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Abstract: Preeclampsia (PE) is a serious hypertensive disorder affecting 4–5% of pregnancies globally,
leading to maternal and perinatal morbidity and mortality and reducing life expectancy in surviving
women post-gestation. Late-onset PE (LO-PE) is a clinical type of PE diagnosed after 34 weeks of
gestation, being less severe than the early-onset PE (EO-PE) variant, although both entities have a
notable impact on the placenta. Despite the fact that most studies have focused on EO-PE, LO-PE
does not deserve less attention since its prevalence is much higher and little is known about the role of
the placenta in this pathology. Via RT-qPCR and immunohistochemistry methods, we measured the
gene and protein expressions of several macroautophagy markers in the chorionic villi of placentas
from women who underwent LO-PE (n = 68) and compared them to normal pregnancies (n = 43). We
observed a markedly distinct expression pattern, noticing a significant drop in NUP62 expression
and a considerable rise in the gene and protein expressions of ULK1, ATG9A, LC3, ATG5, STX-17,
and LAMP-1 in the placentas of women with LO-PE. A major induction of autophagic processes
was found in the placental tissue of patients with LO-PE. Abnormal signaling expression of these
molecular patterns in this condition aids in the understanding of the complexity of pathophysiology
and proposes biomarkers for the clinical management of these patients.

Keywords: late-onset preeclampsia (LO-PE); autophagy; placenta; ULK1; ATG9A; LC3; ATG5;
STX-17; LAMP-1
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1. Introduction

Preeclampsia (PE) is a worrying hypertensive pregnancy disorder with a prevalence of
4–5% of pregnancies worldwide. PE is considered a leading cause of maternal and perinatal
morbidity and mortality in severe cases [1], and decreases life expectancy in surviving
women post-gestation. PE is diagnosed in pregnancy by new-onset hypertension (a systolic
blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg on two occasions at
least 4 h apart after 20 weeks of gestation), often accompanied by new-onset proteinuria [2].
Clinical management of this condition is quite limited, the “only cure” being delivery.
However, some prophylactic measures, such as administration of a daily low dose of
aspirin prior to 16 weeks of gestation, have been proven to prevent preterm PE in the
early screening of mothers at risk [3] but not full-term PE [4]. Although its etiology is not
well known, among the risk factors found are maternal hypertension, previous PE events,
insulin-dependent diabetes, obesity, age (>40 years old), multiple pregnancies, and family
history [5].

Depending on the time of appearance, there are two clinical types of PE: early-onset
PE (EO-PE) or so-called placental PE (before 34 weeks of pregnancy) and late-onset PE
(LO-PE) (after 34 weeks of pregnancy) [6]. EO-PE is intrinsically ligated to the placentation
process; the pathophysiology proceeds with aberrant spiral artery remodeling that leads
to hypoxia in the placenta, then local inflammation and oxidative stress provoke systemic
inflammation in the mother with consequent aberrant endothelial and multiorgan functions.
This kind of disorder is less common and more severe for the mother and fetus. On the
contrary, the more prevalent LO-PE is also ligated to maternal extrinsic factors and shows
vascular incompetence in placental molecular processes as well [7,8]. Nevertheless, the
relationship between those intrinsic and extrinsic factors is not well elucidated yet, and little
is known about the role of and changes occurring in the placental tissue in this condition.
The key processes studied in both types of PE have been related to inflammation (vascular
and systemic), angiogenesis incompetence, oxidative stress, or hypoxia [2]. The study of
biomarkers to understand the differential chain links in these pathways may allow the
management of these patients in clinical practice.

