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Abstract: Diabetes mellitus is a metabolic disorder with global economic implications that can lead to
complications such as diabetic cardiomyopathy. The aim of this study was to compare the effects
of chitosan versus dapagliflozin in mouse diabetic cardiomyopathy. We used 32 C57Bl/6 male
mice aged between 8 and 10 weeks, which were randomly divided into Control—without diabetes
mellitus (DM), type 1 DM (T1DM), T1DM + Chitosan, and T1DM + Dapapgliflozin groups. We
induced diabetes with streptozotocin and treated the animals for 12 weeks. The analysis showed a
reduction in intramyocardial fibrosis in the T1DM + Dapapgliflozin compared to T1DM animals. In
T1DM + CHIT, a reduction in intramyocardial fibrosis was observed although, accordingly, there was
also no significant decrease in blood glucose. The level of oxidative stress was reduced in the groups
of treated animals compared to T1DM. All these observed changes in the structure and function
of hearts were highlighted in the echocardiographic examination. In the treated groups, there was
delayed appearance of left ventricular (LV) hypertrophy, a slight decrease in the ejection fraction of
the LV, and an improved diastolic profile. The results demonstrate that chitosan has promising effects
on diabetic cardiomyopathy that are comparable to the beneficial effects of dapagliflozin.
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1. Introduction

Diabetes mellitus is one of the most well-known metabolic disorders worldwide and
is characterized by persistently high blood glucose levels (hyperglycemia) with a major
impact on health [1]. According to the classical definition, diabetes mellitus occurs mainly
from either a lack of insulin secretion (type 1 diabetes mellitus (T1DM)) or a malfunction
in insulin action, especially through the development of insulin resistance that affects
the liver and peripheral tissues (type 2 diabetes (T2DM)) [1]. According to the latest IDF
(International Diabetes Federation) report, the estimated global incidence of people with
diabetes is 537 million [2], represented by approximately 1 in 10 adults between the ages
of 20 and 79 [2]. Moreover, an additional 240 million adults (aged 20–79 years) globally
have impaired glucose tolerance (two-hour glucose levels of 140 to 199 mg per dL [7.8
to 11.0 mmol] based on the 75 g oral glucose tolerance test), a condition that indicates a
higher risk of developing diabetes [2]. Crucially, because of the long-term complications
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that result from uncontrolled high blood sugar levels, diabetes places substantial financial
strain on a global scale [1]. According to the IDF, approximately 10% of the global health
expenditure is allocated to diabetes. The total annual economic cost of diabetes is estimated
to exceed USD 760 billion globally, with the United States alone representing an annual
cost of USD 412.9 billion [3]. One of the most frequent complications of diabetes is diabetic
cardiomyopathy [4,5]. In this study, our focus was on T1DM induced by streptozotocin.
This model mimics the absence of insulin and subsequent hyperglycemia observed in
natural T1DM. However, it achieves this effect through a distinct mechanism, not via
autoimmune-mediated destruction of beta cells, as seen in human T1DM.

Diabetic cardiomyopathy is defined as the pathophysiological evolution of the heart in
the context of diabetes and is characterized by parietal hypertrophy and diastolic dysfunc-
tion in the early stages progressing to a reduction in the ejection fraction in the late stages,
all in the absence of coronary disease or other secondary causes [4]. Although myocardial
damage is produced by persistently elevated blood glucose levels and all its subsequent con-
sequences, there are other mechanisms that may contribute to the decreased performance
of the diabetic heart, such as altered Ca2+ handling in the cytosol or in the mitochondria
of cardiomyocytes [6]. The unclarity in the data also extends to knowledge regarding the
therapeutic target effect of various molecules, such as chitosan and dapagliflozin.

