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Abstract: Our aim was to study the association of endothelial dysfunction biomarkers with cir-
rhosis manifestations, bacterial translocation, and gut microbiota taxa. The fecal microbiome was
assessed using 16S rRNA gene sequencing. Plasma levels of nitrite, big endothelin-1, asymmetric
dimethylarginine (ADMA), presepsin, and claudin were measured as biomarkers of endothelial
dysfunction, bacterial translocation, and intestinal barrier dysfunction. An echocardiography with
simultaneous determination of blood pressure and heart rate was performed to evaluate hemo-
dynamic parameters. Presepsin, claudin 3, nitrite, and ADMA levels were higher in cirrhosis
patients than in controls. Elevated nitrite levels were associated with high levels of presepsin
and claudin 3, the development of hemodynamic circulation, hypoalbuminemia, grade 2–3 as-
cites, overt hepatic encephalopathy, high mean pulmonary artery pressure, increased abundance
of Proteobacteria and Erysipelatoclostridium, and decreased abundance of Oscillospiraceae, Subdoligran-
ulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, and Anaerovoracaceae. Elevated ADMA
levels were associated with higher Child–Pugh scores, lower serum sodium levels, hypoalbumine-
mia, grade 2–3 ascites, milder esophageal varices, overt hepatic encephalopathy, lower mean pul-
monary artery pressure, and low abundance of Erysipelotrichia and Erysipelatoclostridiaceae. High big
endothelin-1 levels were associated with high levels of presepsin and sodium, low levels of fibrinogen
and cholesterol, hypocoagulation, increased Bilophila and Coprobacillus abundances, and decreased
Alloprevotella abundance.

Keywords: dysbiosis; gut; intestinal permeability; gut–liver axis; gut–heart axis; endothelium

1. Introduction

Cirrhosis is the result of chronic liver disease, and its development significantly wors-
ens prognosis [1–5]. The pathological process of cirrhosis is not limited to the liver, but
involves other organs and tissues [1–5]. Recently, there has been increased interest in
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cirrhosis-associated gut pathology, including small intestinal bacterial overgrowth, slow-
down of intestinal motility, gut dysbiosis, and an increase in the permeability of the
epithelial barrier. Hepatologists have proposed the concept of the gut–liver axis, according
to which these intestinal disorders lead to the penetration of intestinal bacteria and their
harmful components such as lipopolysaccharide (LPS) from the contents of the intestine
into the gut wall, ascitic fluid, liver, and systemic circulation [6–10]. This process is called
bacterial translocation [6,11–14] and leads to the development of local (in the intestinal
wall, liver, and blood vessels) and systemic inflammation. The inflammatory environment
contributes to the dysfunction of the endothelium, which begins to secrete substances
that cause vasodilation (nitric oxide) and vasoconstriction (endothelin-1), and inhibits the
formation of vasodilating nitric oxide (asymmetric dimethylarginine [ADMA]) [15–18].
Dysregulated dilatation of intestinal blood vessels leads to increased splanchnic blood
flow, which, together with an increase in ADMA in the portal system resulting in increased
vascular resistance to portal blood flow, worsens portal hypertension [15–18]. This dysregu-
lated splanchnic vasodilation results in a compensatory increase in the work that the heart
carries out (hyperdynamic circulation), which further exacerbates the above-mentioned
disorders, forming a positive feedback loop [6].

Endothelial dysfunction also plays an important role in the pathogenesis of the pul-
monary effects of cirrhosis. A predominant vasodilatory effect leads to the development
of hepatopulmonary syndrome, which is caused by a decrease in the relative area of gas
exchange (the ratio of the area of gas exchange to the volume of blood flowing through
the pulmonary vessels) in excessively dilated pulmonary vessels [19–22]. In contrast, if
vasoconstriction is the predominant effect, portopulmonary hypertension may develop,
in which there is an increase in pulmonary vascular resistance and pulmonary arterial
hypertension [20–22]. Endothelial dysfunction also plays a leading role in the development
of hepatorenal syndrome, in which dysfunctional intestinal vasodilation is followed by
renal vasoconstriction [23–25].