In previous studies, we found unbalanced immune responses in part due to the
hyperactivation of inflammasomes such as NLRP3 and the release of proinflammatory
cytokines [9]. Other authors found that closely connected processes like autophagy can
negatively regulate the activation of inflammasomes, and those inflammatory mediators in-
hibit the functioning of autophagy [10]. In our current work, we emphasize the autophagy
process to shed light on its contribution to the progression of LO-PE and reveal its interplay
with inflammation and other hallmarks in the whole picture of this condition. The pre-
served cellular recycling process, known as autophagy, is essential for energy homeostasis
and the adaptation of cells to any stress. It is a self-degradative process in which molecules,
damaged organelles, and intracellular pathogens are cleaned to guarantee cell integrity and
functions; thus, it is critical for cell proliferation, survival, gene stability, and senescence [11].
There are three primary forms of autophagy: macroautophagy (mediated by autophago-
somes that absorb cytoplasmic components and join lysosomes), microautophagy (where
materials are invaginated into lysosomes directly), and chaperone-mediated (where chap-
erones help in the selective transport of proteins to lysosomes) [12]. Macroautophagy is
a process that occurs in different steps: initiation, nucleation, elongation, closure, matu-
ration, fusion, and degradation [13]. The available literature has shown the reliability of
different molecules in the study of macroautophagy, such as ULK1 and ATG9A (implicated
in the initiation phase), LC3 and ATG5 (participating in elongation), STX-17 and LAMP-1
(involved in autophagosome and lysosome fusion), and NUP62/p62 (a negative regulator
of the autophagic process) [14].

In the present study, we explore gene and protein expressions through RT-qPCR and
immunohistochemistry of the aforementioned markers of macroautophagy in the placental
tissue of a group of women with LO-PE (n = 68) and compare them with those obtained
from normal pregnancies (n = 43).
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2. Results
2.1. Clinical Characteristics of Patients

In this study, clinical characteristics of patients were meticulously examined, focusing
on maternal age, nulliparous status, gestation duration, mode of delivery (C-section), and
placental weight in both late-onset preeclampsia (LOPE) cases and healthy control pregnant
women (HC). The mean maternal age for LOPE cases was 29 ± 4.8 years, showing a
significant difference compared to HCs (31.4 ± 5.1 years, * p < 0.05). Notably, nulliparous
women constituted a highly significant proportion of the LOPE group (77.9%) compared
to HCs (32.6%) (*** p < 0.0001). The gestation period was slightly shorter in the LOPE
group (38.6 ± 1.4 weeks) compared to HCs (39.1 ± 1.5 weeks). Additionally, the rate of
C-section deliveries was comparable between the groups. Of particular significance was the
difference in placental weight, where LOPE cases exhibited a significantly lower average
weight (370.3 ± 61.7 g) compared to HCs (501 ± 65.3 g, *** p < 0.0001). These findings
underscore the relevance of these clinical parameters in understanding and distinguishing
cases of late-onset preeclampsia from normal pregnancies. The key clinical characteristics
of the individuals under study are summarily presented in Table 1.

Table 1. Clinical features of the subjects included in our study. * = p < 0.05; *** = p < 0.001.

HC (n = 43) LO-PE (n = 68) p-Value

Maternal age (years)
mean ± SD 31.4 ± 5.1 29 ± 4.8 * p = 0.0154

Nulliparous
(%) total number 14 (32.6) 53 (77.9) *** p < 0.0001

Gestation (weeks) 39.1 ± 1.5 38.6 ± 1.4 NS (p = 0.075)

C-section
(%) Total number 8 (18.6) 15 (22.1) NS (p = 0.270)

Placental weight (g) 501 ± 65.3 370.3 ± 61.7 *** p < 0.0001

2.2. The Placentas of Women with Late-Onset Preeclampsia Exhibit Increased Expression of
Autophagic Proteins Involved in the Initiation Phase, ULK-1 and ATG9A

Firstly, we evaluated the gene and protein expressions of ULK-1 and ATG9A, two
proteins implicated in the initiation phase in the placental tissue of women with LO-PE,
and compared them with the HCs. Our results show that the gene expression of ULK-1 is no-
tably higher in the placentas of women with LO-PE compared to HCs
(*** p < 0.0001; LO-PE = 29.6 [14.6–47.6], HC = 10.2 [3–21.6], Figure 1A). The percentage of
positive villi expressing ULK-1 defined by immunohistochemistry showed that the placen-
tal villi of women with LO-PE showed a notable upregulation in the expression of ULK-1,
(*** p < 0.0001; LO-PE = 63 [43–90], HC = 36 [15–63], Figure 1B). Histological images com-
paring the pattern of expression of ULK-1 in the placentas of women with LO-PE versus
HCs show that this protein is strongly expressed in the syncytiotrophoblast layer of women
with LO-PE and in the inner cells of the chorionic villi, whereas for the HCs, the expression
of ULK-1 is less marked and more limited to the syncytiotrophoblasts (Figure 1C,D).
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Figure 1. (A) mRNA expression of ULK-1 in women with LO-PE versus HCs. (B) IRS scores for 
ULK-1 in the chorionic villi of the LO-PE and HC groups. (C,D) Images showing immunostaining 
for ULK-1 in the chorionic villi of the LO-PE and HCs. p < 0.001 (***). 