Chitosan, which is abundantly found in the shells of crustaceans and insects, as well as
in the cell walls of fungi, is obtained by deacetylating chitin and is the second most abundant
polymer in nature after cellulose [7–9]. Chitosan cannot be degraded in the gastrointestinal
tract due to the absence of digestive enzymes from the digestive tract of humans and
animals involved in its the digestion [7]. Moreover, chitosan is absorbed at the level of
the intestinal mucosa, and in vivo studies have shown that the absorption of chitosan is
inversely proportional to its molecular weight [10,11]. Previous studies have demonstrated
that chitosan reduces plasma cholesterol levels by promoting fecal fat excretion [12]. There
are multiple studies documenting that chitosan exhibits antioxidative, anti-inflammatory,
antimicrobial, hypolipidemic, antiobesity, hypoglycemic, and antihypertensive proper-
ties [7]. Chitosan improves the pathophysiology of diabetes via multiple pathways. One of
these mechanisms is to improve muscle absorption of glucose by facilitating the movement
of glucose transporter 4 (GLUT4) from the cytoplasm to the cell membranes using chitosan,
as demonstrated in rats with T1DM induced by STZ [13]. Chitosan also exerts antidiabetic
effects by inhibiting intestinal enzymes that hydrolyze carbohydrates, reducing carbohy-
drate digestion and absorption, inhibiting hepatic gluconeogenesis by upregulating hepatic
leptin receptor-b (LepRb) expression and activating downstream JAK2-STAT3 signaling,
protecting pancreatic β-cells, and preventing STZ-induced apoptosis, or it may facilitate
increased glucose uptake by regulating adiponectin expression through the peroxisome
proliferator-activated receptor (PPAR)-γ in adipocytes [13,14]. Last but not least, chitosan
exerts prebiotic effects, positively modulating the gut microbiota [15]. This has attracted at-
tention more recently. Chitosan, similar to galacto-oligosaccharide, inulin, and beta-glucan,
increases the Firmicutes/Bacteroidetes ratio. This leads to the upregulation of Verrucomi-
crobiales or the downregulation of Burkholderiales [15]. Through this manipulation of the
gut microbiota, chitosan exerts effects that reduce the progression of diabetes [15]. On the
other hand, dapagliflozin is one of the newest molecules used in the treatment of diabetes,
and it can prevent or alleviate induced complications [16]. Dapagliflozin belongs to the
class of sodium glucose cotransporter 2 inhibitors (SGLT2I). Sodium glucose cotransporter
2 inhibitors (SGLT2I) work by directly targeting the proximal tubule in the kidney [16],
which is achieved by blocking the sodium glucose transporter, which in turn reduces
glucose reabsorption by the kidneys [16]. As a result, these inhibitors enhance the excretion
of glucose through urine [17]. These medications have been prioritized for the treatment
of diabetes in patients with cardiovascular disease [16,18]. Although dapagliflozin has a
completely different mechanism of action from chitosan, we chose to analyze the target
effects of these two drugs on the hearts of mice with streptozotocin-induced diabetes.
Furthermore, we opted to analyze dapagliflozin because SGLT2 inhibitors (SGLT2Is) have
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demonstrated their effectiveness in safeguarding against cardiomyopathy compared to
other traditional antidiabetic medications. This has granted SGLT2Is the status of a guide-
line recommendation for patients with heart failure with preserved ejection fraction. The
diabetic cardiomyopathy utilized in our study serves as a model for this human pathology.

In this study, we aimed at the comparative analysis of chitosan—a food additive
approved both in the United States of America and in Europe for its multiple effects—with
dapagliflozin—a new antidiabetic compound whose molecular mechanisms in diabetes
are well known—to evaluate their effectiveness as preventive drugs in cardiomyopathy
produced by diabetes mellitus.

2. Results
2.1. Analysis of Blood Glucose and Weight of the Animals

Unlike sodium chloride treatment, streptozotocin rapidly induced hyperglycemia in
mice beginning at 3–5 days after intraperitoneal injection (Figure 1A). Applying dapagliflozin
treatment reduced blood glucose levels compared to the T1DM and T1DM + Chitosan groups.
Details of the plasma glucose values and the ANOVA test results can be found in the
additional materials in Tables S1 and S2.

2.2. Body Weight Assessment of Animals

The recording of the initial weight of the animals showed there were comparative
values between the groups (Figure 1B, Table S3). After the onset of diabetes, a significant
decrease in weight was observed in all STZ-injected animals, regardless of the administered
therapeutic protocol (chitosan or dapagliflozin), as shown in Figure 1C.
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T1DM, and ‡ < 0.05 vs. T1DM + Chitosan. 
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only once, at the end of the experimental study. A slight increase in cholesterol and tri-
glyceride levels was observed in the group of animals with diabetes mellitus (T1DM) com-
pared to the Control group. This increase was also observed in the T1DM + Dapagliflozin 
group, but a significant decrease in these parameters was observed in the T1DM + Chi-
tosan group. Moreover, in all groups of animals, no pathological increase in cholesterol 
was observed (Figure 2A). Regarding triglycerides, a concentration of 120.5 ± 15.21 mg/dL 
was recorded in the Control group (without diabetes) triglycerides compared to the higher 
concentration of 175.8 ± 17.15 mg/dL recorded for the T1DM group without treatment. An 

Figure 1. Assessment of the blood glucose levels as well as weight of animals before and after
the administration of streptozotocin (STZ). Data are shown as mean ± S.D. (A) Plasma glucose
concentration. (B) Weight of the animals at time of enrollment in the study. (C) Evolution of animal
weight after onset of diabetes mellitus. The vertical dotted line represents the administration of STZ.
α p < 0.05 vs. T1DM, * p < 0.05 vs. T1DM + Chitosan, # p < 0.05 vs. T1DM + Dapagliflozin, † p < 0.05
vs. T1DM, and ‡ < 0.05 vs. T1DM + Chitosan.

2.3. Effect on Lipid Properties

It should be mentioned that both total cholesterol and triglycerides were analyzed only
once, at the end of the experimental study. A slight increase in cholesterol and triglyceride
levels was observed in the group of animals with diabetes mellitus (T1DM) compared to
the Control group. This increase was also observed in the T1DM + Dapagliflozin group,
but a significant decrease in these parameters was observed in the T1DM + Chitosan
group. Moreover, in all groups of animals, no pathological increase in cholesterol was
observed (Figure 2A). Regarding triglycerides, a concentration of 120.5 ± 15.21 mg/dL
was recorded in the Control group (without diabetes) triglycerides compared to the higher
concentration of 175.8 ± 17.15 mg/dL recorded for the T1DM group without treatment.
An increased concentration of triglycerides, 156.9 ± 16.08 mg/dL, was also recorded on the
T1DM + Dapagliflozin group, whereas a much lower concentration (92.25 ± 16.18 mg/dL)
was recorded in the T1DM + Chitosan group than in the other groups (Figure 2B). The
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results of the ANOVA test for cholesterol are shown in Table S4 and for triglycerides in
Table S5.
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Figure 2. Effect of chitosan and dapagliflozin on total cholesterol (A) and triglycerides (B) after
treatment for 12 weeks. Data are shown as mean ± S.D. α p < 0.05 vs. Control, * p < 0.05 vs. T1DM,
# p < 0.05 vs. T1DM + Dapagliflozin, † p < 0.05 vs. T1DM, ‡ p < 0.05 vs. T1DM + Chitosan, and
& p < 0.05 vs. T1DM + Dapagliflozin.