An association of gut microbiota disorders with bacterial translocation [26], systemic
inflammation [27,28], and hyperdynamic circulation [28,29] in cirrhosis has been shown,
but the associations of gut microbiota taxa with biomarkers of endothelial dysfunction have
not been studied. Therefore, the aim of our study was to examine the association of main
endothelial dysfunction biomarkers with cirrhosis manifestations, bacterial translocation,
and the abundance of gut microbiota taxa.

2. Results

Among the 121 screened patients, 50 met the criteria and were included in the study.
Fecal 16S rRNA gene sequencing was not possible in three patients due to technical rea-
sons; these patients were excluded from the study. In total, 47 patients and 27 healthy
individuals were assessed (Figure 1). Patients and controls did not differ in age (49 [44–56]
vs. 48 [37–56] years; p = 0.372) or sex distribution (male/female: 18/29 vs. 10/17; p = 0.558).
The characteristics of patients with cirrhosis are presented in Supplementary Table S1.

Presepsin, claudin 3, nitrite, and ADMA levels were higher in patients with cirrhosis
than in controls. There was no significant difference in plasma big endothelin-1 levels
between patients with cirrhosis and controls (Table 1). The presepsin level was signif-
icantly correlated (r = 0.322; p = 0.027) with the modified dysbiosis ratio ([Bacilli (%)
+ Proteobacteria (%)]/[Clostridia (%) + Bacteroidetes (%)]) [27]. Unfortunately, the levels of
LPS in most of the samples were below the minimum threshold for detection. Therefore, it
was impossible to assess the levels of this biomarker in our study.

The levels of the biomarkers for endothelial dysfunction were not correlated with each
other. The presepsin levels correlated with the levels of nitrites and big endothelin-1 but
not with ADMA levels. Claudin 3 levels correlated with nitrite levels but not with the other
endothelial dysfunction biomarkers (Table 2).
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Table 1. Plasma levels of biomarkers in patients with cirrhosis and healthy controls.

Biomarker Cirrhosis Controls p

Nitrite, µmol/L 120 [32–161] 63 [43–106] 0.026
ADMA, ng/mL 109 [93–132] 93 [90–100] 0.006
Big endothelin-1,
nmol/mL 1.4 [0.7–3.1] 1.5 [1.0–2.0] 0.821

Claudin 3, ng/mL 11.9 [8.5–16.5] 9.3 [8.5–11.3] 0.032
Presepsin, ng/mL 0.43 [0.09–1.98] 0.12 [0.10–0.14] 0.011
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Figure 1. Simplified diagram of the role of the gut–liver axis in the progression of liver fibrosis in
chronic liver diseases.

Table 2. Correlation matrix of biomarkers for endothelial dysfunction, bacterial translocation, and
increased intestinal permeability in patients with cirrhosis.

Biomarker Nitrite ADMA Big
Endothelin-1

Presepsin Claudin 3

Nitrite - NS NS r = 0.310;
p = 0.034

r = 0.295;
p = 0.044

ADMA NS - NS NS NS

Big endothelin-1 NS NS - r = 0.313;
p = 0.039 NS

Presepsin r = 0.310;
p = 0.034 NS r = 0.313;

p = 0.039 - NS

Claudin 3 r = 0.295;
p = 0.044 NS NS NS -

NS—Not significant.

Plasma nitrite levels correlated with markers of hyperdynamic circulation (increased
end-diastolic volume, stroke volume and cardiac output, and reduced systemic vascular
resistance) and mean pulmonary artery pressure. Other biomarkers for endothelial dys-
function did not significantly correlate with the markers of hyperdynamic circulation in
cirrhosis. Serum albumin levels were inversely correlated with nitrite and ADMA levels,
fibrinogen levels were inversely correlated with big endothelin-1 levels, cholesterol levels
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were inversely correlated with nitrite and big endothelin-1 levels, and serum sodium levels
were directly correlated with big endothelin-1 levels and inversely correlated with ADMA
levels. The grade of esophageal varices was inversely related to ADMA levels. Of all the
biomarkers for endothelial dysfunction, only the plasma levels of ADMA were significantly
correlated with the severity of cirrhosis according to the Child–Pugh score. There were no
other significant correlations between endothelial dysfunction biomarkers and the main
parameters of cirrhosis (Table 3).