On the other hand, we observed that the gene expression of ATG9A was also in-
creased in the placentas of women with LO-PE when compared to HCs (* p = 0.013; LO-
PE = 21.0 [9.8–40.3], HC = 16.6 [8.1–29.7], Figure 2A). The percentage of positive villi ex-
pressing ATG9A defined by immunohistochemistry showed that the placental villi of 
women with LO-PE showed a notable upregulation in the expression of this protein, (* p 
= 0.034; LO-PE = 25.0 [12.0–62.0], HC = 21.0 [10.0–35.0], Figure 2B). Histological images 
comparing the pattern of expression of ATG9A in the placentas of women with LO-PE 
versus HCs show that this protein is expressed in the syncytiotrophoblast layer and inner 
cells of the chorionic villi of women with LO-PE, whereas for the HCs, the expression of 
this protein is less marked and poorly observed (Figure 2C,D). 

 
Figure 2. (A) mRNA expression of ATG9A in women with LO-PE versus HCs. (B) IRS scores for 
ATG9A in the chorionic villi of the LO-PE and HC groups. (C,D) Images showing immunostaining 
for ATG9A in the chorionic villi of the LO-PE and HCs. p < 0.05 (*). 

Figure 1. (A) mRNA expression of ULK-1 in women with LO-PE versus HCs. (B) IRS scores for
ULK-1 in the chorionic villi of the LO-PE and HC groups. (C,D) Images showing immunostaining for
ULK-1 in the chorionic villi of the LO-PE and HCs. p < 0.001 (***).

On the other hand, we observed that the gene expression of ATG9A was also increased
in the placentas of women with LO-PE when compared to HCs (* p = 0.013; LO-PE = 21.0
[9.8–40.3], HC = 16.6 [8.1–29.7], Figure 2A). The percentage of positive villi expressing
ATG9A defined by immunohistochemistry showed that the placental villi of women with
LO-PE showed a notable upregulation in the expression of this protein, (* p = 0.034; LO-
PE = 25.0 [12.0–62.0], HC = 21.0 [10.0–35.0], Figure 2B). Histological images comparing
the pattern of expression of ATG9A in the placentas of women with LO-PE versus HCs
show that this protein is expressed in the syncytiotrophoblast layer and inner cells of the
chorionic villi of women with LO-PE, whereas for the HCs, the expression of this protein is
less marked and poorly observed (Figure 2C,D).
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Figure 2. (A) mRNA expression of ATG9A in women with LO-PE versus HCs. (B) IRS scores for
ATG9A in the chorionic villi of the LO-PE and HC groups. (C,D) Images showing immunostaining
for ATG9A in the chorionic villi of the LO-PE and HCs. p < 0.05 (*).
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2.3. The Placental Tissue of Women with Late-Onset Preeclampsia Displays Augmented Expression
of Autophagic Proteins Involved in the Elongation Phase, LC3 and ATG5

We then assessed the gene and protein expressions of LC3 and ATG5, two proteins
implicated in the elongation phase in the placental tissue of women with LO-PE, and
compared them with HCs. Our results show that the gene expression of LC3 is notably
upregulated in the placentas of women with LO-PE in comparison to HCs (** p = 0.002;
LO-PE = 34.3 [21.0–59.8], HC = 30.1 [17.6–47.6], Figure 3A). The percentage of positive villi
expressing LC3 defined by immunohistochemistry showed that the placental villi of women
with LO-PE showed a notable upregulation in the expression of this protein (** p = 0.002;
LO-PE = 40.0 [23.0–64.0], HC = 35.0 [12.0–62.0], Figure 3B). Histological images comparing
the pattern of expression of LC3 in the placentas of women with LO-PE versus HCs show
that this protein is strongly expressed in the syncytiotrophoblast layer of women with
LO-PE, whereas for the HCs, the expression of LC3 is notably less marked (Figure 3C,D).
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Figure 3. (A) mRNA expression of LC-3 in women with LO-PE versus HCs. (B) IRS scores for LC-3
in the chorionic villi of the LO-PE and HC groups. (C,D) Images showing immunostaining for LC-3
in the chorionic villi of the LO-PE and HCs. p < 0.01 (**).