2.4. Effect of Chitosan and Dapagliflozin on LV Dimensions and Functions

An echocardiographic evaluation was performed both before the administration of
streptozotocin, to determine all parameters at baseline, and then once every 4 weeks to
analyze the evolution of these parameters. For all the animals included in our study, the
ejection fraction of the left ventricle was calculated to assess the systolic function, as shown
in Figure 3. We noticed that LVEF was a parameter that did not evolve much throughout
our study (Figure 4A); approximately 8 weeks after the induction of diabetes, however,
LVEF was lower in T1DM (65.81 ± 4.68%) and T1DM + Chitosan (70.43 ± 2.42%) compared
to the Control group (75.21 ± 3.40%). This decrease remained steady until the end of the
experiment (evaluation 12 weeks after the onset of diabetes) but was more pronounced in
the T1DM group (to 55.11 ± 5.62%) compared to the control group (76.32 ± 2.84%). This
decrease was much lower in the case of the groups treated with chitosan (63.41 ± 4.88%)
and particularly with dapagliflozin (66.53 ± 4.08%). Moreover, reductions in left ventri-
cle fractional shortening (LVFS), representing an improvement, were observed for chi-
tosan and dapagliflozin (Figure 4B). Regarding the end-diastolic and end-systolic volumes
(Figure 4C,D), although decreases in LVEDV and increases in LVESV were noticed, they
were not found to be statistically significant different except in the case of LVESV, which
was greatly increased in the T1DM and T1DM + Chitosan groups compared to the Control
group (p < 0.05). Regarding the intracavitary diameters of the left ventricle, there was a
decrease in the diastolic diameter and an increase in the systolic diameter even in the pres-
ence of diabetes, though no statistically significant differences were recorded (Figure 4E,F).
It was observed, however, that the thickness of the interventricular septum (IVSd) and the
posterior wall of the LV (LVPWd) were greater in the groups of animals with DM compared
to those without DM 12 weeks after STZ administration, but left ventricular hypertrophy
(representative images in Figure 5A–D) was improved by chitosan and particularly by
dapagliflozin (Figure 4G,H). The analysis of diastolic profile (Figure 5E–H) highlighted a
reduction in the amplitude of the E wave and a slight increase in the amplitude of the A
wave in animals with DM, with these changes causing a decrease in the E/A ratio, thus
fulfilling the definition of diastolic dysfunction. The treatment with chitosan, and particu-
larly the treatment with dapagliflozin, prevented the occurrence of diastolic dysfunction
12 weeks after the onset of diabetes (Figure 4I–K). Finally, a reduction in stroke volume (SV)
was observed in animals with DM, a decrease improved by 12 weeks of treatment with



Int. J. Mol. Sci. 2024, 25, 2118 5 of 18

chitosan and especially with dapagliflozin (Figure 4L). The results of the ANOVA tests for
each analyzed echocardiographic parameter can be found in Tables S6–S17.
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Figure 3. Representative images used for calculating the left ventricular ejection fraction (LVEJ) at
the end of the study in mice without diabetes in the Control group (A), untreated mice in the T1DM
group with diabetes (B), mice in the diabetic group treated with chitosan (T1MD + Chistosan) (C),
and mice in the diabetic group treated with dapagliflozin (T1DM + Dapagliflozin) (D). The capital
letters with (’) indicate the calculation of the end-diastolic volume of the left ventricle. The capital
letters with (”) indicate the calculation of the end-systolic volume of the left ventricle as well as the
automatic determination of LVEF.



Int. J. Mol. Sci. 2024, 25, 2118 6 of 18
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. Echocardiographic parameters evaluated in our study before administration of strepto-
zotocin (week 8) and after administration of streptozotocin (weeks 12, 16, and 20). (A) Left ventric-
ular ejection fraction (LVEF). (B) Fractional shortening (FS). (C) Left ventricle (LV) end-diastolic 

