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Abstract: The human retina is a complex anatomical structure that has no regenerative capacity.
The pathogenesis of most retinopathies can be attributed to inflammation, with the activation of the
inflammasome protein platform, and to the impact of oxidative stress on the regulation of apoptosis
and autophagy/mitophagy in retinal cells. In recent years, new therapeutic approaches to treat
retinopathies have been investigated. Experimental data suggest that the secretome of mesenchymal
cells could reduce oxidative stress, autophagy, and the apoptosis of retinal cells, and in turn, the
secretome of the latter could induce changes in mesenchymal cells. Other studies have evidenced that
noncoding (nc)RNAs might be new targets for retinopathy treatment and novel disease biomarkers
since a correlation has been found between ncRNA levels and retinopathies. A new field to explore
is the interaction observed between the ocular and intestinal microbiota; indeed, recent findings
have shown that the alteration of gut microbiota seems to be linked to ocular diseases, suggesting a
gut–eye axis. To explore new therapeutical strategies for retinopathies, it is important to use proper
models that can mimic the complexity of the retina. In this context, retinal organoids represent a
good model for the study of the pathophysiology of the retina.

Keywords: retinopathies; inflammation; gut–retina axis; retinal organoid

1. Functional Anatomy of Retina: Morphofunctional Characterization

Among the three layers of the eye, the retina represents the innermost, located just
between the vitreous body and the choroid. In the retina, ten different layers can be
observed, composed of six different types of neuronal cells, involved in the creation and
transmission of the visual signal. These layers are arranged in a precise order from the
inner layer (anterior) to the outer layer (posterior): 1. Inner limiting membrane; 2. Nerve
fiber layer; 3. Ganglion cell layer; 4. Inner plexiform layer; 5. Inner nuclear layer (INL);
6. Middle limiting membrane; 7. Outer plexiform layer; 8. Outer nuclear layer (ONL);
9. External limiting membrane; 10. Photoreceptor outer segments. The cells that constitute
these layers are rods, cones, retinal ganglion cells (RGCs), bipolar cells, horizontal cells,
and amacrine cells. All these cell types have a specific role and constitute the circuitry that
allows the retina to detect and signal every change of the light [1]. The inner retina receives
oxygen and nutrient supply from the microvasculature that forms the inner blood–retina
barrier (BRB). This term refers to the complex architecture of the blood vessels that irrorate
the nerve fiber layer, the inner plexiform layer, and the outer plexiform layer. These vessels
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consist of endothelial cells presenting tight junctions that avoid any leakage, surrounded by
pericytes and glial cells that support them, form a more intact barrier against the diffusion
of molecules from the bloodstream, and regulate proliferation and angiogenesis. These
cells constitute the so-called neurovascular unit, that resembles the blood–brain barrier
in its structure and functions [2]. The complex structure of the retina is externally lined
by Bruch’s membrane, which separates the fenestrated capillaries of the choroid from the
retinal pigment epithelium (RPE). Bruch’s membrane, being formed by elastic and collagen
fibers, holds a structural role, contributing to counteract internal ocular pressure (IOP), to
limit cell migration from external layers, and control nutrient diffusion from the choroid
fenestrated capillaries on the basis of molecular weight. Together, Bruch’s membrane,
the choroid capillaries, and their basal lamina constitute the outer BRB. Internally to
Bruch’s membrane, there is the RPE layer, immediately followed by three main neuron
cell types, arranged in the following order: photoreceptors, bipolar cells, and ganglion
cells, associated with other cells modulating neurotransmission [3–5]. Photoreceptors are
specialized neurons that extend between the ONL and the photoreceptor outer segments,
and are divided in two subtypes: rods (95%) and cones (5%). The largest rod concentrations
are seen in the outer retina, with density increasing toward the retina’s periphery. The axons
of several rods form synapses with a single RGC, providing information about peripheral
and scotopic visions during nighttime; as we move towards the peripheral areas, they
reach a ratio of a million rods per single RGC. While rods are more receptive to individual
photons of light, cones are less sensitive to photons in general, but they respond to one of
three specific wavelengths of light (red, green, and blue colors). Because this information
has a heavier weight in image-forming processes in the brain, there is a lower ratio of
synapses between cones and RGCs, as low as 1:1 in the macula region of the retina [6]. The
primary output neurons in the retina are RGCs. These cells also function as a third class
of photoreceptors that plays an important role in the transmission of both image-forming
and non-image-forming information [7]. Different inputs are transmitted to RGCs by two
types of intermediate neurons, bipolar cells and amacrine cells. Bipolar cells are secondary
neurons, characterized by two long projections that allow them to relay the inputs from
photoreceptors to RGCs. They lie in the INL, with a synaptic connection in the OPL and
the other in the INL. They also interact with amacrine cells and horizontal cells, and thus
they are essential for processing the inputs from photoreceptors via the modulation of
neuronal transmission mediated by these interneurons [8]. Amacrine cells have the role of
intermediate neurons in the retinal circuit, providing inhibitory GABAergic signals. Several
amacrine cells contact the same RGC, and a single amacrine cell can contact different RGCs,
forming a microcircuit responsible for transmitting information about different shades
and movements of light [9]. The last type of neuronal cells is represented by horizontal
cells, that act as modulators of the signal transfer from photoreceptors to bipolar cells,
particularly important for the eyes to adapt to various conditions of light intensity. They
lie in the INL with their projections contacting photoreceptors’ synapses in the OPL [10].
In addition to these neuronal cell types, the retina also comprises several types of glial
cells, represented by Müller cells, astrocytes, and microglia. In particular, Müller cells
constitute a large part of the volume of the retina and extend from the inner limiting
membrane, which they contribute to form with their basal expansion, to the ONL. Müller
cells are placed in the space among neurons, isolating them from each other, except for the
synaptic contacts. They are in a sort of symbiotic relationship with neurons, being involved
in the proper functioning of synapses, the neurodevelopment of the retina, neuronal
plasticity, and protection from mechanical stress. Müller cells also exert control over the
extracellular environment to prevent harmful changes for the neurons: they regulate the
extracellular concentration of neuroactive substances (potassium, GABA, and glutamate
neurotransmitters) as well as ions, bicarbonate, and water. They may also contribute to
the processing of the visual information in the retina, by producing, storing, and releasing
neuroactive substances in response to neuronal activation [1,11].
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The RPE and photoreceptors (rod and cones) constitute the outer part of the retina,
that is avascular and depends for oxygen and nutrient supply, as well as waste removal,
on the choroid capillaries. Interestingly, photoreceptors account for 110–130 million of
cells, and are a highly metabolically active cell type that consumes roughly 75% of the
available oxygen. On the other hand, the outer part of the retina is quite a hypoxic en-
vironment, which prompts RPE cells to assume several different supporting functions.
RPE cells, which intercalate with their microvilli among photoreceptors, furnish a wide
exchange surface that phagocytizes the outer parts of photoreceptors, shuttles glucose and
oxygen, and recycles chromophores for visual pigments. Moreover, RPE cells are respon-
sible for phagocytosis and recycling of photoreceptor outer segments (POS) fragments,
shed after they accumulated toxic compounds. This phagocytic activity reaches its peak
1–2 h after light exposure at the beginning of the day, pointing to a possible contribution of
the circadian clock in this process. About this topic there are controversial results. Some
researchers observed that the disruption of the circadian rhythm was responsible for the
accelerated degeneration of the photoreceptor layer due to impaired phagocytosis by the
RPE, leading to the accumulation of ROS and undegraded waste products [12]; others
instead showed that, in vivo, the disruption of the phagocytosis peak dependent on the cir-
cadian rhythm was not associated with photoreceptor degeneration, because the RPE could
activate a compensatory mechanism that increased baseline phagocytic activity [13,14]. In
addition, in the semi-hypoxic environment of the outer retina, the photoreceptors’ viability
relies not only on mitochondrial oxidative metabolism, but also on cytoplasmic glycolysis,
producing large amounts of lactate, which is shuttled to RPE and Müller cells to be oxidized
to pyruvate. In this view, the availability of RPE and Müller cells to use pyruvate, saving
and furnishing glucose for photoreceptor metabolism, is of primary importance [15]. On
the other hand, fatty acid oxidative metabolism has been reported to contribute to fulfilling
the bioenergetic needs of neuronal metabolism [16]. In addition to photoreceptors and the
RPE, RGCs represent another subset of retinal cells that display a particular susceptibility
to mitochondria-related damage, in this case, by virtue of their particular disposition in the
tissue architecture (Figure 1) [17]. The bodies of RGCs, in fact, develop axonal segments that
run over the inner aspects of the retina, are interposed on the light path, and consequently
must be unmyelinated for the whole length of the retinal route, becoming able to acquire a
myelin sheath only after the lamina cribrosa, just inside the optic nerve. This leads to an
asymmetric distribution of mitochondria in the different parts of the optic nerve, with a
strong mitochondrial enrichment in the unmyelinated portion of the axonal segment. This
asymmetric distribution can make the proximal part of the optic nerve more sensitive to
mitochondrial malfunctioning, and consequently strictly dependent on the efficiency of
quality control mechanisms of mitochondrial performance, such as autophagy, mitophagy,
and mitochondrial biogenesis.