Regarding ATG5, we report that the gene expression of this protein is notably up-
regulated in the placentas of women with LO-PE in comparison to HCs (** p = 0.001;
LO-PE = 21.1 [12–42], HC = 17 [9.0–31.1], Figure 4A). The percentage of positive villi ex-
pressing ATG5 defined by immunohistochemistry showed that the placental villi of women
with LO-PE displayed a marked upregulation in the expression of this protein (** p = 0.002;
LO-PE = 28.0 [14.0–62.0], HC = 25.0 [11.0–45.0], Figure 4B). Histological images comparing
the pattern of expression of ATG5 in the placentas of women with LO-PE versus HCs show
that this protein is strongly expressed in the syncytiotrophoblast layer of women with
LO-PE, whereas for the HCs, the expression of ATG5 is more restricted to cells located in
the inner chorionic villi (Figure 4C,D).
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2.4. The Chorionic Villi of Women with Late-Onset Preeclampsia Show Augmented Expression of
Autophagic Proteins Involved in the Fusion Phase, LAMP-1 and STX-17

We then assessed the gene and protein expressions of LC3 and ATG5, two proteins
implicated in the elongation phase in the placental tissue of women with LO-PE, and
compared them with the HCs. Our results show that the gene expression of LAMP-1 is
notably higher in the placentas of women with LO-PE in comparison to HCs (*** p < 0.001;
LO-PE = 36.5 [13–58], HC = 23.1 [5.0–37.9], Figure 5A). The percentage of positive villi
expressing LAMP-1 defined by immunohistochemistry showed that the placental villi
of women with LO-PE showed a notable upregulation in the expression of this protein
(*** p < 0.001; LO-PE = 55.0 [22.0–89.0], HC = 28.0 [6.0–60.0], Figure 5B). Histological images
comparing the pattern of expression of LC3 in the placentas of women with LO-PE versus
HCs show that this protein is strongly expressed in the syncytiotrophoblast layer of women
with LO-PE, whereas for the HCs, the expression of LC3 is less marked (Figure 5C,D).

Regarding STX-17, we report that the gene expression of this protein is remarkably
upregulated in the placentas of women with LO-PE in comparison to HCs (*** p < 0.001;
LO-PE = 37.3 [15.4–59.6], HC = 22.0 [5.3–34.0], Figure 6A). The percentage of positive
villi expressing STX-17 defined by immunohistochemistry showed that the placental villi
of women with LO-PE showed a notable upregulation in the expression of this protein
(*** p < 0.001; LO-PE = 61.5 [21.0–91.0], HC = 29.0 [12.0–61.0], Figure 6B). Histological
images comparing the pattern of expression of STX-17 in the placentas of women with
LO-PE versus HC show that this protein is strongly expressed in the syncytiotrophoblast
layer of women with LO-PE, whereas for the HCs, the expression of STX-17 is less marked
(Figure 6C,D).
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2.5. The Chorionic Villi of Women with Late-Onset Preeclampsia Report Diminished Expression of
Autophagic Regulator NUP62

We finally studied the gene and protein expressions of NUP62 in the chorionic villi
of women with LO-PE and HCs. Regarding gene expression, there was a marked decrease in
NUP62 in women with LO-PE (*** p < 0.001; LO-PE = 23.0 [3.0–47.6];
HC = 39.0 [23.1–59.0], Figure 7A). The percentage of positive villi expressing NUP62
defined by immunohistochemistry showed that the placental villi of women with LO-
PE showed a notable downregulation in the expression of this protein (*** p < 0.001;
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LO-PE = 29.5 [12.0–41.0]; HC = 59.0 [22.0–87.0], Figure 7B). Histological images comparing
the pattern of expression of LC3 in the placentas of women with LO-PE versus HCs show
that this protein is strongly expressed in the syncytiotrophoblast layer and inner cells of
the chorionic villi of the HC women, whereas for women with LO-PE, the expression of
LC3 is less marked and more limited to syncytiotrophoblasts (Figure 7C,D).
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3. Discussion