Table 3. Correlations of endothelial dysfunction biomarkers with parameters of systemic
hemodynamics and main indicators in patients with cirrhosis.

Nitrite ADMA Big Endothelin-1

Age NS NS NS
Body mass index NS NS NS
Child–Pugh score NS r = 0.396; p = 0.006 NS
End-diastolic volume
of the left ventricle r = 0.301; p = 0.040 NS NS

Ejection fraction of
the left ventricle NS NS NS

Stroke volume r = 0.369; p = 0.011 NS NS
Heart rate NS NS NS
Cardiac output r = 0.334; p = 0.022 NS NS
Mean blood pressure NS NS NS
Systemic vascular
resistance r = −0.330; p = 0.024 NS NS

Mean pulmonary
artery pressure r = 0.298; p = 0.042 NS NS

Esophageal varices
grade NS r = −0.414; p = 0.004 NS

Total serum protein NS NS NS
Serum albumin r = −0.289; p = 0.049 r = −0.367; p = 0.011 NS
Total serum bilirubin NS NS NS
International
normalized ratio NS NS NS

Fibrinogen NS NS r = −0.476; p = 0.001
Serum creatinine NS NS NS
Serum sodium NS r = −0.291; p = 0.047 r = 0.400; p = 0.007
Serum potassium NS NS NS
Serum glucose NS NS NS
Serum cholesterol r = −0.358; p = 0.013 NS r = −0.378; p = 0.011
Alanine
aminotransferase NS NS NS

Aspartate
aminotransferase NS NS NS

C-reactive protein NS NS NS
Splenic length NS NS NS

NS—not significant.

Patients with grade 2–3 ascites had higher nitrite and ADMA levels than patients with-
out this manifestation of cirrhosis. This was also true for overt hepatic encephalopathy and
hypoalbuminemia. Patients with grades 2–3 esophageal varices had lower ADMA levels
than patients with grades 0–1 esophageal varices. Hypocoagulation was associated with
higher levels of big endothelin-1. Patients with portopulmonary hypertension had higher
nitrite levels and lower ADMA levels than patients without this manifestation of cirrhosis.
At the same time, the presence of covert hepatic encephalopathy and hyperbilirubinemia
was not associated with any changes in the level of the studied endothelial dysfunction
biomarkers in cirrhosis (Table 4).
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Table 4. Endothelial dysfunction biomarkers and manifestations of cirrhosis.

Biomarker Manifestation Present Manifestation Absent p

Ascites
Nitrite, µmol/L 120 [30–161] 128 [73–158] 0.792
ADMA, ng/mL 109 [96–129] 111 [84–145] 0.774
Big endothelin-1, nmol/mL 1.42 [0.91–3.07] 1.23 [0.68–3.07] 0.576

Grades 2–3 ascites
Nitrite, µmol/L 149 [120–186] 92 [19–154] 0.010
ADMA, ng/mL 129 [114–159] 104 [90–120] 0.042
Big endothelin-1, nmol/ml 1.69 [1.22–3.07] 1.31 [0.68–3.07] 0.275

Grades 2–3 esophageal varices
Nitrite, µmol/L 105 [30–155] 129 [69–164] 0.462
ADMA, ng/mL 100 [84–114] 126 [107–164] 0.006
Big endothelin-1, nmol/ml 1.48 [0.75–3.07] 1.41 [0.68–3.07] 0.676

Covert hepatic encephalopathy
Nitrite, µmol/L 110 [39–150] 141 [9–168] 0.837
ADMA, ng/mL 109 [90–128] 100 [84–114] 0.550
Big endothelin-1, nmol/mL 1.45 [0.75–2.96] 0.91 [0.54–3.29] 0.426

Overt hepatic encephalopathy
Nitrite, µmol/L 179 [166–187] 114 [30–153] 0.009
ADMA, ng/mL 139 [129–170] 107 [88–124] 0.038
Big endothelin-1, nmol/mL 2.51 [1.51–4.06] 1.37 [0.70–3.02] 0.698

