcacatac NM_001297475.1 60 ◦C 137
OCA2-2 cagactttcgggataacgcct gagcactcctcctccgct XM_008407632.2 60 ◦C 141
TYR-2 ctccatgtccaacgtccagg catttgctcgtgggtagctg XM_008425495.2 60 ◦C 131

SLC45A2-2 gagaggtctgcactaccacg gtactcggagcccaacagac XM_008423772.2 60 ◦C 115
SLC24A5-2 ttctcaggatgtggcaggag tgctgattccaatgtccccc XM_008404588.2 60 ◦C 110

5. Conclusions

In this study, we performed genomic and transcriptomic analyses to detect candidate
genes for the red-eyed phenotype in domestic guppies. We found that a genomic region
containing 44 genes between 13.91 Mb and 18.17 Mb of Chr 4 was statistically significantly
associated with guppy eye color. After transcriptomic analysis, 874 DEGs were identified
between the red-eyed and black-eyed guppies. Through GO and KEGG enrichment, we
identified some important terms and pathways mainly related to melanin biosynthesis
and ion transport. qRT-PCR was also performed to verify the differential expression levels
of four important candidate genes between red-eyed and black-eyed guppies. Based on
the results of the genomic and transcriptomic analyses, we propose that OCA2 is the most
important candidate gene for the red-eyed phenotype in guppies. Next, we will detect the
polymorphism of the OCA2 gene, establishing the association between mutation sites and
phenotypes to further explain the downregulation of OCA2 expression at the transcriptional
level. Our study provides a preliminary explanation of the molecular mechanisms of some
red-eyed domesticated guppies and identifies candidate genes that lead to ocular albinism,
providing a theoretical basis for cultivating new strains of red-eyed domesticated guppies.
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