LO-PE is an obstetric disorder that shows specific molecular patterns in placental
tissue. The higher metabolic demands of the fetoplacental unit are thought to cause
mechanical constraints and intraplacental (intervillous) malperfusion, which is thought
to be the secondary cause of LO-PE [15]. Different studies have tried to explain these
hypotheses by studying oxidative stress, endothelial impairment, modified mitochondrial
function, and apoptosis and inflammation [16,17]. To shed more light on the comprehension
of this pathology, we focused on autophagy processes, which are closely connected to the
abnormal environment associated with PE.

Autophagy is an essential process active at basal levels but that acquires a more impor-
tant role as an adaptative survival process in response to nutrient deprivation and different
intracellular and extracellular stressors [18]. This process can be either selective or non-
selective in the removal of specific organelles, ribosomes, and protein aggregates, although
the regulatory aspects of selective autophagy are not fully understood [11]. An altered
regulation of the autophagic process has been linked to different human diseases [18]. In
the placenta, this process is essential in early pregnancy, and different obstetric conditions
like PE or fetal growth restriction (FGR) seem to be associated with an abnormally increased
placental autophagosome formation, mainly related to different pathological factors like
hypoxia, endoplasmic reticulum stress, altered mTOR activity, exacerbated inflammation,
and abnormal functioning of trophoblasts [19]. The relationship between the autophagic
process and LO-PE, however, remains an area of active investigation, and the precise role
of autophagy in the placental tissue of women affected by this condition needs to be fully
covered [20].

In our study, we observed that certain signaling elements of macroautophagy show
differential expression in the placenta of LO-PE patients, such as concretely exacerbated
increases in ULK1, ATG9A, LC3, ATG5, STX-17, and LAMP-1 and a significant decrease in
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NUP62. These findings suggest that the autophagy process might be playing a crucial role
in the pathogenesis of LO-PE, although further studies are warranted to confirm our results.

Firstly, we reported an augmented expression of ULK1 and ATG9A, two markers of
autophagy implicated in the initiation step [21]. To our best knowledge, an augmented or
altered expression of ULK1 and ATG9A in the placental tissue has not yet been linked to LO-
PE, but some studies relating autophagy and pregnancy in animal and non-animal models
may help in the understanding of the differential expressions of these markers observed in
our study. An increased expression of ULK1 has been observed in the placental tissue of
women with gestational diabetes mellitus (GDM) when compared to healthy women [22].
Similarly, a bioinformatic analysis identified ULK1 as one of the 250 candidate genes
upregulated in the placentas of women with PE [23], a finding that is supported by our
study. Regarding ATG9A, animal models have found that both hetero- and homozygous
deletions of this protein are associated with the development of PE and FGR [24]. On the
other hand, reduced expression of this protein has been observed after hepatitis E virus
infection [25]. Collectively, these studies suggest the potential pathogenic role of ULK1 and
ATG9A in the placentas of women with LO-PE, although further efforts are warranted to
evaluate possible translational implications derived from these molecules.

Elongation factors LC3 and ATG5 have also been shown to be increased in the chorionic
villi of LO-PE women in our study. Yet, previous studies have found increased autophagic
activity through increased expression of LC3 proteins in human placental trophoblasts of
severe PE (but not distinguishing between EO or LO-PE) [26]. Conversely, other studies
using immunohistochemistry techniques as well found reduced LC3-II expression despite
autophagy deficiency [27]. In other research, more focused on epigenetic changes, it was
found that the silencing of certain regulators like histone deacetylase 4 (HDAC4) could up-
regulate the activation of autophagy components, including LC3, and apoptosis in placental
trophoblast cells in general PE [28]. We did not find in the literature experimental data
for ATG5 evidence in PE models. Some in vitro studies in GDM have tried to ameliorate
augmented autophagy and apoptosis through the knockdown of ATG5 with success [29].