Hypoalbuminemia (serum albumin < 35 g/L)
Nitrite, µmol/L 149 [114–172] 60 [5–145] 0.003
ADMA, ng/mL 118 [103–151] 99 [77–123] 0.017
Big endothelin-1, nmol/mL 1.45 [1.11–3.07] 1.25 [0.68–3.07] 0.320

Hypocoagulation (international normalized ratio > 1.7)
Nitrite, µmol/L 129 [78–161] 119 [32–155] 0.581
ADMA, ng/mL 126 [100–150] 109 [88–124] 0.194
Big endothelin-1, nmol/mL 3.10 [1.41–3.84] 1.22 [0.71–2.39] 0.044

Hyperbilirubinemia (serum total bilirubin > 34 µmol/L)
Nitrite, µmol/L 121 [55–159] 119 [4–169] 0.656
ADMA, ng/mL 111 [98–139] 100 [84–129] 0.438
Big endothelin-1, nmol/mL 1.42 [091–3.07] 1.33 [0.71–3.29] 0.787

Portopulmonary hypertension (mean pulmonary artery pressure ≥ 25 mm Hg)
Nitrite, µmol/L 149 [119–172] 92 [1–151] 0.035
ADMA, ng/mL 96 [75–117] 114 [100–147] 0.048
Big endothelin-1, nmol/ml 1.8 [0.7–3.3] 1.4 [0.7–3.0] 0.504

The plasma nitrite levels were inversely correlated with values of the Chao1
(r = −0.287; p = 0.050) and ACE (r = −0.287; p = 0.050) gut microbiota biodiversity in-
dices, but not with the Shannon index (p = 0.076). The plasma ADMA and big endothelin-1
levels were not significantly correlated with these gut microbiota biodiversity indices
(p > 0.050).

Among gut microbiota taxa (Figure 2), the plasma nitrite levels were directly correlated
with the abundance of Proteobacteria, Alcaligenaceae, Comamonadaceae, Enterobacteriaceae,
Erysipelatoclostridium, and Escherichia-Shigella, and inversely correlated with the abun-
dance of Anaerovoracaceae, Brevinemataceae, Oscillospiraceae, Peptococcaceae, Rikenellaceae,
Anaerotruncus, Brevinema, Paludicola, Papillibacter, and Peptococcus. ADMA levels were
directly correlated with Lactococcus abundance and inversely correlated with the abun-
dance of Erysipelotrichia, Erysipelatoclostridiaceae, and Fournierella. Big endothelin-1 lev-
els were directly correlated with Bilophila and Sutterella abundance and inversely corre-
lated with the abundance of Alcaligenaceae, Caulobacteraceae, Achromobacter, Alloprevotella,
and Caulobacter (Table 5).
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Table 5. Significant correlations between plasma levels of endothelial dysfunction biomarkers and
gut microbiota taxa.

Direct Correlations Inverse Correlations

Taxon Rank Taxon
Correlation
Coefficient;

p-Value
Taxon Rank Taxon

Correlation
Coefficient;

p-Value

Nitrite
Phylum Proteobacteria 0.327; 0.025 Family Anaerovoracaceae −0.363; 0.012
Family Alcaligenaceae 0.298; 0.043 Family Brevinemataceae −0.324; 0.026
Family Comamonadaceae 0.317; 0.030 Family Oscillospiraceae −0.295; 0.044
Family Enterobacteriaceae 0.293; 0.046 Family Peptococcaceae −0.383; 0.008
Genus Erysipelatoclostridium 0.288; 0.049 Family Rikenellaceae −0.307; 0.036
Genus Escherichia-Shigella 0.295; 0.044 Genus Anaerotruncus −0.337; 0.021

Genus Brevinema −0.324; 0.027
Genus Paludicola −0.357; 0.014
Genus Papillibacter −0.460; 0.001
Genus Peptococcus −0.305; 0.038

