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Abstract: Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling
intricate genotype–phenotype association across various species. Maize (Zea mays L.), renowned
for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary
candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous
genetic loci and potential genes associated with complex traits, including responses to both abiotic
and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through
effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and
yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis
of these traits becomes paramount. This review delves into current and future prospectives aimed
at yield, quality, and environmental stress resilience in maize and also addresses the challenges
encountered during genomic selection and molecular breeding, all facilitated by the utilization of
GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics,
metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in
maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively,
these insights not only advance our understanding of the genetic mechanism regulating complex traits
but also propel the utilization of marker-assisted selection in maize molecular breeding programs,
where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the
genetic mechanism underlying complex traits in maize and enhancing breeding strategies.

Keywords: GWAS; maize; candidate genes; agronomic traits; environmental stress

1. Introduction

Maize (Zea mays L.) stands as a cornerstone in global agriculture, playing an irreplace-
able role as a fundamental staple for food, feed, and fodder. Beyond its vital contributions to
sustenance, it also holds economic significance across industries encompassing beverages,
paper, pharmaceuticals, and textiles [1–3]. However, maize confronts a diverse spectrum
of both biotic and abiotic stresses throughout its developmental stages. These challenges
encompass a range of factors including drought, salinity, thermal extremes, cold stress,
waterlogging, diseases, and nutrient in-sufficiency [4–6]. Biotic and abiotic stresses exert an
adverse impact on approximately half of the global crop yields [7]. Therefore, enhancing
productivity and biotic and abiotic resistance in maize varieties becomes a central objective,
encompassing traits such as seed germination, root and shoot development, photosynthesis,
osmotic characteristics, and cereal plant architecture through the development of new and
improved technologies followed by their adaptation and popularization. These traits are
crucial for primary growth and survival under stress conditions [8–11].
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Simultaneously, unraveling the intricate mechanisms of biotic and abiotic resistance is
essential to ensuring maize production on a global scale. Conventional breeding methods
have introduced numerous maize varieties. However, these approaches often fall short of
meeting the demand for increased yield and enhanced biotic and abiotic stresses tolerance.
In recent years, there has been a shift towards exploring diverse methodologies aimed at
understanding the intricate relationship between genotypes and multiple important traits.
Among these, quantitative trait loci (QTL) mining techniques, such as QTL mapping and
association mapping, have gained prominence [3,12]. Furthermore, association mapping
encompasses two primary categories: genome-wide association studies (GWAS) and candi-
date gene association mapping [13]. Scholars have elucidated the distinguishing features
between QTL mapping and GWAS in their studies [14,15].

However, QTL mapping encounters limitations in effectively deciphering traits con-
trolled by numerous minor-effect QTL in maize. For instance, traits such as resistance to
the fungal disease Fusarium ear rot display complexity, with linkage mapping identify-
ing only a few QTL in each study [3,15]. Additionally, the extensive and intricate maize
genome, consisting of 85% repetitive sequences, poses challenges to precise QTL mapping
and cloning [15,16]. QTL mapping is characterized by restricted allele frequency, reduced
speed, and limited resolution power [12]. In contrast, GWAS offer a more robust approach,
providing enhanced resolution, higher allelic frequencies, comprehensive genome cov-
erage, and the ability to detect numerous historical recombination events [3,14,15,17,18]
(Figure 1). GWAS have revealed genomic regions associated with numerous physiological,
agronomical, and fitness traits. These traits span a range of characteristics, such as plant
height, flowering time, kernel number, stress tolerance, and grain yield in plants [19].
GWAS is not only performed in maize but also successfully applied to investigated com-
plex traits in many plant species including Arabidopsis, rice, soybean, wheat, cotton,
sorghum, etc. [20–22]. In addition, a number of reviews have been published on GWAS in
plants [3,21,23–27]. Moreover, GWAS have identified genomic regions associated with a
number of agronomic traits, physiological, biochemical and cellular traits, and fitness traits
such as plant height, flowering time, number of kernels, abiotic and biotic stresses tolerance,
grain yield, etc. [19]. More than 20 years, an initial GWAS was performed in Arabidopsis
focused on SNPs, recombination, and LD [28,29]. In Arabidopsis, the functional gene
ACCELERATED CELL DEATH6 (ACD6) was identified thorough GWAS, indicating a
trade-off between metabolism and defense [30,31]. In 2010, the first GWAS was performed
in rice for 14 agronomic traits, in which a high-density haplotype map was created using a
skim-sequence of 517 rice lines with genotypes imputed by the algorithm k-nearest neigh-
bor (KNN) method [32,33]. Taken together, these studies provide unprecedented resources
for a better understanding of functional genomics in plants.