Alterations of different portions of the retina cause effects of different severity depend-
ing on the affected areas. Lesions affecting the central area of the retina (macula) can cause
the loss of acuity of central vision, the distortion of straight lines, and the alteration of color
vision. Lesions affecting parts of the retina other than the macula can cause changes in
portions of the visual field or, in severe cases, lead to total blindness. The retina, in general,
can be affected by different types of vascular or degenerative diseases resulting from other
pathologies such as atherosclerosis, arterial hypertension, or diabetes.
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Figure 1. Mitochondria-related damage on RPE, photoreceptors, and ganglion cells in retinal dis-
ease. Created with BioRender.com. 
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tophagy, the autophagosome is absent, and small portions of cytoplasm are incorporated 
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cytoplasmic proteins to drive them to lysosomal degradation [19]. In addition to these 
widely studied and well-known examples of degradative pathways, there are also non-
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ficking devoted to the exocytosis of secretory granules, interleukins, High Mobility Group 
Box 1 (HMGB1), exosomes, and others [20]. 
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Autophagy acts as a quality control mechanism, able to reshape the cell through the 

removal of damaged proteins and organelles. Different forms of autophagy have been 
identified, based on what organelle/molecule needs to be degraded: mitochondria (mi-
tophagy), endoplasmic reticulum (reticulophagy), peroxisomes (pexophagy), or lipid 
droplets (lipophagy). In addition, the removal of invading pathogens (xenophagy) war-
rants a role in cell defense [21]. The degradative aspect of autophagy constitutes a very 
important tool for the cell, because it warrants a vital source of amino acids and lipids for 
the de novo synthesis of proteins and lipids during periods of shortage. Overall, this 

Figure 1. Mitochondria-related damage on RPE, photoreceptors, and ganglion cells in retinal disease.
Created with BioRender.com.

2. Autophagy and Mitophagy: Programmed Cell ‘Amputations’ to Limit the Damage

The term autophagy identifies some lysosome-centered cellular pathways strongly
conserved during evolution, devised to maintain cellular homeostasis by removing dam-
aged material, supplying nutrients during metabolic stress, and trying to prevent genomic
damage [18]. In particular, autophagic pathways identify, engulf, and carry to the lysosomal
compartment a wide group of intracellular components, from low-size macromolecules to
entire organelles. Autophagy is frequently described as relying on three different mech-
anisms, termed macroautophagy or more commonly autophagy, microautophagy, and
chaperone-mediated autophagy. Macroautophagy is able to create an intracellular double
membrane system to engulf portions of organelles or cytoplasm, with the formation of
a vesicle called autophagosome. These vesicles are carried and fused to a lysosome, to
allow for the degradation of the selected material. On the contrary, in microautophagy, the
autophagosome is absent, and small portions of cytoplasm are incorporated into lysosomes
through the invagination of the lysosomal membrane. In chaperone-mediated autophagy,
the hsc-70 protein recognizes and binds a pentapeptide sequence of the cytoplasmic pro-
teins to drive them to lysosomal degradation [19]. In addition to these widely studied
and well-known examples of degradative pathways, there are also non-degradative path-
ways, where the autophagic proteins are also involved in membrane trafficking devoted to
the exocytosis of secretory granules, interleukins, High Mobility Group Box 1 (HMGB1),
exosomes, and others [20].

As a whole, the physiological value of autophagy lies in two main activities.
Autophagy acts as a quality control mechanism, able to reshape the cell through

the removal of damaged proteins and organelles. Different forms of autophagy have
been identified, based on what organelle/molecule needs to be degraded: mitochondria
(mitophagy), endoplasmic reticulum (reticulophagy), peroxisomes (pexophagy), or lipid
droplets (lipophagy). In addition, the removal of invading pathogens (xenophagy) warrants
a role in cell defense [21]. The degradative aspect of autophagy constitutes a very important
tool for the cell, because it warrants a vital source of amino acids and lipids for the de novo
synthesis of proteins and lipids during periods of shortage. Overall, this concerns protein
synthesis, which can be performed only in the contemporary presence of all the building
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blocks, in particular, essential amino acids. Under starvation or in the presence of stress
conditions, amino acid pool completeness can be ensured only through the demolition of
existing cellular proteins. Therefore, autophagy has a fundamental role in cell survival,
because it not only provides the removal of dangerous cellular components, but also secures
biosynthetic compounds [22]. So, by virtue of its basic function in cellular physiology,
autophagy is involved in most human diseases, like cancer or neurodegeneration, where it
can behave, according to the specific circumstances, as a double-edged sword, helping in
counteracting the disease or fostering it.

A subset of autophagy-related molecular mediators are also involved in a non-canonical
autophagy pathway, named microtubule-associated proteins light chain 3 (LC3)-associated
phagocytosis (LAP) [23,24], in which single-membrane vesicles are formed. LAP is involved
in immune-suppressive and anti-inflammatory responses, and its deficiency induces hyper-
inflammation and cytokine production [25]. It has been shown that LAP has a fundamental
role in maintaining the functions of different cell types, among which RPE [26]. In RPE cells,
a homeostatic balance between autophagy, that plays an important role against oxidative
stress [27,28], and LAP, that is involved in the degradation of POS fragments [29] and the
synthesis of anti-inflammatory lipids [29], is maintained.

The control and reshaping of damaged mitochondrial population involve different
mechanisms. A first mechanism is the continuous elimination of damaged proteins,
operated by mitochondrial proteasome, mitochondrial unfolded protein response, or
proteasome-dependent degradation [30]. In the presence of greater amounts of oxidized or
damaged proteins and lipids, these can be packed into portions of the mitochondrion, that
can subsequently be released as vesicles of 70–150 nm in diameter, called mitochondrial-
derived vesicles (MDVs). Their fate is to be transported intracellularly to lysosomes and
peroxisomes and degraded [31]. Mitophagy, as mentioned above, is a selective form of
autophagy that destroys the whole mitochondrion. The fragmentation of the mitochon-
drion facilitates the overall mitophagy process, and potentially regulates it. In addition,
mitochondria need to be marked on the surface by an “eat me” signal, to start the destruc-
tive route. One of the most studied signals is the ubiquitin-dependent PINK1/Parkin axis.
PINK1 and Parkin are members of the family of PARK genes, which include α-synuclein (α-
syn, PARK1/4), Parkin (PARK2), PINK1 (PTEN-Induced Kinase 1-PARK6), DJ-1 (PARK7),
LRRK2 (PARK8), and ATP13A2 (PARK9). The finding that mutations in these proteins are
related to inherited forms of Parkinson’s disease not only gave this group of genes its name,
but also highlights the tight link between mitophagy regulation and neuropathies [32]. The
PINK1/Parkin axis regulates mitophagy firstly through the degradative cycle of PINK1.
PINK1 is an ubiquitous serine/threonine-protein kinase imported into mitochondria by the
action of the protein translocators TIM and TOM. Once arrived in the inner mitochondrial
membrane, PINK1 under normal conditions is proteolytically degraded [33–35]. Instead,
in the presence of alterations of mitochondrial membrane potential, PINK1 accumulates
on the external mitochondrial membrane where it is stabilized by a molecular complex
including TOM proteins [36,37] and begins to phosphorylate Parkin. This post-translational
modification allows Parkin to become an active Ub-dependent enzyme [38,39] which ubiq-
uitinates several mitochondrial proteins of the external membrane. Several proteins, like
p62/Sequestosome, NBR1, NDP52, optineurin (OPTN), and TAX1BP1 (TBK1), recognize
the ubiquitinated proteins and mediate the docking of the damaged mitochondria to the
autophagosomes for clearance in the lysosome [40–42].