ADMA
Genus Lactococcus 0.303; 0.038 Class Erysipelotrichia −0.326; 0.025

Family Erysipelatoclostridiaceae −0.295; 0.046
Genus Fournierella −0.375; 0.009

Big endothelin-1
Genus Bilophila 0.351; 0.020 Family Alcaligenaceae −0.314; 0.038
Genus Sutterella 0.362; 0.016 Family Caulobacteraceae −0.327; 0.030

Genus Achromobacter −0.299; 0.049
Genus Alloprevotella −0.324; 0.032
Genus Caulobacter −0.320; 0.030Int. J. Mol. Sci. 2024, 25, 1988 7 of 16 
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Patients with high nitrite levels (fourth quartile) had an increased abundance of
Proteobacteria and Erysipelatoclostridium and a reduced abundance of Oscillospiraceae,
Subdoligranulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, Anaerovoracaceae,
Peptococcaceae, Anaerotruncus, and Paludicola in the gut microbiota compared to those with
low nitrite levels (first quartile). Patients with high ADMA levels (fourth quartile) had
an increased abundance of Bilophila, Lactococcus, and Dielma and a reduced abundance of
Erysipelotrichia, Erysipelatoclostridiaceae, and Fournierella in the gut microbiota compared to
those with low AMDA levels (first quartile). Patients with high big endothelin-1 levels
(fourth quartile) showed an increased abundance of Bilophila and Coprobacillus and a re-
duced abundance of Alloprevotella, Pedobacter, and Sphingobacteriaceae in the gut microbiota
compared to those with low big endothelin-1 levels (first quartile) (Table 6).

Table 6. Significant differences in the relative abundance (%) of gut microbiota taxa between patients
with high (fourth quartile) and low (first quartile) levels of endothelial dysfunction biomarkers.

Taxon High Level Low Level p

Nitrate
Proteobacteria 5.22 [3.87–13.9] 1.86 [1.28–4.90] 0.019
Oscillospiraceae 1.67 [0.73–2.80] 5.56 [1.96–9.09] 0.035
Subdoligranulum 0.67 [0.00–2.32] 2.94 [1.97–4.21] 0.017
Rikenellaceae 0.24 [0.00–2.27] 2.37 [0.85–3.36] 0.040
Acidaminococcaceae 0.00 [0.00–0.27] 0.77 [0.00–1.70] 0.035
Christensenellaceae 0.00 [0.00–0.01] 0.39 [0.03–1.06] 0.017
Anaerovoracaceae 0.00 [0.00–0.02] 0.15 [0.06–0.17] 0.011
Erysipelatoclostridium 0.09 [0.03–0.96] 0.00 [0.00–0.10] 0.040
Peptococcaceae 0.00 [0.00–0.00] 0.01 [0.00–0.34] 0.043
Anaerotruncus 0.00 [0.00–0.00] 0.01 [0.00–0.09] 0.023
Paludicola 0.00 [0.00–0.00] 0.00 [0.00–0.02] 0.033

ADMA
Erysipelotrichia 0.62 [0.35–1.33] 2.20 [1.27–3.80] 0,008
Erysipelatoclostridiaceae 0.33 [0.23–0.55] 0.79 [0.26–1.73] 0.015
Bilophila 0.05 [0.01–0.11] 0.00 [0.00–0.03] 0.026
Lactococcus 0.01 [0.00–0.03] 0.00 [0.00–0.00] 0.048
Fournierella 0.00 [0.00–0.00] 0.00 [0.00–0.34] 0.016
Dielma 0.00 [0.00–0.01] 0.00 [0.00–0.00] 0.037

Big endothelin-1
Bilophila 0.08 [0.01–0.14] 0.00 [0.00–0.03] 0.041
Coprobacillus 0.02 [0.00–0.16] 0.00 [0.00–0.00] 0.045
Alloprevotella 0.00 [0.00–0.00] 0.00 [0.00–0.51] 0.023
Pedobacter 0.00 [0.00–0.00] 0.00 [0.00–0.01] 0.007
Sphingobacteriaceae 0.00 [0.00–0.00] 0.00 [0.00–0.01] 0.019

3. Discussion

The aim of our study was to investigate the missing link in the gut–liver axis by
evaluating the association of biomarkers for endothelial dysfunction with gut microbiota
taxa as well as with manifestations of cirrhosis [6].