Figure 4. Echocardiographic parameters evaluated in our study before administration of streptozo-
tocin (week 8) and after administration of streptozotocin (weeks 12, 16, and 20). (A) Left ventricular
ejection fraction (LVEF). (B) Fractional shortening (FS). (C) Left ventricle (LV) end-diastolic volume
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(LVEDV). (D) LV end-systolic volume (LVESV). (E) LV internal diastolic diameter (LVIDd). (F) LV
internal systolic diameter (LVISd). (G) Interventricular septal width during end-diastole (IVSd).
(H) LV posterior wall width during end-diastole (LVPWd). (I) E wave (early diastole). (J) A
wave (atrial systole). (K) E/A ratio. (L) stroke volume (SV). α p < 0.05 vs. T1DM, * p < 0.05 vs.
T1DM + Chitosan, # p < 0.05 vs. T1DM + Dapagliflozin, † p < 0.05 vs. T1DM + Chitosan, ‡ p < 0.05
vs. T1DM + Dapagliflozin, and & p < 0.05 vs. T1DM + Chitosan.
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Figure 5. Representative images of M mode echocardiographic evaluation in mice without diabetes
in the Control group (A), untreated mice in the T1DM group with diabetes (B), mice in the diabetic
group treated with chitosan (T1MD + Chistosan) (C), and mice in the diabetic group treated with
dapagliflozin (T1DM + Dapagliflozin) (D). E and A waves in mice without diabetes in the Control
group (E), untreated mice in the T1DM group with diabetes (F), mice in the diabetic group treated
with chitosan (T1MD + Chistosan) (G), and mice in the diabetic group treated with dapagliflozin
(T1DM + Dapagliflozin) (H). The yellow arrows represent LV internal diastolic diameter (LVIDd),
the green arrows represent LV internal systolic diameter (LVISd), the white solid lines represent
interventricular septal width during end-diastole (IVSd), and the white dotted lines represent LV
posterior wall width during end-diastole (VPWd).

2.5. Effect of Chitosan and Dapagliflozin on Cardiac Fibrosis

Initially, all slices were stained with hematoxylin and eosin (Figure 6A–D) and later
with Masson’s trichrome stain to highlight the collagen fibers and evaluate the degree of
fibrosis. Each slice was initially scanned and then the area of fibrosis determined, which is
related to the area of the respective slice. Fibrosis was analyzed considering the entire slice,
including fibrosis at the level of the atrioventricular junction (Figure 6, capital letters with ’)
and around the blood vessels (Figure 6, capital letters with ”) as well as intramural fibrosis
(Figure 6, capital letters with ”’). In mice without diabetes in the Control group, we observed
the existence of fibrosis only around the blood vessels and at the atrioventricular junction,
where the density of the fibrous tissue was 0.0135 ± 0.0017 mm2 fibrous tissue/mm2 cardiac
tissue and IOD 155,010 ± 23,746. However, a significant increase in these parameters was
observed in the mice from the T1DM group for which no therapy was administered, with
the fibrous tissue density being 0.0961 ± 0.0130 mm2 fibrous tissue/mm2 cardiac tissue
and IOD 479,543 ± 40,623. The degree of myocardial fibrosis was greatly suppressed by
the administration of both chitosan (where the density determined from the fibrous test
was 0.059 ± 0.0081 mm2 fibrous tissue/mm2 cardiac tissue and IOD 308,444 ± 12,050)
and particularly by the administration of dapagliflozin (where the density determined
from the fibrous test was 0.044 ± 0.0030 mm2 fibrous tissue/mm2 cardiac tissue and IOD
271,382 ± 11,780). These variations, as well as the statistical significance, are shown in
Figure 7, and the results of the ANOVA test in Table S18 for the area of the fibrous tissue
and in Table S19 for the integrated optical density (IOD) of the fibrous tissue. In addition to
assessing the overall cross-sectional area for fibrosis, we examined both perivascular and
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interstitial fibrosis. Animals with T1DM exhibited significantly higher levels of perivascular
and, notably, interstitial fibrosis compared to those without diabetes (p < 0.05, Figure 7C,D).
Furthermore, the therapeutic effects of chitosan and dapagliflozin in animals with T1DM
mitigated both perivascular and interstitial fibrosis”.
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Figure 6. Representative images of mice hearts from the group of Control animals without diabetes
(A), the group of untreated animals with diabetes ((B)—T1DM), the group of animals with diabetes
that were treated with chitosan ((C)—T1DM + Chitosan), and the group of animals with diabetes
that were treated with dapagliflozin ((D)—T1DM + Dapagliflozin). Capital letters with ’ indicate
representative images of fibrosis at the atrioventricular junction (blue arrows). Capital letters with ”
indicate representative images of perivascular fibrosis (yellow arrows). Capital letters with ”’ indicate
representative images of intramural myocardial fibrosis (green arrows).
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Figure 7. Effect of chitosan and dapagliflozin on cardiac fibrosis (mean ± S.E.M). (A) Fibrous tissue
density at cardiac level (mm2 fibrous tissue/mm2 cardiac tissue). (B) Integrated optical density
(IOD) reported per mm2 of cardiac tissue. (C) Perivascular fibrosis area. (D) Interstitial fibrosis area.
† p < 0.05 vs. T1DM, ‡ p < 0.05 vs. T1DM + Chitosan, and & p < 0.05 vs. T1DM + Dapagliflozin,
α p < 0.05 vs. Control, * p < 0.05 vs. T1DM + Chitosan, and # p < 0.05 vs. T1DM + Dapagliflozin.

Moreover, the therapeutic effects exerted by chitosan and dapagliflozin in animals
with T1DM attenuated both the degree of perivascular and interstitial fibrosis.