3. Etiopathogenesis and Characterization of Retinopathies: Two Meaningful Examples

Oxidative stress is regarded as one of the triggers that cause cellular dysfunction and
tissue damage in many retinal diseases. Oxidative stress is caused by ROS generation
and accumulation, mostly sourced from mitochondria during oxidative phosphorylation.
Therefore, mitochondria need an efficient antioxidant system to counter ROS accumula-
tion. As explained in the previous section, when this mechanism fails, ROS may attack
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proteins and mtDNA, forcing the cell to get rid of the damaged portion of mitochondria
through mitophagy.

There is a connection between oxidative stress and inflammation: dying cells that expe-
rienced oxidative stress may release factors that induce TNF-α production in macrophages
and healthy RPE cells. At the same time, proinflammatory cytokines like TNF-α, IL-1β,
and IFN-γ are able to increase ROS production in RPE cells, as observed in patients with
macular degeneration and diabetic retinopathy (DR) [43]. This further proves that inflam-
mation is another key element in the insurgence of retinopathies and maculopathies [44,45].
The catalyst of this process is the activation of the inflammasome protein platform and in
particular pyrin domain-containing protein 3 (NLRP3). The activation of the inflammasome
and the subsequent release of caspases are the first steps of the inflammatory response due
to the conversion of some interleukins, in particular, pro-IL-1b and pro-IL-18, to their active
forms. Further evidence has shown that the inhibition of the NLRP3-inflammasome can
lead to a decrease in pro-inflammatory molecules, and a consequent decrease in vascular
permeability [46,47]. It is necessary to consider that vascular phenomena play an important
role in acute inflammatory response. Indeed, the blood vessels of the microcirculation
undergo modifications that represent a prerequisite for the leakage of the main effectors of
the defense mechanisms at the site of injury or infection.

Regardless of the cause (e.g., age, hypoxia, hyperglycemia, or genetic factors), there is
a reduction in the effectiveness of the disposal of cellular debris by macrophages, and this
is particularly evident in the RPE. Under physiological conditions, microglia cells migrate
to the site of damage, engulf the apoptotic material, and activate the complement system,
to properly manage the cellular debris produced, and the assembly of the inflammasome.
When this mechanism escapes normal control, there is a real danger to the surrounding
tissue, because if the insult persists, it can cause tissue remodeling [48–50].

Various proinflammatory factors, including reactive oxygen species (ROS), TNF-α,
and complement activators, are released by overly activated microglia and act as enhancing
triggers for inflammasome assembly. This generates a chronic inflammatory response, that
alters the function and structure of the RPE, the permeability of the BRB, the formation of
new vessels, and the recruitment of macrophages at the choroid level [51]. A crucial point
of this mechanism is the role of neo-vascularization induced by the increased expression
of vascular endothelial growth factor (VEGF) that can either be considered the cause of
the activation of the inflammation itself or, according to other evidence, it could be its
consequence [52–54].

3.1. Glaucoma

The term glaucoma indicates a heterogeneous group of maculopathies with an
etiopathogenesis that is not fully clarified, which represents, worldwide, the second cause
of blindness. Glaucoma is expected to affect more than 110 million of patients in 2040
and, if not treated, could inevitably lead to the degeneration of RGCs and the optic nerve,
and consequently to vision loss. There are several known risk factors, including optic
disc hemorrhage, systemic hypertension, diabetes mellitus, smoking, severe myopia, and
lipid dysregulation, but IOP is one of the most relevant ones. In fact, disease progression
is frequently related to IOP and can stop when pressure is reduced: consequently, glau-
coma therapies overall rely on the management of IOP, both with pharmacological and
surgical strategies [55]. A potential failure of IOP management opens the possibility of an
irreversible degeneration of RGCs and their unmyelinated axons in the retinal nerve layer,
followed by optic nerve depletion. A more precise evaluation of the molecular mechanisms
actually involved in cellular degeneration is needed to develop innovative therapies to
prevent the worst impact of the illness [56]. It should be noted that the implications of
RGCs degeneration are not limited to the optic nerve but can spread and also involve other
components of the visual pathway, like lateral geniculate nuclei and the visual cortex [56].

IOP has been involved in the reduction of blood flow in the choroid or in the vessels
of the innermost part of the retina. This can produce retinal ischemia which appears to be
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common to several other retinopathies, including DR, and has been proposed as a reason-
able cause of RGC injuries. In addition to vessel and tissue compression, a consequence
of increased IOP is the stretching and thinning of all retinal structures. This occurrence,
common to high myopia, can lead to stress in all the tissues composing the three layers of
the eye. As a whole, oxidative stress, neuroinflammation, and ischemia are surely involved
in an illness whose exact causes are still largely unknown.

In glaucoma, antioxidant availability is impaired [57]. Since the first part of the nerve
fiber is unmyelinated and particularly rich in mitochondria, a high production of ROS, not
properly scavenged by antioxidants, could lead to an accumulation of oxidized forms of
proteins, lipids, and DNA, both nuclear and mitochondrial [58,59]. In particular, the oxida-
tion of cysteine residues on dynamin-related protein 1 (DRP1) can trigger mitochondrial
dynamics, leading to an increase in mitochondrial fission that could result in excessive
mitophagy followed by a drop in energy production. Consistently, Kim et al. showed in the
DBA/2J mouse model of glaucoma that DRP1 inhibition, obtained by overexpressing DRP1
defective mutants, reduced both oxidation in RGCs and mitochondrial fission, suggesting
a vicious cycle where exaggerated fission increased mitochondrial dysfunctionality, ROS
production, and energy depletion [60]. On the other hand, defective mitophagy was found
in experimental models of hypertensive glaucoma. Inducing chronic hypertensive glau-
coma in rats by means of translimbal laser photocoagulation, Dai et al. showed that Parkin
overexpression ameliorated optineurin expression, mitophagic flux, mitochondrial health,
and RGCs survival in vivo, indicating that dysfunctional mitophagy could be involved in
mediating hypertensive RGC damage [61].

Neuroinflammation plays a role in glaucoma. In glaucomatous human eyes, cells
release several proinflammatory cytokines in the humor aqueous, including TNF-α [62].
An important role in glaucomatous diseases is attributed to the NOD, LRR, and NLRP3
inflammasome, which is formed by the assembly of several subunits, like cytosolic pat-
tern recognition receptors, caspase1, NLRP, and the adaptor protein apoptosis-associated
speck-like protein (ASC). The increased synthesis of inflammasome components, followed
by their assembly, is an important part of the activation mechanism. Once activated, the
proteolytic subunit of the NLRP3 inflammasome can convert the precursors of IL-1β and
IL-18 into the fully active forms to be secreted. The activation of the NLRP3 inflammasome
and IL-1β release was observed in mice after experimental IOP increase or an intravitreal
injection of ATP, in particular in RGCs, Müller cells, and astrocytes, while NLRP3 KO mice
were found to be protected against cell damage or death, indicating that the inflammasome
could mediate an important part of the damage induced by IOP [63]. An interplay exists
between mitochondrial dysfunction and inflammasome activation, represented by abnor-
mal ROS release. In several cells and animal models, the use of inhibitors of mitochondrial
complex I and III induced mitochondrial dysfunction and abnormal ROS release, followed
by inflammasome activation and cell damage or death. Consistently, the antioxidant treat-
ment of RGCs resulted in a significant reduction in NLRP3 activation and cell death in
transient IOP increase models [64], suggesting that mitochondrial dysfunction is upstream
to neuroinflammation, although in glaucoma this is not confirmed.