Nitric oxide is extremely unstable and very quickly converts into nitrite ions, the
measurement of which in blood plasma can be considered a substitute for the determina-
tion of the level of this major endothelial vasodilator [30]. In our study, it was shown, as
expected, that a high nitrite level was associated with systemic vasodilation and hyperdy-
namic circulation. These pathological conditions contributed to the worsening of portal
hypertension, which resulted in the association of high blood nitrite levels with more severe
ascites. Albumin sequestration in ascitic fluid could be the cause of the association between
high nitrite levels and hypoalbuminemia. At the same time, the presence of minimal
ascites did not depend on the levels of endothelial dysfunction biomarkers, which suggests
that endothelial dysfunction may be a “second hit” in the pathogenesis of this disorder.
Increased circulating blood volume as a compensatory response to arterial vasodilation
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induced by nitric oxide leads to an increase in the amount of blood in the vessels of the
lungs and the development of pulmonary hypertension. These results are consistent with
published data [30–32].

It has previously been shown that the levels of nitrites in cirrhosis are directly cor-
related with the levels of LPS in the blood [30], which is considered to be an indicator
of bacterial translocation [33]. Unfortunately, there is no “gold standard” biomarker for
bacterial translocation [33]. LPS is a direct marker of bacterial invasion; however, it is
only present in Gram-negative bacteria, and cannot therefore be used to detect bacterial
translocation of Gram-positive bacteria. Presepsin, a fragment of the CD14 molecule which
is involved in the recognition of conserved pathological patterns in Gram-positive and
Gram-negative bacteria and their phagocytosis, may be a more suitable universal biomarker
for bacterial translocation [33]. Presepsin is formed as a result of CD14 proteolysis in the
phagolysosome and is released by phagocytes into the external environment. The treatment
of phagocytes with LPS did not lead to the formation of presepsin, in contrast to treatment
with live or dead bacterial cells. This protein is considered to be a diagnostic biomarker
for sepsis [34–38]. Therefore, presepsin can be considered as a universal biomarker for the
cellular bacterial translocation of both Gram-positive and Gram-negative bacteria, while
LPS is a biomarker for both the cellular translocation of whole living or dead Gram-negative
bacterial cells and the molecular translocation of single LPS molecules or LPS molecules
in fragments of dead Gram-negative bacteria. Presepsin has only recently begun to be
studied in patients with cirrhosis [39–43]. Our study showed a positive correlation between
presepsin levels and the severity of dysbiosis, providing further evidence of its suitability
as a biomarker for bacterial translocation.

Our study showed a direct correlation between the levels of presepsin and the levels
of nitrites and big endothelin-1, which suggests that these biomarkers of endothelial
dysfunction depend on the extent of bacterial translocation.

In addition, the levels of nitrites were directly correlated with claudin 3 levels, a
biomarker for intestinal barrier dysfunction that leads to increased intestinal permeability.
This protein is a component of the tight junctions of the intestinal epithelium, and its
level increases following endothelial damage, when the permeability of the intestinal
barrier is increased [44,45]. Zonulin, which is considered as a biomarker for increased
intestinal permeability, is a protein regulator of this permeability rather than a direct result
of this process [46–48]. Claudin 3 has previously been correlated with biomarkers of both
molecular bacterial translocation (LPS) and systemic inflammation [44]. In our study, the
level of claudin 3 was significantly correlated with the level of nitrites, but not with the
other biomarkers of endothelial dysfunction. This may be because nitric oxide production
is affected by both molecular (LPS) and cellular bacterial translocation, and the production
of big endothelin-1 is only affected by cellular bacterial translocation. ADMA levels do
not only depend on global bacterial translocation but can be determined by the effect of
individual bacterial taxa.

Among the taxa of the gut microbiota associated with high levels of nitrites, Proteobac-
teria have special significance. This phylum is mainly represented in the gut microbiota
by harmful bacteria with active LPS. An increase in the abundance of these microbes is a
typical manifestation of cirrhosis-associated gut dysbiosis [26,27,49–51]. Therefore, it can
be assumed that an increase in the number of LPS-forming Proteobacteria and an increase
in the permeability of the intestinal barrier contribute to increased nitric oxide production
in intestinal blood vessels, leading to splanchnic vasodilation and aggravation of the above
pathological processes.