2.6. Effect of Chitosan and Dapaglifozin on Cardiac Oxidative Stress

To analyze the level of oxidative stress in the hearts of the animals included in our
study, we evaluated the immunoexpression of oxidized lipid 4-hydroxynonenal (HNE)
as shown in the images in Figure 8A–D. We observed a marked increase in HNE im-
munoexpression in untreated DM (T1DM) mice compared to those of the Control group
(1.250 ± 0.250 vs. 3.750 ± 0.163 arbitrary units—a.u., p < 0.05, Figure 8E). Moreover, treat-
ment with chitosan resulted in a similar reduction in HNE immunoexpression (2.500 ± 0.327
a.u.) as with dapagliflozin (2.250 ± 0.250 a.u.). The results of the ANOVA test are shown in
Table S20.
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Figure 8. Representative images of 4-hydroxynonenal (HNE) immunoexpression in mice without
diabetes in the Control group (A), untreated mice in the T1DM group with diabetes (B), mice in
the diabetic group treated with chitosan (T1MD + Chistosan) (C), and mice in the diabetic group
treated with dapagliflozin (T1DM + Dapagliflozin) (D). (E) HNE immunoexpression (mean ± S.E.M.)
analysis. α p < 0.05 vs. T1DM, * p < 0.05 vs. T1DM + Chitosan, # p < 0.05 vs. T1DM + Dapagliflozin,
† p < 0.05 vs. T1DM + Chitosan, and ‡ p < 0.05 vs. T1DM + Dapagliflozin.

3. Discussion

The results of our study indicate that cases of diabetic cardiomyopathy, the adminis-
tration of chitosan has the same protective effects as dapagliflozin. The etiology of diabetic
cardiomyopathy involves multiple factors and is not fully understood [19–23].

Firstly, STZ-induced Type 1 Diabetes Mellitus is widely used as a crucial model in
diabetic research because it effectively mimics important characteristics of the human
disease in animal subjects. STZ, a naturally derived chemical from Streptomyces achromo-
genes, demonstrates specific toxicity toward pancreatic beta cells. The specific mechanism
behind this phenomenon can be primarily attributed to the role of the glucose transporter
2 (GLUT2) receptor in facilitating the entry of STZ into these cells [1,19]. When STZ is
given, it causes DNA alkylation, which results in the death of beta cells and a subsequent
significant decrease in insulin production [23]. This pathophysiological mechanism imitates
the lack of insulin observed in T1DM, despite having a clearly different cause compared to
the autoimmune-mediated destruction of beta cells seen in human T1DM [23].

Secondly, the STZ-induced T1DM model is particularly valued for its rapid induction
and progression of diabetes, which also allows rapid evaluation of hyperglycemia effects on
key organs [20]. However, unlike human T1DM, which is characterized by an autoimmune
response leading to a gradual loss of beta cells, STZ-induced diabetes results from a
chemically driven, acute cytotoxic process [23]. Consequently, while this model excellently
delineates the consequences of insulin deficiency and offers a viable platform for testing
insulin replacements and other therapeutic strategies, it does not fully encapsulate the
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autoimmune aspects of human T1DM [21]. Furthermore, the model’s dependence on the
GLUT2 receptor means that it is most effective in rodent studies, as the expression of this
receptor in human beta cells differs significantly from that in rodents [23]. This discrepancy
calls for cautious interpretation of results and a measured approach when extrapolating
findings to human diabetic pathology and treatment. Moreover, STZ can also induce
toxicity in other organs such as the heart. In T1DM, there is an increased level of oxidative
stress, a level determined not only by hyperglycemia but also by STZ toxicity.

These adjustments are mostly related to punctuation and phrasing to enhance clarity
and readability. Overall, the text is well-structured and informative!

In our study, we objectified the appearance of diabetic cardiomyopathy by analyzing
intramyocardial fibrosis, echocardiographic analysis of heart remodeling (determining the
ejection fraction of the left ventricle, the intracavitary diameters, the thickness of the heart
walls to evaluate the degree of left ventricular hypertrophy, cardiac volumes, and also the
diastolic profile to highlight diastolic dysfunction), as well as based on the level of oxidative
stress. Since it is known from the literature that treatment with chitosan influences the
lipid profile, we performed a comparative analysis of chitosan with dapagliflozin on the
cholesterol and triglycerides of the mice included in our study.