3.2. Diabetic Retinopathy

DR is a complication of diabetes mellitus, of both types 1 and 2. Different studies
report variable DR prevalence in the population, with a higher incidence in the Middle
East, North Africa, and the Western Pacific populations [51], being a leading cause of loss
of vision and blindness. Hyperglycemia is recognized to be the core factor in DR etiology,
affecting at first the retinal microvasculature, with a compromission of the BRB, and with
subsequent increased vasodilation and permeability. The degeneration of microvasculature
associated with pericyte loss determines the presence of capillary occlusion, ischemia, and
hypoxic microzones that stimulates VEGF production from RPE or glial cells, which in
turn prompts neovascularization and vascular permeability through alterations of tight
junction components. This allows to distinguish two major types of DR, non-proliferative
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(NPDR) and proliferative DR (PDR). Initial NPDR is characterized by the presence of
microaneurysms, hemorrhages, exudates, cotton wool spots, and intraretinal microvascular
abnormalities. PDR presents further extensive ischemia, followed by neovascularization
and the alteration of the retinal structure, that can lead to edema and retinal detachment,
that increases the probability of visual loss. There is also evidence of an involvement of glial
cells in the early stages of DR; in particular, hyperglycemic stress has been shown to activate
microglial cells, that initiate an inflammatory response by secreting proinflammatory
cytokines and VEGF [65]. Indeed, hyperglycemia deeply affects the different cell types
present in the retina wall, triggering a neuroinflammatory response. It should be noted
that the creation of an inflammatory environment in the retina has a causative role in DR
and can be responsible for the finding that only half of the patients respond positively to
anti-VEGF therapy, sustaining the need for integrative pharmacological approaches [66].
Accordingly, several cytokines and other inflammation markers, including ICAM-1, IL-1β,
IL-6, IL-8, TNF-α, and MCP-1 have been found to increase in body fluids, like venous blood
or aqueous and vitreous humor, in patients with DR [67,68]. Of note, the early pathogenesis
of DR involves retinal neurodegeneration, so that recent evidence indicates it to be an
independent event occurring before vascular damage could be observed [65]. Neurons and
glia are both involved in the inflammatory response, which can recruit white blood cells
from the blood to the retina, further prompting the formation of an inflammatory milieu,
altering the BRB, and stimulating the cell death of photoreceptors and RGCs.

One accredited hypothesis calls into question glucose, present at high concentrations in
the vessels and surrounding tissues. Glucose is an aldose sugar, able to react with proteins
and lipids, giving rise to Schiff bases and other products, that collectively form the advanced
glycation end-products (AGEs) [69]. It should be noted that AGEs, that can occur in all
retinal cell types, not only directly damage almost all cellular components, but in addition
are recognized by specific receptors, the most studied of which is the advanced glycation
end-product receptor (RAGE). RAGE is a multiligand transmembrane receptor that, once
activated, can upregulate NF-kB and its target genes, including inflammasome proteins,
and a wide series of cytokines. In type-2 diabetes patients, without renal dysfunctions, the
serum levels of AGEs were found to correlate with DR severity [70]. In particular, a role for
the AGE-RAGE axis in the production of interleukins, VEGF, and ROS has been shown in
in vitro cultured human RPE cells [71].

Extensive glycation, ROS production, and inflammation are responsible for initial RGC
deterioration, which is further worsened by autophagic alterations [72]. Autophagy stimu-
lation, triggered by ischemia/reperfusion, was found to be beneficial for RGC survival, and
this was confirmed by the rapamycin- or starvation-stimulated upregulation of autophagy,
which further improved RGC viability [73]. Coherently, the high-glucose treatment of
isolated retinas leads to enhanced mTOR activation, which decreases autophagic flux.
The neuroprotectant octreotide was effective in protecting against high-glucose-induced
cell death through the inhibition of mTOR and the stimulation of autophagy [74]. In an
immortalized cell line of RPE, N-acetyl cysteine treatment added before high glucose in-
duction, reduced mitophagy markers to normal levels, suggesting the specific activation of
mitophagy as part of the cell response mechanism to hyperglycemia [75].

While autophagy, as a whole, seems to play an overall protective role, mitophagy in
DR appears to be a double-edged sword. In fact, it has been reported, in retinas obtained
from hyperglycemic rats and in in vitro cultures in the presence of high glucose, that
mitophagy increased in order to warrant the quality control of damaged mitochondria,
but without being followed by an increase in mitochondrial biogenesis. The uncoupling
of these two complementary parts of mitochondrial dynamic unbalanced mitochondrial
turnover, leading to a dangerous depletion of the mitochondrial pool, suggesting the
convenience of a strategy of mitophagy inhibition [76]. Interestingly, in in vitro, ex vivo,
and in vivo models of multiple sclerosis, Patergnani et al. showed that the alteration of
the mTOR/ULK1 pathway could induce abnormal glucose metabolism, mitochondrial
dysfunctions, and uncontrolled mitophagy and autophagy. In the study, a strategy of
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autophagy inhibition with FDA-approved drugs not only greatly improved the ability of
oligodendrocytes to restore axon myelination, but also warranted a significant recovery
in in vivo behavioral tests [77]. In a similar way, Ealker et al., in another report, showed
an overall convenience of autophagy inhibition to rescue motor neurons from death after
cervical spinal cord injury [78]. Moreover, Du et al. [79] showed that in cell cultures
challenged with high glucose, the use of autophagy inhibitors not only ameliorated cell
viability but also reduced cell migration and tube formation, suggesting that autophagy
could increase neovascularization, a dangerous side effect of DR. In a similar way, in
a model of choroid-retinal endothelial cells, Piano et al. showed that the expression of
PI3K, Akt, and mTOR was associated with autophagy inhibition and the diminution of
high-glucose-stimulated vessel formation [80]. The link between high glucose, mTOR
downregulation, and autophagy increase was also observed in an animal model where
diabetes was induced using streptozotocin. The report showed that the inhibition of
autophagy and the reduction of neuronal cell death could be achieved through glycemic
control as well as specific mTOR activation by MHY1485 [81].

4. Therapeutic Applications of Extracellular Vesicles and Secretome Modulation from
Mesenchymal Stem Cells in Retinopathies

Many experimental and clinical studies on retinopathies and, in particular, retinitis
pigmentosa report positive evidence of the application of mesenchymal stem cells [82,83].
The added value of this strategy is created by the easy stem cell availability and, in general,
by the fact that it does not induce serious immune responses [84–86].