The roles of other taxa of the gut microbiota were associated with an increase in the
blood nitrite level in cirrhosis in our study remain to be established.

Therefore, based on our data and that from the literature, the following simplified
scheme of disorders of the gut-endothelium-heart-liver axis in cirrhosis can be
proposed (Figure 3).
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Figure 3. Simplified scheme of disorders of the gut–endothelium–heart–liver axis in cirrhosis
according to our study and literature data.

ADMA is an endothelial-mediated inhibitor of nitric oxide formation and can be
considered an indirect vasoconstrictor [52–57]. It is thought to substantially contribute to
the narrowing of portal veins, which increases portal blood flow resistance and contributes
to the development of portal hypertension [15,18,57,58]. It has previously been shown that
the level of this biomarker in the blood increases with the severity of cirrhosis and does not
significantly correlate with the level of nitrites in decompensated cirrhosis [57–59], which
is consistent with our data. In the present study, high ADMA levels were associated with
the presence of grade 2–3 ascites, as well as with hypoalbuminemia and hyponatremia
associated with the sequestration of these substances in ascitic fluid. Interestingly, in
contrast to a previously published study [60], we observed an inverse relationship between
serum ADMA levels and the degree of esophageal varices. This can be explained by the
venoconstrictive effect of this molecule. Further studies are required to clarify this result.

ADMA was the only endothelial dysfunction biomarker that was not significantly cor-
related with either the biomarkers of bacterial translocation or the biomarkers of intestinal
barrier dysfunction. However, an inverse correlation was observed between blood ADMA
levels and the abundance of Erysipelotrichia in the gut microbiota. It is possible that the
relationship between these bacteria and this biomarker of endothelial dysfunction is not
directly related to bacterial translocation; this will need to be established by future research.

Big endothelin-1 is a more stable precursor of endothelin-1 [61], which is the main
endothelium-dependent vasoconstrictor [62–64]. High levels of endothelin-1 are associated
with the development of hepatopulmonary syndrome [65]. It is assumed that endothelin-1
stimulates the endothelium of the pulmonary vessels to intensively produce nitric oxide,
thereby providing a paradoxical vasodilating effect in this case [19,20]. There were no
patients with such a complication of cirrhosis in our study. High levels of endothelin-1 are
also associated with the development of portopulmonary hypertension in cirrhosis [66–69].
This biomarker of endothelial dysfunction was the only one not significantly elevated in
cirrhosis, possibly indicating a minor role for this molecule in the pathogenesis of this
disease. Its levels were not correlated with any of the main manifestations of cirrhosis,
with the exception of hypocoagulation. It is most likely that this correlation, as well as
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correlations with sodium and fibrinogen levels, is general and not limited to cirrhosis.
However, its level increased with the level of the cell bacterium translocation biomarker
presepsin and was associated with changes in the abundance of a number of minor taxa in
the gut microbiome. This does not allow us to rule out its participation in the gut–liver axis
in cirrhosis; further studies are required to clarify the position of this molecule. Moreover,
earlier studies showed that endothelin-1 levels are higher in cirrhotic patients than in
healthy individuals and increase with increasing severity of cirrhosis [69–73]. However,
other studies did not show a significant difference in the endothelin-1 levels between
cirrhotic patients and healthy individuals [74,75], which matches our data. Several authors,
although they found an increased level of endothelin-1 in the blood of patients with
cirrhosis, did not reveal its relationship with the severity of this disease [76]. Perhaps this is
due to the fact that the production of endothelin-1, which is reflected by the level of big
endothelin-1, did not increase significantly in cirrhosis in contrast with its conversion into
the active form. Further research with simultaneous studies of the levels of endothelin-1
and big endothelin-1 in patients with cirrhosis are required to clarify the place of this
molecule in the gut–liver axis.