Furthermore, a recent study found changes in the molecular expression of some of
these markers, among others, in the peripheral blood of preeclamptic women, and, in
fact, revealed that their expressions were not only higher in PE women compared to HCs
but were even higher in LO-PE cases than in EO-PE ones. Concretely, they found higher
expressions of ATG5 and LC3B through Western blotting assays, concluding there is high
autophagy activation in these patients [30].

Next, LAMP1 (lysosomal-associated membrane protein 1) and STX-17 (syntaxin 17),
involved in fusion steps, were also found to be increased in the chorionic villi of LO-PE
women. In serum and placental samples from severe PE cases, cell lines were treated to com-
plete assays of immunofluorescence, animal models, and Western blotting with the aim of
studying autophagy routes in normotensive and preeclamptic conditions. In vitro findings
suggested that LAMP1 was reduced in autophagy-deficient cells [31]. Conversely, similar
techniques in different studies using serum and placental tissue found decreased LAMP1
levels in trophoblasts associated with lysosomal dysfunction and autophagy inhibition [32].
Moreover, STX17, a less-characterized protein in these processes, is known to be anchored
to smooth endoplasmic reticulum and abundantly expressed in steroidogenic cells, being
necessary to synthesize progesterone to assure the relation between the mother and the
fetus [33,34]. Further research is still required for relating this protein with autophagy
processes, especially in pregnancy and more concretely in PE, EO-PE, and LO-PE patients.

Lastly, the nuclear pore glycoprotein p62, sequestosome 1 (or NUP62) is an autophago-
some cargo protein which binds to LC3 and other autophagy elements to present ubiquiti-
nated cytoplasmic proteins to autophagosomes for degradation in lysosomes. Decreased
levels of NUP62 are observed when autophagy is induced, this marker being a good indi-
cator for autophagy flux [35]. NUP62 has previously been evidenced to be accumulated
in preterm villous placentas, associated with a downregulation of the autophagy route.
This impairment was also found to be related to a lower birth weight, suggesting that



Int. J. Mol. Sci. 2024, 25, 2029 10 of 15

autophagy homeostasis is key for fetal growth [36]. Recent studies have found different
results in LO-PE patients, where mRNA levels of this protein were less expressed but pro-
tein expression was higher, as determined through enzyme-linked immunosorbent assay
(ELISA) techniques [37]. Another Western blotting analysis in placental tissue also found a
significantly reduced expression of NUP62 with increased LC3 in general PE, but remarked
that these changes were noted in the presence or absence of FGR, therefore indicating that
autophagy is active in hypertensive obstetric disorders even without the manifestation of
FGR [38].

In summary, our findings suggest a discernible upregulation of autophagy in the
context of LO-PE. To elucidate the intricate connections between these pathways and others
integral to the pathophysiology of this condition, future investigations of greater depth are
warranted. A notable limitation in our current study pertains to the constrained availability
of clinical data concerning both maternal and fetal aspects, which, if expanded, would
facilitate more robust statistical correlations. The incorporation of additional clinical data is
imperative for the translational application and relevance of our molecular results.

Moreover, our study is confronted with the inherent drawback of lacking data related
to EO-PE, thus precluding a comparative analysis of autophagic markers between both
subtypes of PE. Obtaining data for EO-PE presented considerable challenges attributed
to its heightened severity, coupled with its lower prevalence. To our best knowledge, the
scientific literature about these metabolic processes of autophagy with the distinction of
both subtypes of the disease is limited. Subsequent research endeavors should be directed
toward overcoming these limitations, necessitating the acquisition of more comprehen-
sive clinical data and a comparative exploration of autophagic markers in both LO-PE
and EO-PE.