Studies underline that such therapies bring benefits to the surrounding tissue by se-
creting growth factors and extracellular vesicles to support tissue integrity, mainly because
of their trophic and paracrine effects [82,87]. Notably, clinical research is also focusing on
intraocular applications of mesenchymal stem cells, including subretinal, intravitreal, and
suprachoroidal space, to prevent adverse effects such as the detachment of the retina and
the epiretinal membrane [88]. In particular, several studies are aimed at assessing the role
of a specific category of extracellular vesicles released by cells, called exosomes [89,90].
Exosomes represent an intercellular communication system, and are secreted in high quan-
tities by mesenchymal cells, thus contributing to the therapeutic effect. In particular, the
advantage of exosomes is that they do not contain cells, and this is a benefit at the immuno-
logical level with respect to cellular treatments. Several research studies in this field use
Wharton’s jelly as a source of mesenchymal stem cells (MSCs), which is the mesenchy-
mal tissue of the umbilical cord. This jelly represents a good source of stem cells with
high differentiation and regenerative capacity, constant doubling time, high proliferation
rate, and low immunogenicity. In addition, Wharton’s jelly can be easily obtained with
non-invasive procedures and minimizes ethical problems [91,92]. MSC exosomes have
a special biochemical composition since they also contain microRNA received from the
secreting cell. Therefore, MSC exosomes can influence surrounding cells, modulating
some pathways in the receiving cells. In particular, they are able to activate differentiation,
stimulate proliferation, regulate the regeneration process, and, in general, increase cell
survival (Figure 2) [93–95]. MSC-derived exosomes have already been used in experimental
research to regulate RNA levels in certain types of cancer, including breast cancer and
hepatocellular carcinoma [96,97]. Of considerable interest are the applications in diseases
of the central nervous system, difficult to treat because of the anatomy of this body re-
gion that naturally limits the surgical treatment options. Exosomes allow researchers to
overcome the blood–brain barrier and carry the molecule of interest to the target cells. To
date, in fact, there is a great deal of information about exosomes used as transport systems
for cytokine, growth factors, molecules of adhesion, nucleic acids, and chemotherapeutic
agents. Exosomes might also be used in the field of gene therapy, as they can act as vehicles
of therapeutic compounds like mRNA or siRNA. Attention is now focused on the use
of exosomes as “therapeutic tools”, as recent studies have analyzed the proteomic and
transcriptomic profiles of these vesicles and demonstrated that they express molecules
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on their surface: some of these are found in all exosomes (LAMP2B and CD63) [98,99],
while others are fabric-specific. This can be exploited specifically to deliver exosomes
loaded with selective drugs to certain target cells [100]. Drug delivery using exosomes can
provide unique benefits compared to other systems, including limited immunogenicity
and increased stability in the blood. Exosome membranes can also be modified to show
epitopes that can bind to specific ligands present on selected cell types and improve their
delivery to these cells.
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By exploiting these peculiar features of exosomes, they represent an efficient system
as vectors to accurately convey drugs to targets.

The morphofunctional integrity of the retina is subject to various levels of regulation,
and a crucial role is played by the secretome of retinal cytotypes, especially RPE and Müller
glial cells. It is also hypothesized that the secretome has the potential to affect the onset and
progression of retinal diseases after an alteration of the secretory capacity of the cells [101].

Experimental data indicate that there is a crosstalk between the secretomes of mes-
enchymal stem cells and retinal cells [102]. Indeed, MSC secretome can modulate retinal
cells, reducing oxidative stress, autophagy, and the apoptosis of pigmented cells. On the
other hand, the secretome of retinal cells can affect mesenchymal stem cells by inducing
changes in their phenotype and gene expression. Moreover, the comparison of the im-
munomodulating secretome produced by stimulated MSCs (st MSCs) with that of the
unstimulated MSCs (Unst MSCs) without immunosuppressive effects, allowed researchers
to identify their potential therapeutic properties. The results showed that stimulation with
pro-inflammatory cytokines (IL1, IL6, and TNF) induced a significant change in the whole
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secretion of MSCs. In particular, most proteins, released exclusively from MSC activated
with pro-inflammatory cytokines, are involved in the regulation of angiogenesis. These fac-
tors include metalloproteinase 1 tissue inhibitor (TIMP-1), a specific glycoprotein involved
in the endogenous suppression of metalloproteinase [102]. By secreting TIMP-1, in fact,
MSCs block the formation of new blood vessels in the draining lymph node, essential for
the recruitment of circulating leukocytes to the inflamed tissue. Therefore, this event is
responsible for the local suppression of the immune response [103].

In this regard, mesenchymal stem cells could be used as “biofabrics” of the secretome,
to be used as mixtures that could have positive effects on retinal diseases [104].

5. Non-Coding RNAs as Innovative Diagnostic Tools and Therapeutic Molecules for
Diabetic Retinopathy
5.1. Non-Coding RNAs

Cells produce a variety of RNAs, indispensable in the cellular processes that allow the
cells to transform their genetic information into biomolecules that determine cell survival,
adaptability, organization, and function.

However, other than the classical RNAs that take part in the transcription and transla-
tion processes (mRNA, rRNA, and tRNA), researchers have identified other types: these
are classified as of non-coding RNAs (ncRNAs), that is, RNAs displaying a regulatory
instead of protein-coding function. ncRNAs have different names and roles in cellular
mechanisms, depending on their length, structure, and compartmentalization; the best
known and described are micro (miRNA), long non-coding (lncRNA), and circular (cir-
cRNA) RNAs [105,106]. All of these are generated by RNA polymerase II, that can read
both sense and anti-sense DNA sequences that code for ncRNAs. pre-miRNAs are subjected
to post-transcriptional modifications, usually aimed at cutting bp to generate RNAs with
~20 nucleotides. They serve as regulators of mRNA expression: many miRNA binding sites
have been identified in the 3′-UTR region of mRNAs; often, a single mRNA contains target
sites for multiple miRNAs, but at the same time a single miRNA can bind multiple mRNAs.
This generates a complex mRNA–miRNA network that revolutionized the model of the
post-transcriptional regulation of gene expression [105].

lncRNAs are longer (more than 200 nucleotides) and transcribed from intergenic or
intronic regions of genes, or even from the antisense filament of these. They mainly act as
scaffolds or decoys for protein and regulatory molecules, such as the very same miRNAs,
modulating their abundance and consequently their effect on gene expression. circRNAs
are another type of longer ncRNA, since their sequences can range from 1 to 5 exons,
including up to 4 introns. This characteristic grants them the same functions as lncRNAs,
but they have also been shown to be used as templates for protein synthesis, in place of
mRNAs [105–107]. However, this mechanism needs further study to be fully appreciated
and to understand its biological relevance.

Despite being studied for several decades, it is quite a recent discovery that these
ncRNAs also exist in a cell-free form (cfRNAs), dispersed in various body fluids, and even
more recent is their application for diagnostic and therapeutic purposes [105]. The role of
these cfRNAs is still debated, although many seem to agree that this form represents a way
of intercellular communication, that can be paracrine or even endocrine, paving the way
for a more complex and inter-tissue regulation of gene expression [105,106].

5.2. ncRNAs Involvement in Diabetic Retinopathy

ncRNAs have been extensively studied for their role in shaping the functions of the
RPE in hyperglycemic conditions, as they occur in diabetic patients and are involved in
the development of DR. The RPE has the function of supporting photoreceptor cells and
maintaining the homeostasis of the retinal tissue with continuous exchanges with the
vasculature. ncRNAs of every type have been implicated in modulating the RPE struc-
ture and functions, in particular those involving interactions with blood vessels [107,108].
Endothelial cells are another cell type severely affected during retinopathy development:
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in fact, during these processes, the normal vasculature is damaged by pro-inflammatory
stimuli, and abnormal vasculature formation is promoted by biomolecules released by
other cell types, the most prominent being VEGF. Human retinal vascular endothelial cells
(HRVECs) that sense damage signals will activate, proliferate, and migrate abnormally,
altering the function of retinal blood vessels. Other than modulating intracellular signaling
pathways that regulate VEGF release from non-endothelial cells, ncRNAs also have a
role in determining the survival and proliferation of endothelial cells themselves [107].
Inflammation has a prominent role in retinopathies, including DR, and it is well established
that ncRNAs are involved in the regulation of this mechanism. Some of these ncRNAs have
been studied for their role in the NF-kB pathway, one of the most prominent pathways
activated during inflammation [108–112]. In some cases, the in vitro results were supported
by RNA analysis on the serum of diabetic patients, as in a study that revealed the positive
correlation between miR-146a-5p downregulation and DR progression, showing its rele-
vance in a clinical setting [112]. Other miRNAs were associated with the downregulation of
pro-inflammatory and pro-angiogenic signals (e.g., TNF-α and IL-1) [113,114], while some
circRNAs seemed to be involved in a deleterious, proinflammatory response [115,116].