Maize’s extensive genetic diversity, the abundance of single nucleotide polymor-
phisms (SNPs), the decay of linkage disequilibrium (LD), and the existence of diverse
sub-populations collectively establish it as an ideal candidate for GWAS [3,15,34,35]. The
first GWAS in maize investigated genes influencing the fatty-acid content in maize kernels,
utilizing 8590 loci in 553 elite maize inbred lines [36]. Over the past decade, significant
progress has been achieved in maize GWAS. GWAS have emerged as a powerful tool
for elucidating associations between SNPs, QTL, and candidate genes associated with
complex traits in various plant species. This approach has been further strengthened by the
advancements in next-generation sequencing (NGS) technologies and releasing of the B73
reference genome [37].
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Figure 1. General difference between QTL mapping and GWAS.
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This review encompasses three critical dimensions: (i) recent advancements in maize
GWAS and their fundamental methodology, (ii) future prospects, and (iii) challenges in
functional genomics, along with the compelling questions that will shape the trajectory of
maize molecular breeding programs.

2. GWAS in Maize

GWAS, also known as genome-wide association studies, have emerged as a powerful
tool that leverages phenotypic and genotypic variations within plant species to identify
favorable alleles associated with desired traits. In the context of maize research, GWAS
haves been extensively applied to investigate the relationship between genetic markers
and phenotypic traits. The first GWAS in maize was conducted in 2008, targeting the
identification of SNPs that significantly affect the oleic acid content in kernels by utilizing
8590 loci in 553 elite inbred lines [36]. Since then, accompanied by the release of the “B73”
reference maize genome [15,16], GWAS have undergone notable advancements and have
become a common technique for uncovering genotype–phenotype relationships in maize.
It offers a powerful method of identifying the functional genomics of genes. Previous
studies have successfully identified candidate genes responsive to both biotic and abiotic
stresses in maize, providing valuable insights [3,15,18]. In addition, GWAS have enabled
the discovery of numerous putative candidate genes associated with various traits in maize,
further enhancing our understanding of its genetic architecture. GWAS allow for the fine
mapping of QTL, utilizing a diverse maize population, confronting a huge number of
historical recombination events which may result in the rapid LD decay, and the mapping
precision can reach the single-gene level [38].

GWAS in maize are characterized by the rapid LD decay due to the crop’s diverse
genotypic and phenotypic characteristics compared to other species [12]. Some genes do not
segregate independently because the two loci involved are located on the same chromosome.
Simply stated, LD, a measure of the non-random association of alleles at different loci,
can be estimated using metrics like Lewontin’s (‘D’) and coefficient of determination
(‘C’) analyses [3,39]. LD strength between two SNPs is often quantified using the ‘r2’
estimate, if r2 values are below 0.2 indicating co-inheritance and two SNPs are present
on the same QTL [14]. Lower levels of LD enable higher-resolution association mapping,
emphasizing loci significantly associated with the interested trait [15]. However, achieving
such resolution requires a larger number of molecular markers compared to situations
with higher LD. The higher probability of LD in plants also facilitates the identification of
markers associated with causal variants [38]. GWAS have been successful in identifying
genomic regions and QTL that control disease tolerance in maize, such as southern maize
rust, leaf necrosis, gibberella ear rot, fusarium ear rot, and gray leaf spot [3]. GWAS offer a
rapid method of unraveling the genetic basis of complex traits, outperforming traditional
linkage mapping in terms of resolution and cost-effectiveness [3,40]. Moreover, GWAS
have been highly successful in identifying numerous genomic regions associated with
various abiotic stressors, indicating genetic diversity for morphological and physiological
characteristics across diverse maize populations [41,42]. Maize, with its abundant marker
density and high-density genotyping technologies, is an ideal cereal crop for GWAS. This
method has recently emerged as a critical approach for studying natural variation and
mapping quantitative traits, enabling the detailed exploration of genetic architecture in
maize. Utilizing high-resolution genotyping technologies such as the IlluminaTM 9 k
SNP chip, GWAS have the potential to uncover novel alleles that enhance production and
adaptability in maize [14,43].