4. Materials and Methods
4.1. Study Design and Participants

A prospective, observational study was conducted and nested within a cohort for com-
parative analysis. Patients with preeclampsia who satisfied some of the following severity
criteria were diagnosed with LO-PE following the American College of Obstetricians and
Gynecologists Practice Guidelines for Gestational Hypertension and Preeclampsia [39]:
systolic (≥160 mmHg) and/or diastolic (≥110 mmHg) blood pressure measurements con-
firmed after 15 min; urine protein/creatinine ratio estimated or measured in 24 h; oliguria
≤500 mL/24 h or diuresis rate <0.5 mL/kg/h for two hours; renal failure, defined as serum
creatinine > 1.1 mg/dL or twice the serum creatinine value in the absence of other renal
disease; hematological disorders, such as thrombocytopenia (<100,000 mm3), disseminated
intravascular coagulation (DIC), or hemolysis; neurological or visual disturbances, such as
severe headache that does not go away with analgesics, blurred vision, diplopia, or amauro-
sis; acute pulmonary edema or cyanosis; pain in the epigastrium or right hypochondrium;
liver dysfunction, defined as transaminase levels elevated to twice the normal value; and
placental involvement with fetal symptoms such as fetal mortality, aberrant umbilical artery
Doppler readings, and intrauterine growth restriction (IGR) [40,41]. In this investigation,
the criterion for the degree of preeclampsia severity was defined as the existence of a blood
creatinine level greater than 1.1 mg/dL [39]. In addition, 43 pregnant women who were
free of ailments were classified as healthy controls (HCs) and were included in the study.

4.2. Sample Processing

Placental biopsies were taken following delivery. In every instance, the placenta was
cut into five sections to guarantee that the sample included a range of cotyledons. Then,
these fragments were placed in a sterile tube that contained 1% antibiotic/antimycotic and
Minimum Essential Medium (MEM) from ThermoFisher Scientific, Waltham, MA, USA.
All samples were refrigerated and delivered to the laboratory within two hours. A laminar
class II laminar flow hood (Telstar AV 30/70 Müller 220 V 50 MHz; Telstar SA Group,
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Terrassa, Spain) was used to process the samples in a sterile setting. Subsequently, the
MEM samples underwent immunodetection and histopathology analyses.

Placental fragments kept in the MEM were divided into pieces using conventional
procedures, and blood cells were then extracted by fixing the pieces in F13 (60% ethanol,
20% methanol, 7% polyethylene glycol, and 13% distilled water). Molds were used to
originally incorporate paraffin blocks. After the paraffin had set, 5 µm thick slices were
cut using an HM 350 S rotation microtome (Thermo Fisher Scientific, Waltham, MA, USA).
After that, the sections were placed in a hot water bath and gathered onto a glass slide that
had been coated with 10% polylysine beforehand to improve the adhesion of the incisions.

4.3. Gene Expression Determination

The target genes’ expressions were examined using quantitative reverse transcrip-
tion polymerase chain reaction (RT-qPCR). The concentration of cDNA (Thermo Fisher
Scientific) in every sample was determined. The RNA was extracted using the guanidine–
phenol–chloroform isothiocyanate method [42], and the primers that were utilized were
created using the Auto-Dimer program and the Primer-BLAST tool [43,44]. Using the
StepOnePlusTM apparatus and the relative standard curve method, we carried out qPCR.

After being diluted with nuclease-free water, 5 µL of each sample was mixed with
10 µL of the intercalating agent iQTM SYBR® Green Supermix (Bio-Rad Laboratories,
Hercules, CA, USA), 1 µL of each primer (forward and reverse), and 3 µL of well plate
DNase- and RNase-free water. The 20 µL solutions were assessed using a MicroAmp® 96-
(Applied Biosystems-Life Technologies, Foster City, CA, USA). To normalize and compare
the final data, a housekeeping gene called glyceraldehyde 3-phosphate dehydrogenase
(GAPDH; Table 2) was utilized. The data gathered for every gene were interpolated using
the standard curve. Two tests were conducted on the standard curve, three tests were
conducted on the samples, and the remaining two wells were filled with negative controls.

Table 2. Primers selected for each gene.