3.1. Cardiac Fibrosis

Cardiac fibrosis is defined according to the accumulation of extracellular matrix (ECM)
proteins in the spaces between heart cells. The primary cellular agents responsible for
this process are activated fibroblasts and myofibroblasts [24,25]. The precise mechanisms
responsible for the progression of abnormal myocardial fibrosis in diabetic cardiomyopathy
remain incompletely elucidated. However, it is believed to be caused by intricate interplay
among multiple factors, including elevated blood glucose levels, oxidative stress, inflam-
mation, and changes in cardiac metabolism [26]. The mechanisms underlying diabetic
macrovasculopathy differ from those of diabetic cardiomyopathy due to variations in the
smooth muscle cells of vessels [26]. Thus, the exact cause of the accentuated conversion of
cardiomyocytes to fibroblasts through the endothelial to mesenchymal transition (EndMT)
in diabetic cardiomyopathy is still unknown [24]. Nevertheless, in a study conducted on a
diabetic mice animal model, it was reported that collagen deposition occurred as a result
of the extracellular matrix (ECM)-synthetic program being activated by cardiac fibrob-
lasts, without their conversion into myofibroblasts [27]. Cardiac fibroblasts residing in the
heart are the main cells responsible for extracellular matrix (ECM) production in diabetic
cardiomyopathy. There are three primary pathways that contribute to this process [24].
These pathways involve the direct activation of cardiac fibroblasts through transforming
growth factor beta (TGF-β) and hyperglycemia as well as the accumulation of advanced
glycation end-products (AGEs) under hyperglycemia stress [24]. The accumulation of
AGEs promotes the crosslinking of collagen fibers, which in turn stimulates the activation
of cardiac fibroblasts [28]. This can result in the formation of fibrosis and myocardium
stiffness. Furthermore, changes in the way the heart metabolizes energy, such as through
utilization of fatty acids instead of glucose through pathways involving adipokines and
endothelin-1 (ET-1), as well as the activation of cardiac fibroblasts through neurohumoral
pathways, can also play a role in the formation of abnormal myocardial fibrosis [29]. In our
study, we observed an important increase in myocardial fibrosis as assessed by Masson’s
trichrome staining, but this increase was much lower in the mice that received dapagliflozin.
Moreover, chitosan reduced the extent of fibrosis but to a lesser degree than dapagliflozin.
In a recent study, the administration of chitosan in the form of epicardial-implanted hydro-
gel reduced the degree of myocardial fibrosis in both nonischemic and ischemic hearts, and
this effect was associated with an important reduction in hypertrophic stress [30]. Another
suggested mechanism by which chitosan reduces myocardial fibrosis is via the reduction
of transforming growth factor beta (TGF-β), which causes inflammatory macrophages
to no longer be effective with consequent myofibroblast transdifferentiation and matrix
synthesis via the Smad protein-dependent pathway [31]. The information regarding the
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use of dapagliflozin in diabetic cardiomyopathy to reduce fibrosis is much more consistent,
and the main mechanism is represented by a reduction of blood glucose, as shown in all
subsequent generated molecular mechanisms [16]. Moreover, dapagliflozin has proven
efficacy on left ventricular remodeling demonstrated even in recent clinical trials [32–35].

3.2. Oxidative Stress

Oxidative stress (OS) refers to a condition characterized by an imbalance between the
production of reactive oxygen species (ROS) and their elimination or neutralization by the
body’s oxidative defense systems [36]. ROS, including superoxide and hydrogen peroxide,
can react with nitric oxide (NO) to form peroxynitrite, which has a wide range of detri-
mental effects. These effects include reduced (NO) bioavailability, increased inflammation,
mitochondrial dysfunction, and the promotion of tissue fibrosis and remodeling [37]. In our
study, we showed that untreated diabetes (T1DM) is associated with increased oxidative
stress within the heart tissue, as evidenced by higher levels of oxidized lipid (HNE) immu-
noexpression. However, treatment with both chitosan and dapagliflozin showed promising
effects in reducing this oxidative stress, indicating their potential roles in protecting the
heart from the damaging effects of oxidative stress in diabetes. Regarding dapagliflozin,
Arow M et al. demonstrated in their recent study that dapagliflozin reduces oxidative stress
both by reducing the blood glucose level and also through an independent mechanism
involving reduced intracellular calcium overload [16]. Overall, clarity is lacking regarding
the studies on chitosan, and the exact mechanism for the decrease in oxidative stress re-
mains unknown. This reduction could be attributed to either the antioxidant properties of
chitosan or its ability to decrease the production of reactive oxygen species (ROS) through
other effects, such as enhanced cardiac and/or mitochondrial function [6].

3.3. Echocardiographic Parameters

In the mice with diabetes in our initial study, we observed a high degree of myocar-
dial fibrosis, as a consequence of increased oxidative stress, along with an increase in the
thickness of the walls of the left ventricle and later an alteration in diastolic function, which
manifested as a reduction in the E wave and slight increase in the A wave amplitude,
sometimes resulting in the inversion of the E/A ratio. Moreover, 12 weeks after the onset
of diabetes, we even observed a slight decrease in the ejection fraction of the left ventricle.
These changes were greatly delayed particularly by dapagliflozin treatment but also in mice
treated with chitosan, where an improvement was observed in terms of these cardiac mani-
festations from diabetes. Through the effects of reducing cardiac fibrosis but also through
controlling multiple signaling pathways, dapagliflozin has a definite effect in preventing
the occurrence of cardiac remodeling from diabetes [38,39]. Regarding chitosan, studies on
its use in diabetic cardiomyopathy are lacking, but its use in myocardial regeneration has
been analyzed especially in models of ischemic cardiomyopathy [30,40–42].

3.4. Lipid Profile

It is well known that in diabetes, increased levels of circulating free fatty acids primarily
accumulate as triglycerides in adipose tissue. However, accumulation of fat in organs other
than visceral and subcutaneous fat cells leads to lipotoxicity. This condition causes the
dysfunction of various cells and organs, including the liver, pancreatic β cells, skeletal
muscles, and myocardium [43]. Moreover, dyslipidemia is a cause of ischemic heart
disease independent of the presence of diabetes mellitus [43]. Although we did not use
an animal model with dyslipidemia, we observed a slight increase in triglycerides in
mice with diabetes. Regarding the treatments, the lipid profile was not influenced by the
administration of dapagliflozin, while the administration of chitosan caused a decrease
in both triglycerides and total cholesterol. The use of dapagliflozin resulted in minor
changes in lipid levels with an unclear clinical significance [44], and several studies have
demonstrated that the use of chitosan has a definite role in lowering total cholesterol and
triglycerides. Chitosan decreases the expression of CCAAT enhancer-binding proteins



Int. J. Mol. Sci. 2024, 25, 2118 13 of 18

α (C/EBPα) as well as of peroxisome proliferator-activated receptor γ (PPARγ), thus
reducing lipid accumulation [45,46]. Additionally, a reduction in lipids occurs through the
downregulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), sterol regulatory
element-binding protein-1c (SREBP-1c), or acetyl-CoA carboxylase (ACC) [6].