Inflammation is usually accompanied by cell death, that can help to sustain the inflam-
matory response and participate in tissue damage. ncRNAs have a variety of interactions
with several pathways involved in cell survival and apoptosis. Different ncRNAs have
proapoptotic effects on RPE cells [117–120], causing cell dysfunction, apoptosis, and the
reduction of the thickness of the retinal barrier; others are antiapoptotic, but they are
found downregulated in hyperglycemic conditions [108,121]. Apoptosis may also involve
endothelial cells, compromising the healthy vasculature and promoting pathogenic neo-
vascularization; in this context, an important protein for endothelial cell survival seems to
be SIRT1, a histone deacetylase associated with antiapoptotic signaling, thus downregu-
lated by different ncRNAs [116,122,123]. Other downregulated pathways involve TGFB2
and FGF2 [124].

HRVEC dysfunction can also be a consequence of the alteration of the crosstalk with
pericytes, that can be influenced by ncRNAs. Some ncRNAs prevent pericyte degener-
ation, and consequently vascular dysfunction, like MEG3, that showed important anti-
inflammatory and antiapoptotic activity [125,126]. circRNAs seem to have protective effects
on pericytes [127], with circEhmt1 also being transferred via the exosome to endothelial
cells, inhibiting inflammatory and apoptotic processes [105,106]

In DR, an imbalance in growth factor levels is also observed: sustained VEGF release
is dangerous for the vasculature, causing damage and the leakage of the BRB in the early
stages, and promoting neovascularization in the proliferative stage. Recent studies have
shown that an intricate network of ncRNAs may contribute to or counter this abnormal
activation of the VEGF pathway, both in secreting and responding cells. In regard to its
pathogenic role, another study showed a significant correlation between the decrease in the
expression level of the aforementioned lncRNA MEG3 in the serum of DR patients and the
increase in VEGF serum levels [128]. In the same study, a similar correlation was observed
for TGF-β serum levels, pointing to a broad involvement of MEG3 in DR pathogenesis, and
its potential role as a therapeutic target. Other than this particular case, researchers observed
a great number of ncRNAs able to downregulate VEGF, control the abnormal prolifera-
tion of endothelial cells, and block the progression of PDR in endothelial cells exposed to
HG [107,108,129,130]. Also, the histone deacetylase SIRT1 positively regulates the expres-
sion of miR-20a, inducing HIF1α to downregulate VEGF activity and prevent the abnormal
proliferation of endothelial cells when exposed to HG in vitro [131]. However, we also
need to consider a significant number of ncRNAs with the opposite activity, that regulate
VEGF pathway to make endothelial cells proliferate, thus facilitating the formation of new
blood vessels and aggravating the PDR process [107,108,132]. lncRNAs and circRNAs
majorly favor VEGF signaling, since they act as sponges to reduce the levels of anti-VEGF
miRNAs [120,133–138]. On the other hand, some lncRNAs have protective effects, like
TPTEP1, that reduces VEGFA expression and therefore neovascularization [139]. Another
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target heavily modulated by ncRNAs is the PI3K/Akt pathway [140–144], responsible for
cell proliferation and tube formation potential.

Other than directly targeting endothelial cell proliferation and neovascularization,
some ncRNAs are responsible for altering the functions of the BRB. Researchers found that
ncRNAs can also correlate with an increased vascular permeability [133,145]. Different
studies have reported the regulation of the same pathway by a number of miRNAs: miR-
411, miR-125b-5p, and miR-146a-5p all target ROBO4 to maintain vasculature and RPE
functions, but they are downregulated in hypoxic and hyperglycemic conditions, and this
suggests that they might be suitable targets to ameliorate RPE cell dysfunction [146,147].

5.3. ncRNAs as Predictive Biomarkers and Novel Therapeutics

Since ncRNAs can be released by cells into the general circulation, especially in the
case of tissue damage or diseases, many have proposed to study their application as disease
biomarkers, due to their high stability in the bloodstream and the ease of collecting blood
samples. Despite all the studies highlighting the importance of ncRNAs in several diseases,
this field seems to be lagging behind: considering that even for cancer diagnosis, there is
still no approved protocol to evaluate ncRNA levels in liquid biopsies to assess disease
stage/progression, no significant advancements have been made for retinopathies [105].
There are multiple reasons, some of which are related to the specific disease, but this
discussion does not belong to the scope of this review. Instead, we desire to focus on the
ncRNAs that have been indicated as potential biomarkers for retinopathies.

In a prospective study analyzing miRNA levels before disease onset in patients with
type 1 diabetes (T1D), Zampetaki et al. found an independent association between miR-27b
and miR-320a and the risk of developing DR, although they are not retina-specific and could
indicate a systemic predisposition to pathological angiogenesis [108,148]. Another study
showed not only that decreased levels of circulating miR-126 were associated with DR, but
that it was also possible to distinguish between progressive and non-progressive DR [149].
miR-126 downregulates IRS-1 to inhibit the PI3K/Akt pathway and therefore the viability
and invasion of endothelial cells [150]. miR-211 was found significantly elevated in DR T1D
patients, that is consistent with its role in inhibiting SIRT1 and promoting endothelial cells
apoptosis [151]. For type 2 diabetes (T2D) patients, researchers indicated a significant in-
crease in circulating miR-93 as a biomarker for DR [152], associated with increased levels of
VEGF given its role in the regulation of its expression [153]. Interestingly, a group observed
that miR-122 expression increased during disease progression, with significative differences
between healthy controls and T2D patients with no DR (NDR) and between NDR and
NPDR patients; conversely, in PDR, an unexpected, marked decrease in miR-122 levels was
reported. miR-122 is associated with an inhibition of proliferation and angiogenesis, so
this finding is coherent with the effect of this miRNA on endothelial cells [154]. Similarly,
a progressive increase in serum levels of miR-221 was found to be a better predictor of
NPDR and PDR, even when compared to serum VEGF, in T2D subjects [155,156]. Mazzeo
et al. performed a wide molecular and functional characterization of extracellular vesicles
secreted from mesenchymal stem cells in DR conditions, identifying miR-150-5p, miR-21-3p,
and miR-30b-5p as significantly increased when compared to the levels contained in EV
from healthy subjects, therefore indicating these miRNAs as potential biomarkers [157].

As we have briefly mentioned, when talking about ncRNAs associated with retinopa-
thy development, it is possible to modulate the levels of some of these molecules to yield a
beneficial effect in DR. This can be achieved by either using antagonist molecules to inhibit
pro-DR endogenous miRNAs or miRNA mimics to rescue the anti-DR pathways [108,158].

For example, miR-145-5p targets the FGF5 gene, whose downregulation promotes
DR progression. Researchers reported that the miR-145-5p inhibitor was able to exert
protective effects by restoring FGF5 expression, decreasing proinflammatory cytokines
(TNF-α, IL-6), and improving cell viability and proliferation [159]. Another study showed
that the miR-183 inhibitor was able to inhibit the PI3K/Akt/VEGF pathway in endothelial
cells, suppressing proliferation and angiogenesis [132]. Also, some compounds of natural
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origin have been tested in attempts to address the elevated inflammation and apoptosis
in RPE cells. Hawthorn polyphenol extract is able to reduce oxidative stress, apopto-
sis, and inflammation in RPE cells exposed to high glucose concentrations by inhibiting
the miR-34a/SIRT1/p53 axis. In particular, it downregulates miR-34a, releasing SIRT1
that, as previously reported, prevents apoptosis [159]. Similarly, Astragalus polysaccha-
ride targets miR-204, inhibiting its activity, thus releasing SIRT1 and preventing RPE cell
apoptosis [160]. The same molecule has been shown to inhibit miR-195 and simultane-
ously alleviate oxidative stress and mitochondrial damage in RPE cells in HG conditions.
miR-195 downregulates Bcl-2, promoting the intrinsic apoptotic pathway; thus, Astra-
galus polysaccharide is able to restore the activity of this key antiapoptotic molecule [161].
Similarly, melatonin acts on Müller cells, modulating their activation and the release of pro-
inflammatory cytokine through the upregulation of the lncRNA MEG3; also, this lncRNA
targets the miR-204/SIRT1 axis in in vitro models of DR, reducing miR-204 levels [162].
Resveratrol also acts on Müller cells, decreasing diabetes-induced apoptosis by upregu-
lating miR-29b expression in a rat model of DR [163]. Chen et al. identified a miRNA
downregulated in DR, miR-144-3p, and showed that its mimics were able to inhibit cell
proliferation and VEGF activation in endothelial cells, through the inhibition of the FGF16
and MAPK pathways [164]. miR-384-3p mimics were studied after Xia et al. found that the
levels of this miRNA were reduced in DR mice, while hexokinase 2 (HK2) expression was
increased. Treatment with miR-384-3p mimics of DR mouse-derived RMECs demonstrated
to be effective in reducing HK2, cell proliferation, and tube formation [165].