3. The Basic GWAS Approach

GWAS serve the purpose of identifying associations between genotypes and target
traits. It has emerged as a powerful alternative to conventional QTL mapping for pin-
pointing the genetic loci underlying traits with a high resolution [44,45]. The Basic GWAS
Approach is shown in Figure 2; when genotypes and phenotypes are obtained, GWAS anal-
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ysis can be performed, in addition, to improve the mapping power, and several statistical
methods in GWAS have been employed with the corresponding software Tassel version 5.0.

The standard MLM is less effective for large datasets with hundreds of individuals
due to computational overhead required for numerical optimization [3]. These models
are typically designed for single-locus testing, but effective multi-locus mixed models
have also been developed for GWAS [46]. While SNP-based GWAS are widely used,
they can suffer from weak signals within related SNP sets and overlook SNP interactions
within a gene [47]. To address these issues, haplotype-based GWAS and gene-based
GWAS have been introduced, offering high statistical power to identify causal haplotypes
and uncover new candidates for complex traits, especially for rare alleles [48]. These
statistical methods generally assume that phenotypes and noticeable effects follow a normal
distribution. For complex traits, fine mapping association methods based on statistics have
been developed [49]. The Anderson–Darling test is particularly useful for identifying loci
with modest effects and rare variants that exhibit aberrant distribution of phenotypes. It
offers a balanced approach in terms of false positives and statistical power when compared
to mixed models [50]. GWAS have proven successful in identifying common disease
variants and revealing new sensitivity loci for various complex diseases, shedding light
on their unknown functions. While initial concerns arose regarding the small effect sizes
of GWAS loci and their partial explanation of missing heritability [51], these limitations
are minimal, especially when large and diverse populations are used. There seems to
be a sample-size threshold at which the discovery rate in GWAS accelerates for each
complex trait. Larger populations and more SNPs increase the likelihood of successful
discoveries [52,53].

On the other hand, the most challenging situations arise when identifying genes
associated with phenotypic variation in traits with high genetic complexity and low her-
itability. This occurs when phenotypic variation is influenced by environmental factors,
and the genetic basis of the complex trait involves numerous genes, each making a small
contribution to the genetic variance of the trait [53]. It is important to note that the value
of biological understanding gained through GWAS is not solely tied to the strength of
association, which underscores the need for identifying minor associations in larger sample
sizes [48]. Various methods exist for genotyping genetic variants, with whole-genome
sequencing (WGS) and SNP arrays being the most common. While SNP arrays are less
expensive and offer precision and a well-established analysis process, WGS, despite being
costlier and less accurate, can detect rare variations effectively, especially with large sample
sizes. Imputation from sequencing data to SNP array data can be highly reliable with a
large sample size [54].

In summary, both WGS and SNP arrays continue to be effective methods, and the
choice between them depends on factors such as cost, precision, and research goals. Cur-
rently, WGS offers greater potential for resolving limitations and explaining missing heri-
tability, especially with advances in genotyping technologies [48,55]. In addition, missing
heritability in GWAS defines a significant issue in the genetic analysis of complex traits and
identifies the causal genetic variants and quantifies their individual contribution [56,57].
The missing heritability can be estimated through genetic studies because of the use of
fast-developing genomics for better understanding biological problems and crop breed-
ing [57,58]. Recently, graph pangenome was used for GWAS to capture missing heritability
in tomato breeding in order to understanding the heritability of complex traits and showed
the power of graph pangenome in crop breeding [57]. GWAS are frequently using WGS
and whole exome sequencing (WES) to enable the identification of rare variants, which
could explain the missing heritability in complex traits [59]. These strategies can be con-
sidered to address the challenges of missing heritability through the utilization of GWAS,
but the strategy depends on the interested trait and its adaptive scale. Additionally, two
independent methods were developed: PEPIS for multiple hybrid populations (MHPs) cor-
responded with compressed mixed linear model (CMLM) to discover candidate genes and
QTNs for maize in GWAS [60]. Moreover, GWAS was conducted using a maize heterosis
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population for genetic variation among populations, and three models were implemented,
namely, GLM, MLM, and FarmCPU [61], and an additive genetic model was used for per
se trials, whereas dominant models were used for test cross trials. Nevertheless, additional
algorithms in the R program GAPIT were used to performed GWAS for each model [62–64].
Indeed, mixed models have become a standard approach for analyzing large datasets,
utilizing both phenotypic and genotypic data to improve the resolution power of GWAS.
However, it is important to note that these approaches may render the earlier methods
computationally unfeasible due to increased complexity. Consequently, there is a need for
the development of new statistical methods that are both statistically robust and computa-
tionally efficient to overcome these challenges. The general approach and various methods
can be applied to a wide range of GWAS analyses.
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(3) Genotyping. (4) Statistical models. (5) Identification of significant SNPs. (6) Functional analysis of
candidate genes associated with phenotyping.