3.5. The Link between Oxidative Stress and Cardiac Fibrosis

The production of reactive oxygen species (ROS) and the resulting oxidative stress
have been specifically associated with the development of cardiac fibrosis and cardiomy-
opathy [47]. In physiological circumstances, a small quantity of oxygen is converted into
reactive oxygen species (ROS) [48]. However, in individuals with diabetes, an excessive
amount of ROS is produced. ROS can stimulate transcription factors like nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), which subsequently control the
transcription of various pro-inflammatory genes, including Tumor Necrosis Factor α (TNF-
α), Transforming Growth Factor β1 (TGF-β1), and Interleukins (IL-1β, IL-6, IL-18) [47].
These genes are known to play a role in the development of heart failure (HF) associated
with diabetes mellitus (DM) [49]. TNF-α stimulation induces collagen synthesis, whereas
IL-1β promotes the pro-inflammatory fibroblast phenotype [50].

Multiple studies have demonstrated that oxidative stress triggers cardiac fibrosis by
promoting the expression of TGF-β1 [51,52]. TGF-β1 plays a crucial role in the development
of tissue fibrosis [47]. Angiotensin II, TGF-β1/SMAD signaling, and protein kinase C (PKC)
activity are stimulated by hyperglycemia and hyperinsulinemia in fibroblasts [53,54]. These
processes subsequently trigger the accumulation of collagen in the interstitial space and
the formation of fibrous tissue, which is linked to an elevated expression of TGF-β1.
TGF-β1 facilitates the conversion of myofibroblasts and enhances the maintenance of the
extracellular matrix [52].

Chronic angiotensin II triggers oxidative stress, which is associated with a pro-
fibrogenic phenotype in the heart. This leads to changes in the extracellular matrix by
decreasing matrix metalloproteinases (MMPs) [55]. In addition, NF-κB upregulates the ex-
pression of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule
1 (VCAM-1) [56].

3.6. Limitations of the Study

A major limitation of our study is the lack of genomic and comprehensive proteomic
analysis for clarifying the molecular mechanisms underlying our observations. For exam-
ple, we did not analyze the expression of the profibrotic genes Col1a1, Col1a2, and Col3a1 or
of hypertrophic genes Anp, Bnp, and Myh7. Additionally, as this study involves an exami-
nation of an animal model, further investigations are required to translate these findings
to human pathology. Furthermore, the quantification of cholesterol and triglycerides was
conducted only once, at the end of the study. For the assessment of oxidative stress, we
used 4-HNE as the sole marker. Thus, our study lacks a detailed molecular characterization
of cardiac fibrosis and oxidation. Plasma ketone bodies and glucosuria were not measured
in the animals included in our study. Another limitation of our study is represented by
pharmacological anesthesia and its potential influence on cardiac parameters, such as LVEF.
In the animal model study, significantly elevated doses of the examined molecules were
administered, in contrast to clinical studies conducted on human participants.

4. Materials and Methods

This study was approved together with all related protocols by the Ethics Committee
of the University of Medicine and Pharmacy in Craiova, Romania (no. 37/20 January,
2023). All experiments on animals were carried out in the Animal Facility of the University
of Medicine and Pharmacy of Craiova and all the regulations in the field stipulated by
the National Research Council (US) Committee in Guide for the Care and Use of Labora-
tory Animals [57] and by the European Council Directive (86/609/EEC) were respected.
Throughout the experiments, the animals were housed in a clean, pathogen-free envi-
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ronment, with a temperature ranging 23–25 ◦C, relative humidity of 40–70%, a constant
day–night rhythm, and ad libitum access to diet and water.

4.1. Reagents

Streptozotocin (STZ, ≥98% HPLC, Sigma-Aldrich, Munich, Germany) and also the
trichrome staining kit (Masson’s trichrome staining kit, catalog number 100485) were pur-
chased from Sigma-Aldrich. Rabbit polyclonal anti-4-hydroxynonenal (4-HNE) was purchased
from Bioss (catalog number ABIN873270, Freiburg, Germany). HRP-conjugated secondary
antibody (Vector Laboratories, Newark, CA, USA, ImmPRESS® HRP Goat Anti-Rabbit IgG
Polymer Detection Kit, Peroxidase—MP-7451) was also used. 3,3′-Diaminobenzidine (DAB)
was purchased from DAKO (Glostrup, Denmark). Medium molecular weight chitosan was
purchased from Sigma-Aldrich (Catalog number 448877, Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany).

4.2. Animals

In our study, we used male C57Bl/6 mice aged between 8 and 10 weeks. In the end,
we used 32 animals randomly divided into 4 groups:

1. Control (without diabetes);
2. T1DM (type 1 diabetes mellitus);
3. T1DM + Chitosan (type 1 diabetes mellitus and treatment with chitosan);
4. T1DM + Dapagliflozin (type 1 diabetes mellitus and treatment with dapagliflozin).