The strength of our study is that it is the first to evaluate the association of various
biomarkers of endothelial dysfunction with gut microbiota taxa, a proposed biomarker of
bacterial cell translocation, and a proposed direct biomarker of intestinal barrier dysfunction
in cirrhosis. In addition, we differentially investigated the relationship between a group of
principal endothelial dysfunction biomarkers and the main manifestations of cirrhosis. The
limitation of our study is the small number of patients, which nevertheless allowed us to
obtain significant results.

4. Material and Methods
4.1. Patients

Patients with cirrhosis who presented to the Department of Hepatology’s Clinic for
Internal Diseases, Gastroenterology, and Hepatology for routine examination were screened
for participation in this observational study. The study procedures were explained to the
potential participants, and written informed consent was obtained before enrollment. The
study was approved by the Local Ethics Committee (#03-16) and performed in accordance
with the Declaration of Helsinki.

The inclusion criteria were the presence of cirrhosis, the diagnosis of which was made
based on histology or a combination of physical examination, laboratory and instrumental
data, signed written informed consent, and an age of between 18 and 70 years. The
exclusion criteria were as follows: use of drugs that could affect the composition of the gut
microbiota (lactulose, lactitol, or other prebiotics, probiotics, antibiotics, and metformin) in
the preceding six weeks; alcohol consumption in the preceding six weeks; current infection
(except spontaneous bacterial peritonitis); inflammatory bowel disease, cancer, renal failure,
or any other serious disease.

The control group consisted of 27 healthy individuals who visited the clinic for routine
health examinations during the same period.

4.2. Investigations

The day after the initial medical examination, fasting blood was collected from pa-
tients and immediately centrifuged. The plasma was separated, divided into several
aliquots, and frozen. Once all patients were recruited, aliquots were thawed and the
levels of biomarkers for endothelial dysfunction (big endothelin-1, nitrites [nitrates were
also detected by this method, but we will use the term “nitrites” to simplify the text],
and ADMA), intestinal barrier dysfunction (claudin 3 [44]), and bacterial translocation
(presepsin and LPS) were measured. Big endothelin-1 (Big-ET-1 kit; BlueGene Biotech,
Shanghai, China), ADMA (catalog no. CEB301Ge; Cloud-Clone Corp., Katy, TX, USA),
claudin 3 (catalog no. SEF293Hu; Cloud-Clone Corp.), LPS (catalog no. SEB526Ge; Cloud-
Clone Corp.), and presepsin (catalog no. S018-sCD14; Cloud-Clone Corp.) levels were
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assessed by enzyme immunoassay. Nitrite levels were examined by photometry (catalog
no. A013-2; Cloud-Clone Corp.). Assays were performed according to the manufacturers’
instructions. The blood plasma of healthy controls was examined in the same way.

Stool samples were collected from patients on the same day as blood, and immediately
frozen for 16S rRNA gene sequencing as described previously [27]. The average number of
reads per sample was 54,050, with a minimum of 6695. The number of unassigned reads
when analyzing phyla and classes of gut microbiota was less than 1%; when assessing
families, it was 3.2%; and when assessing genera, it was 14.3%.

The following day, patient systemic hemodynamics were assessed using echocardiog-
raphy with simultaneous measurement of blood pressure and heart rate by the oscillometric
method, as described previously [28].

All patients underwent a standard examination that included physical and neurologi-
cal examination, abdominal ultrasound, complete blood count, blood chemistry, coagula-
tion tests, and a number connection test for the diagnosis of covert hepatic encephalopathy.

4.3. Statistical Analysis

Statistical analysis was performed with STATISTICA 10 (StatSoft Inc., Tulsa, OK, USA)
software. The data are presented as medians [interquartile ranges]. Differences between
continuous variables were assessed with the Mann–Whitney method. Fisher’s exact test
was used to assess the differences between categorical variables. Correlations between
variables were computed using Spearman’s rank test. p-values ≤ 0.05 were considered
to be statistically significant. Significant differences are marked in bold and italics in the
tables.

5. Conclusions

Gut microbiota taxa and bacterial translocation are differently associated with
endothelial dysfunction biomarkers, which are variously associated with manifestations
of cirrhosis.
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