4. Factors Affecting the Accuracy and Statistical Power of GWAS

GWAS possess a remarkable ability to uncover precise associations between genetic
markers and phenotypic traits. However, the effectiveness of GWAS is influenced by
various factors, particularly when it is applied to specific target traits. A key determinant
in this regard is the extent of phenotypic trait variance within the natural population. The
power of GWAS is closely linked to its resolution, as a higher resolution enhances the
accuracy of identifying candidate genes associated with a particular trait. Notably, it also
aids in the discovery of novel genes associated with the trait of interest [65]. In the realm
of maize genetics, GWAS has played a pivotal role in identifying thousands of candidate
genes linked to important traits. However, the challenge lies in understanding how much
phenotypic variance can be attributed to the variations in two alleles, and this often hinges
on the magnitude of their influence and their frequency differences within the sample.
It is worth noting that GWAS face impediments in the form of rare variants and small
effect sizes when attempting to elucidate these associations [37]. In Figure 3, we delve into
four crucial factors that significantly impact the accuracy and power of GWAS, as detailed
below [14]:

(1) Phenotypic variation in a population: Phenotypic variation plays a pivotal role in
the association analysis, with the removal of outliers having a relatively minor impact. To
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facilitate further analysis, it is essential to filter raw phenotypic data to eliminate outliers
and noisy data points. The use of a boxplot can help identify and assess the relevance of
outliers within the phenotypic data. It is worth noting that retaining extreme outliers may
deviate the phenotypic data from a normal distribution, potentially limiting the scope of
GWAS. Additionally, for effective GWAS, it is advisable to employ traits with moderate-
to-high heritability estimates (for phenotypic data filtration). High heritability serves as
a reliable indicator of the extent to how much genetic variation influences phenotypes,
thus establishing a strong connection between genotype and phenotype. In contrast, low
broad-sense heritability is a limiting factor that diminishes the power of GWAS and the
ability to detect associations. Genotype–environment interactions may reduce heritability
of a trait when genotypes are tested across diverse locations or years, but various methods,
such as the best linear unbiased predictor (BLUP) and best linear unbiased estimator
(BLUE), can be employed to modify phenotypic data scored across different locations or
years, thereby providing more accurate estimates of phenotypic values while considering
genotype–environment interactions [15].

(2) Population size: The population size is a fundamental determinant in GWAS,
affecting both phenotypic and genotypic variance. Increasing the population size enhances
the power to identify significant associations, especially those with substantial effects and
reasonable frequencies within the population, thereby overcoming rare variants, which
are those with low allele frequencies. Conversely, a smaller population size of individuals
is a disadvantage that diminished the power of GWAS [66,67]. Careful selection of indi-
viduals based on expected phenotypic and genotypic variation, and considering genetic
background factors such as environmental regions, biological status, growth habits, or other
relevant traits can help mitigate this limitation. In general, a larger population size, ideally
ranging from 100 to 500 individuals, is recommended for optimal GWAS outcomes [15].