It should be mentioned that each group initially contained 8–10 animals, taking into
account that we had a mortality rate of approximately 10% (resulting especially from the
toxicity due to the administration of streptozotocin, but we also had one animal that was
killed by intragroup cannibalism, probably through polyphagia induced by diabetes).

Regarding induction and assessment of diabetes mellitus and therapeutic protocols
in mice, diabetes was induced by a single intraperitoneal injection and the administration
of 150 mg streptozotocin/kg body weight, between 8 and 10 weeks of life, as in two of
our previous studies [58,59]. Diabetes mellitus was diagnosed according to the criteria
of the American Diabetes Association (ADA) [60]. The mice in the T1DM + Chitosan
and T1DM + Dapagliflozin groups received treatment for a period of 12 weeks after the
induction of diabetes via gastric gavage. The chitosan dose was 150 mg/kg body weight [61]
and the dapagliflozin dose was 10 mg/kg body weight [59]. The blood glucose level was
determined both before STZ administration once every 2 weeks to monitor the onset and
evolution of diabetes. The level of fasting glucose in the blood of animals was determined
by taking the blood after leaving the animals without food in the afternoon for 3–4 h prior to
blood sampling. The determination was made by means of a standard glucometer (Contour
Plus One, Ascensia Diabetes Care, Basel, Switzerland) based on blood taken from a large
vein located in the tail of the animal. Total cholesterol and triglycerides were determined
only once, at the end of the experiment, by means of a standard analyzer (MulticareIN,
Biochemical Systems International, Milan, Italy) with blood taken when the animal was
sacrificed by puncturing the inferior vena cava.

4.3. Echocardiography

The echocardiographic examination was performed before enrolling in the study and
subsequently every 4 weeks, with 4 examinations being performed until the end of the
study. A Philips CX50 (Netherlands) ultrasound machine equipped with a high-resolution
L12-3 linear array transducer (frequency range 12–3 MHz) and software (5.5.3. version) for
cardiovascular applications was used. For the echocardiographic evaluation, each animal
was anesthetized with a cocktail of ketamine (50 mg/mL)/xylazine (7 mg/mL) and then
placed on a homothermic platform (37 ◦C). Standard sections were used as recommended
by professional societies in this field [62]. During the examination in parasternal long axis
view, left ventricle (LV) end-diastolic volume (LVEDV), LV end-systolic volume (LVESV),
and stroke volume (SV) were determined. By relating the stroke volume to the LVEDV and
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multiplying by 100, we obtained the ejection fraction of the left ventricle (LVEF). During the
M mode examination, we determined LV internal diastolic diameter (LVIDd), LV internal
systolic diameter (LVISd), IVSd interventricular septal width during end-diastole (IVSd), LV
posterior wall width during end-diastole (LVPWd), and fractional shortening (FS). Pulsed
Doppler echocardiography at the mitral inflow level was used to measure the E wave (early
diastole), A wave (atrial systole), and E/A ratio. Echocardiography and assessments were
performed in blind conditions.

4.4. Histology and Immunohistochemistry Assessment

At the end of the experiment, all animals were euthanized by injecting a high dose of
ketamine/xylazine. The heart was sampled and immediately immersed in a potassium
chloride solution to induce diastolic arrest. Later, the heart was fixed in a 10% formalin
solution in paraffin, and 4 micrometer thick sections were prepared using a microtome
(HM355S). These were placed on slides with poly-L-lysine and then deparaffinized using the
dewatering method. Initially, a slice from each tissue block was stained with hematoxylin
and eosin. Then, another set of slices was stained using Masson’s trichrome staining
method to assess the degree of fibrosis. To evaluate oxidative stress, the expression of HNE
(4-hydroxynonenal) was determined. The slices were immunostained at 4 ◦C overnight
with primary antibody (anti HNE). Then, the slices were incubated with HRP-conjugated
secondary antibody. The primary antibody was detected using a peroxidase-based kit and
visualized using 3,3′-diaminobenzidine (DAB) substrate with enhancer. Then, the slides
were subsequently counterstained with hematoxylin (DAKO). The slices were digitized by
scanning with a microscope with a MoticEasyScan Pro 6 scanner (Kowloon, Hong Kong)
using a 20× objective. EasyScanner software version 6 and Image ProPlus AMS 9 software
(version 9, Media Cybernetics, Rockville, MD, USA) were used for imaging analysis. The
total cardiac tissue area (mm2) was calculated for each slice, and for the color signal, both
the area and the integrated optical density (IOD) were calculated. The signal area as well
as the IOD were calculated in mm2.

4.5. Statistical Analysis

All results are expressed as mean and standard deviation (S.D.) or the standard error of
the mean (S.E.M.), and the threshold of p < 0.05 was used to establish statistical significance.
All data were analyzed with GraphPad Prism software (Version 10.0, San Diego, CA, USA).
In cases where there were more than two groups of data, we analyzed the difference
between the groups by means of the ANOVA variant test.

5. Conclusions

The results of our study demonstrate that chitosan exhibits promising effects in the
treatment of diabetic cardiomyopathy that are comparable with the beneficial effects,
already demonstrated, of dapagliflozin, namely in reducing the degree of intramyocardial
fibrosis and ameliorating the deterioration of echocardiographic parameters.
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