Despite this body of evidence, studies are still ongoing to find novel targets, develop
combined ncRNA strategies, and optimize delivery for in vitro and in vivo trials.

6. The Gut–Retina Axis: A New Perspective in the Study of Retinal Dysfunction

The ocular eubiosis, intended as the correct balance of microbiological and micro-
biomic composition, physiologically presents a stable composition. Recent evidence has
pointed out that the bacteria present on the eye surface can play a role in maintaining
homeostasis by modulating the immune function and protecting from infections in some
conditions [166,167].

6.1. Ocular Microbiota

Compared to other anatomical areas, the bacteria present in the eye area are much less
numerous. This is due to the presence of powerful antimicrobial factors in the tear fluid and
the constant mechanical action of the eyelids, which eliminates microbes. Despite this, many
microorganisms survive on the eye surface [168,169]. Indeed, the ocular surface presents a
microbial flora, formed by Gram+ and Gram− bacteria which colonize the ocular surface
immediately after birth. The healthy ocular microbiota was analyzed using metagenomic
analysis, and nine predominant taxonomic profiles emerged [170]. In particular, it has
emerged that the most present bacteria are Staphylococcus, Bacillus, Corynebacterium,
Pseudomonas, Kocuria, Aerococcus, and Chryseobacterium [171,172].

The composition of the eye microbiota can be affected by several factors: the use of
contact lenses, cosmetics, drugs, infections or diseases affecting other organs, age, and
climate (dry or wet) [173]. Physiologically, the eye surface has no protection from the
environment and is more susceptible to microbial contamination than other areas of the
body. During evolution, microbes colonized the eye surface and became commensal
bacteria. Despite this interaction, the epithelial cells of the cornea and conjunctiva are
not prone to develop inflammation or pathological states in healthy subjects. This might
be explained by a specific immunological tolerance towards commensal bacteria. These
bacteria are also responsible for the homeostasis and the prevention of colonization by
pathogenic species. Indeed, the alteration of this equilibrium is linked to a number of
inflammatory diseases of the eyes [174].

Studies in this field are still preliminary, but early developments suggest that alter-
ations of the ocular microbiota could be the cause of pathologies such as dry eye, blepharitis,
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and others. If these data are confirmed, in the next few years, the characterization of the
ocular microbiota could become an additional test to complete the diagnosis and to discover
useful information to guide the therapy.

Dry eye, for example, is a common condition, caused by the inadequate lubrication
of the eye by tears [175,176]. This condition causes inflammation and damage to the eye
surface, without an obvious infection. In some cases, bacteria present on the eye produce
lipases and toxins that modify the tear film, causing signs of irritation, as in the case of
patients with dry eye. These subjects have higher levels of Bacteroidia and Bacteroidetes on
the eye surface, and lower levels of Pseudomonas and Proteobacteria, compared to subjects
with healthy eyes. Such variation of the ocular microbiota is a possible cause of dry eye [177].
In the same way, blepharitis, the inflammation of the eyelids, of a different pathogenic
origin, seems to be associated with an increased amount of bacteria Corynebacterium and
Enhydrobacter.

The ocular microbiota of diabetic patients are more relevant than those of healthy
subjects. In patients with diabetes, the tear film may contain higher levels of glucose,
and this facilitates infections by potential pathogenic bacteria. It has been shown that an
increase in coagulase-negative Staphylococcus bacteria is associated with DR [178]. It is
possible that the inflammatory cytokines released in diabetic patients also influence the
eye microbiota, favoring the growth of pathogenic bacteria on the eye surface, that in turn
promote and sustain the inflammatory response, that may play a role in DR onset and
progression. Thus, studying the eye microbiota and how we can protect and sustain the
commensal bacteria in diabetic patients might become a useful strategy to combine with
other treatments in the prevention of DR development.

6.2. Gut–Eye Axis

Studies on the interaction between the ocular and intestinal microbiota have increased
in recent years. Some researchers hypothesize the existence of a gut–eye “axis”: the
alteration of the intestinal microbiota seems to be linked to some eye diseases, including
uveitis, macular degeneration, and glaucoma [179–182]. Most microorganisms are located
in the intestine, especially in the ascending colon: therefore, we can find bacteria, fungi,
viruses, and helminths in constant symbiotic relationship with our immune system and
with numerous functions, such as metabolic, protective, of immune education, and of
vitamin production [183]. It should be emphasized that when the quantity of saprotrophic
microorganisms grows and exceeds the limits, they can become pathogenic; but since
this growth is often slow, it does not determine reactions of the immune system; instead,
it becomes a silent infectious trigger for chronic and immune inflammatory diseases.
However, transient microorganisms, acquired with food, air, and contact with the outside
world, could pass through and compete with resident ones in certain conditions, becoming
inflammatory triggers. The intestinal mucosa must be unobstructed and intact to avoid
the passage of toxic substances and immunostimulants from the intestinal lumen to the
bloodstream, in order to prevent the occurrence of immune-mediated diseases by the
intestinal and oral microbiota [184].

The rationale of the action of the intestinal microbiota on organs distant from the
gut, like the eyes, is in the production of immunomodulatory cytokines by intestinal im-
munocompetent cells (e.g., Peyer Plaques). The balances between Th1/Th2 and Th17/Treg,
respectively, are regulated by cytokines produced by the immune cells themselves in a
positive or negative way [185]. The general principle of this axis, therefore, is based on
evidence that the dysbiosis of the intestinal microbiota induces an increased production
of inflammatory cytokines and other systemic inflammatory mediators that can act at a
distance on some target structures. The presence of inflammatory substances alters the func-
tionality of the lymphoid tissue associated with the mucous membranes, also damaging
the conjunctival mucosa, located in the eye [186].

Numerous scientific studies underline that the microbiota and the intestine must be
in balance in order to have a general homeostasis of the organism. In fact, alterations of
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the crosstalk between host and intestinal microbiota can lead to a low-grade inflammation,
the starting point of systemic diseases and a contributing factor to numerous pathological
conditions [187–190].

The main mechanisms proposed to explain the gut–eye axis are various: the activation
of dendritic cells and migration to the lymph node, the activation of Th1/Th17 cells in the
intestine and self-reactive B cells with migration into the eye surface/lacrimal gland, and
the antigenic mimicry of bacterial products resulting in autoimmunity [191].

6.3. Potential Effectiveness of Probiotics and Prebiotics

In the past decade, many studies have shown the effectiveness of probiotics and
prebiotics. Recently, some research studies have been published about the modulation of
the microbiota in ophthalmology and the treatment of eye diseases. Chisari et al. carried
out a pilot study to establish the effect of probiotic administration on the eye surface,
with the supplementation of Bifidobacterium lactis and Bifidobacterium bifidum [192]. At
30 days, in the treated group, they observed a statistically significant improvement in the
Shirmer test and the break-up time, together with a reduced colonization of the ocular
surface by S. aureus.

Moreover, a further interesting result was obtained with the topical use of different
types of probiotics based on Lactobacillus acidophilus. Lactobacilli are non-pathogenic,
Gram + microorganisms, and the main components of commensal microbial flora that, in
several clinical studies, have shown efficacy in the adjuvant treatment of various allergic
symptoms, also in ophthalmology. A pilot study, carried out on patients of pediatric
age with keratoconjunctivitis, demonstrated the effectiveness of a galenic preparation
for ophthalmic use based on thermally inactivated Lactobacillus acidophilus, that reduced
signs and symptoms of the disease. The results obtained demonstrated a reduction in
the parameters examined and a downregulation of the adhesion molecule ICAM1 and
of the pathogen recognizing receptor TLR4 in the conjunctival epithelium, in order to
counterbalance the Th2 mediate immune response typical of allergic diseases [193].