GENE SEQUENCE Fwd (5′ → 3′) SEQUENCE Rev (5′ → 3′) Temp

TBP TGCACAGGAGCCAAGAGTGAA CACATCACAGCTCCCCACCA 60 ◦C

ULK1 GTTCCAAACACCTCGGTCCT CGATCTCCATGGGCTTCTCC 59 ◦C

LC3 GAGTTACCTCCCGCAGCC ACCCAGAGGGACAACCCTAA 60 ◦C

NUP62 CGAGGTGGATGTCCGTCTTT GTCTGCAGCCTTGGGAAGAT 61 ◦C

STX17 CCCGGCGGGAGGTTTTT AAGTCAGTGACCAGTTGGCT 60 ◦C

LAMP1 GGCCTCTTGCGTCTGGTAAC AAAGGTACGCCTGGATGGTG 57 ◦C

ATG9A GGCTGGAGAGGAGCACATAC ACCAGCAATGACCAGGATGG 60 ◦C

ATG5 GCAACTCTGGATGGGATTGC TTGCAGCAGCGAAGTGTTTC 61 ◦C

4.4. Immunohistochemistry

The ABC (avidin–biotin complex) method was used to explore the detection of an
antigen–antibody response, with peroxidase serving as the chromogen, in accordance with
the known protocols [45,46]. The primary antibody incubation (Table 3) was conducted
overnight at 4 ◦C and was performed using a 3% BSA and PBS dilution from Abcam
(Cambridge, UK). Conversely, the secondary antibody that was diluted in PBS and coupled
to biotin was incubated for 1.5 h at room temperature.
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Table 3. Primary and secondary antibodies used in our study and their dilutions.

Antigen Species Dilution Provider Protocol Specifications

ULK1 Rabbit polyclonal 1:100 Abcam (ab203207)

10 mM sodium citrate.
pH = 6, before

incubation with
blocking solution

LC3 Rabbit monoclonal 1:150 Abcam
(ab192890) ------

NUP62 Rabbit monoclonal 1:1000 Abcam (ab207305)
EDTA, pH = 9, before

incubation with
blocking solution

STX17 Rabbit polyclonal 1:200 Abcam (ab229646) ------

LAMP1 Rabbit polyclonal 1:250 Abcam (ab24170)
EDTA, pH = 9, before

incubation with
blocking solution

ATG9A Rabbit monoclonal 1:500 Abcam
(ab108338)

100% Triton 0.1% in
PBS for 10 min before

incubation with
blocking solution

ATG5 Rabbit monoclonal 1:100 sc-133158

100% Triton 0.1% in
PBS for 10 min before

incubation with
blocking solution

IgG
(Rabbit) Mouse 1:1000

Sigma-Aldrich (Saint
Louis, MO, USA)

(RG96/B5283)
------

The chromogenic substrate diaminobenzidine (Kit DAB, SK-4100, Vector Laboratories,
Burlingame, CA, USA) was used for 60 min at room temperature (in a PBS 1:200 dilution)
after being prepared shortly before exposure (5 mL of distilled water, two drops of buffer,
four drops of DAB, and two drops of hydrogen peroxide). Within this procedure, brown
staining is conceivable. In every immunohistochemistry experiment, sections from the
same tissue were used as the negative controls. In these experiments, the primary antibody
incubation was replaced by an incubation in PBS, a blocking solution.

To count the immunopositive cells in tissue slices, five counts were randomly applied,
excluding any cells that did not pass the predetermined demarcation lines. As per the
anatomopathological criteria delineated by prior research, patients were deemed positive if
the immunoreactive score (ISR score) for each subject exceeded or was equal to 5% of the
overall test sample score [47]. An optical microscope, a Carl Zeiss Axiophot, was used to
analyze the cuts. The tissue’s immunostaining was assessed by two different histologists,
who were blinded to the outcome measure.

4.5. Statistical Analysis

The statistical analysis was conducted using GraphPad Prism® 6.0, and a Whitney U
test was run. Data are expressed using the median and the interquartile range (IQR). The
significance was assessed using p 0.05 (*), p 0.01 (**), and p 0.001 (***) values.

5. Conclusions

In the present comparative study, we explored a significantly differential expression
pattern of the macroautophagy process in the chorionic villi of placentas from women
who suffered from LO-PE. We observed marked increased gene and protein expressions of
ULK1, ATG9A, LC3, ATG5, STX-17, and LAMP-1 and a notably decreased expression of
NUP62, explaining the major induction of autophagic processes, as summarized in Figure 8.



Int. J. Mol. Sci. 2024, 25, 2029 13 of 15

Knowledge on this abnormal signaling expression contributes to the understanding of the
intricate pathophysiology of LO-PE and proposes biomarkers of analysis for the clinical
management of these patients.
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