An additional study on LP has demonstrated the anti-inflammatory effect on a model
in vitro, finalized to characterize treatments for patients refractory to the conventional
therapies [194].

Future studies will be aimed at identifying “healthy” eye microbiota, their normal
ranges, and therapies to correct the microbiotic imbalance.

7. Human Retinal Organoid: Is It a Useful New Tool for Preclinical Studies?
7.1. Retinal Organoids

Organoids represent one of the most advanced tools to generate new models that
more closely mimic physiological and pathological conditions. For this reason, they are
platforms to study pathogenic mechanisms and identify effective therapeutic targets, also
in the context of personalized medicine [195,196]. Organoids are 3D multicellular structures
that can be established from embryonic or adult stem cells, that under precise settings
self-organize and differentiate in 3D cell masses with characteristics very similar to, and
sometimes histologically indistinguishable from, those of in vivo organs [196,197]. Because
of their characteristics, organoids can be defined as cultures that exhibit multi-cellularity
and functionality, show spatial architecture like in vivo organs, and preserve stem cells or
progenitor pools [198]. Since 2009, when for the first time a small intestinal organoid was
established in vitro [199], several 3D cultures were obtained from different organs, such as
the kidney [200,201], liver [202,203], brain [204,205], and retina [206,207], by changing the
combination of growth factors and cell isolation procedures. The organoids can be classified
into three types, based on different characteristics, such as types of cells and how they
interact with each other: they are classified as epithelial, multi-tissue, and multiorgan [208].
Epithelial and multi-tissue organoids are derived, respectively, from cells of a single or
at least two embryonic leaflets; in the latter case, they can mimic the organization of the
original organs that are normally formed by different tissues. Multi-organ organoids are
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formed by cells from two or more organs and simulate the physiological interaction between
them [209–212]. During embryogenesis, the optic vesicle originates from neuroectoderm
and, as a result of the invagination of the front of the vesicle, a double layered structure is
formed. This structure, named optic cup, presents two adjacent epithelia: the inner one is
the neural retina, and the outer one is the retinal pigment epithelium [213]. The retina is
composed of five types of neuronal cells (photoreceptor, horizontal, amacrine, bipolar, and
ganglion cells) that are distributed to form a complex laminated structure. Since the 1960s,
scientists have proven the capacity of dissociated chicken retina to reaggregate and self-
organize in vitro [214], to form a spheroid [215], and to organize into a laminated structure
when treated with Wnt2b [216]. A great step forward was achieved when Sasai’s group
obtained an optic cup starting from mouse and human stem cells [217,218] which then
differentiated in 3D retinal organoids (ROs). The differentiation was induced by treating
the cells with various exogenous factors and, so far, many research groups have adapted
Sasai’s protocol to obtain ROs with functional cone and rod photoreceptors [219,220]
and to establish a cone-rich model able to mimic the human macula [221]. A critical
point in the use of ROs as study models for retina diseases is the inability to correctly
incorporate a representative retinal pigment epithelium layer, whose interaction with
photoreceptors is essential for the functioning of the neuroretina [222,223], a problem
that was not encountered in models of retinal explants containing neural retina and RPE
cells [224]. Different studies have shown that when human induced pluripotent stem
cells (hiPSCs) were treated with RPE-derived factors, or cocultured along with RPE cells,
it was possible to observe an improvement in the maturation of organoids and in the
differentiation of photoreceptors [224,225]. Recently, Usui-Ouchi and colleagues [226] have
generated mature ROs with integrated macrophage precursor cells, thus producing a model
implemented with microglial cells that may be of great importance in the study of retinal
pathologies involving retinal microglia.

7.2. Organoids as Models for Retinal Degenerative Diseases

The human retina has no regenerative capacity, and retinal degenerative diseases (RDs)
are the main causes of vision loss and blindness worldwide [227,228]. In this context, the
discovery and introduction of new therapeutic approaches is of fundamental importance.
A central issue in the study of retinal pathology is the absence of proper models that can
mimic the structural complexity of the retina. Indeed, in vitro 2D cell cultures are not
adequate to be representative of the multilayer structure of the retina, while the interspecies
differences often make the use of animal models inappropriate to simulate human RD
phenotypes; for instance, the mouse retina does not present a fundamental structure such
as the macula [229].

The lack of appropriate models can be overcome using 3D ROs, derived from em-
bryonic stem cells or induced pluripotent stem cells (iPSCs), that recapitulate the retinal
structure and the cell–cell interactions, thus representing a good model for the study
of the pathophysiology of the retina [230,231]. In several investigations, ROs proved to
be useful as models of inherited and non-inherited retinal diseases and for the study of
genome-editing technologies.

Patient-derived iPSC organoids were successfully used for the study of retinitis pig-
mentosa (RP), a congenital inherited retinal dystrophy characterized by many disease-
causing genetic mutations [232]. With the development and implementation of production
techniques of iPSC-derived ROs, it was possible to evaluate the impact of mutations in
different genes involved in the development and progression of this pathology [233–235].
The more common causes of RP are the mutations of the X-linked retinitis pigmentosa
GTPase regulator (RPGR) gene. In a study of Deng et al. [236], organoids derived from
three different patients with mutations in this gene were generated and used as models
for the study of the efficacy of the gene target therapy to counteract the structural defects
typical of the pathology. The authors demonstrated that the correction of RPGR gene
mutation mediated by CRISPR-Cas9 preserved the photoreceptors’ structure and electro-
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physiological properties, counteracted ciliopathy, and restored gene expression. In recent
research, organoids were used to evaluate the impact of several genes on RP development.
In addition to RPGR [237], other genes have been studied such as pre-mRNA processing
factor 31 homolog (PRPF31) [238,239] and Crumbs Cell Polarity Complex Component 1
(CRB1) [240,241]: in all these studies, CRISP-Cas9 gene editing was used to restore gene
functionality. Other authors [242] have shown that the use of Adeno-associated viral vectors
was also able to restore the phenotype of organoids derived from CRB1-mutated patients.

Hirami et al. have studied the effects of transplanting an allogenic iPSC-derived
RO sheet in two patients affected by RP [243]. In the study, they demonstrated that the
graft was stable for two years, without causing serious adverse effects. Furthermore, in
the transplanted eye, the pathology progressed more slowly than the opposite eye, used
as control, suggesting that the transplantation of ROs should be investigated as a new
therapeutic approach.

Organoids were also used for the study of other inherited pathologies such as Star-
gardt’s disease [244], Leber congenital amaurosis, and Joubert syndrome-related
disorders [245].

Among the non-inherited retinal diseases, many authors have used organoids for
the study of retinoblastoma (Rb). Rb is a childhood tumor which has an incidence of
17% among all pediatric cancers [246]. The use of ROs for the study of Rb was of great
importance because it allows the differences between animal models and the human retina
to be overcome. Indeed, in animal models, the origin of the tumor is attributed to Müller
glial cells, amacrine, or horizontal cells [247,248], while in the human retina, it seems
involve cone precursors [249], as also supported by studies conducted with the use of
ROs derived from hESCs mutated on the RB1 gene [250]. recent years, several studies
have been conducted in ROs derived from hESCs or iPSCs harboring an RB1 mutation or
inactivation, allowing researchers to elucidate the underlying pathogenetic mechanisms
and the transcriptional events involved in Rb [246,251–253]. Recently, Gabriel et al. [254]
demonstrated that organoids obtained from iPSCs were capable of forming bilaterally
symmetrical optic vesicles. The optic-vesicle-containing brain (OVB) organoids consisted
of different cell types belonging to developing optic vesicles such as retinal progenitor cells
and pigment epithelial cells, suggesting the possibility to use OVB organoids as models for
retinal diseases caused by neurodevelopmental disorders.
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