(3) Population structure: Population structure is a statistical approach used to calcu-
late the relatedness correlation among individuals within a population, taking into account
factors such as admixture and historical structure. It is crucial to carefully consider popula-
tion structure during the analysis and interpreting of GWAS results. Researchers typically
select populations for GWAS based on factors like growth habit, geography, etc., which can
generate the population structure. This, in turn, leads to a specific genetic variant and can
influence the final results of the association analysis. The main fundamental limitation of
GWAS lies in the fact that not all individuals within a population are genetically equally
distinct from each other. Ignoring this to account for population structure can result in a
spurious association between the genotype and interested traits. Therefore, it is essential to
incorporate robust statistical methods to control for the population structure in order to
obtain accurate and meaningful results from GWAS. Employing a mixed-effect model that
accounts for population structure can alleviate this issue [66]. Software like STRUCTURE
V2.3.4 assists in defining the population structure, calculating the proportion clusters (Q
matrix), and estimating individual sub-population membership using genotype multi-locus
data. Most of the past research employed both methods, STRUCTURE and Principal Com-
ponent Analysis (PCA), to derive their results [14,35,68]. PCA offers another method for
estimating the population structure efficiently, often outperforming STRUCTURE methods
at the time of calculation [13].

(4) Linkage disequilibrium (LD): LD refers to the non-random association of alleles
at different loci, a crucial factor for association mapping studies [39,69,70]. High LD values
indicate that fewer markers are required to cover the genome, while calculating LD at the
outset of association studies is crucial to avoid false associations [71]. Various statistics,
including r2 and D’, are used to measure LD [13]. Moreover, the LD decay rate across the
distances is crucial for determining the number of markers in GWAS. Self-pollinated crops
typically display a larger LD decay compared to cross-pollinated crops, necessitating fewer
markers to cover the entire genome [72]. Structural analysis of LD can serve as an initial
step in designing GWAS investigations.
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5. GWAS on Agronomic, Quality, and Quantitative Traits in Maize

GWAS have become a powerful tool for unraveling the intricate genetic architecture of
complex traits in maize, shedding light on the presence of QTL and identifying candidate
genes responsible for these traits [73]. Specifically, GWAS have played a pivotal role
in elucidating the connections between SNPs and quality traits, thereby deepening our
comprehension of the genetic basis of these characteristics [74]. The emergence of next-
generation sequencing (NGS) has catapulted GWAS to the forefront of maize genetics
research, marking a significant milestone in the field [75]. Over the past decade, substantial
strides have been taken in this domain. For instance, a seminal study identified a total
of 74 loci associated with oil biosynthesis and fatty acids in maize kernels. This research
attributed more than 10% of the variability in kernel oil concentration to various genes [76].
Furthermore, maize research has identified 29 candidate genes and 49 SNPs linked to
grain quality, with these grain-related traits demonstrating a notably high broad-sense
heritability [75]. In another groundbreaking study, researchers successfully mapped more
than 40 QTL, unveiling a multitude of QTL with small effects. These QTL were discovered
under a straightforward additive model, enabling the prediction of flowering time in
maize. This remarkable achievement was accomplished using a vast population of five
thousand individuals nested within an association mapping framework [77]. In yet another
significant investigation, researchers delved into associated loci that elucidated over 20%
of the observed variance in secondary metabolism traits. These traits exhibited a median
effect size of 7.8% in maize kernels, underscoring the substantial impact of these loci on
maize genetics [78].

Similarly, 59 SNPs were identified to elucidate the genetic basis of maize yield-related
traits, including grain yield per plant, grain width, grain length, 100-kernel weight, number
of kernels per row, and tassel branch number [79]. Zheng and colleagues identified 49 SNPs
and 29 candidate genes related to kernel quality in maize through GWAS [75]. Likewise,
GWAS were conducted to explore the genetic basis of kernel-related traits, detecting a total
of 139 SNPs and 15 genes enriched in regulating oxidoreductase activity, leaf senescence,
and peroxidase activity [80]. Moreover, 46 SNPs that exhibited significant associations
with zinc and iron contents in maize kernels were unveiled [39], shedding light on the
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genetic factors influencing these essential micronutrients. For forage quality traits such as
acid detergent fiber, neutral detergent fiber, and in vitro dry matter digestibility in diverse
maize, 73, 41, and 82 SNPs were found to be associated, respectively [81]. Additionally, 18,
22, and 24 SNPs significantly linked to cellulose, hemicellulose, and lignin in maize were
uncovered [15], enriching our understanding of the genetic basis of cell wall composition
in this crop. These studies also unveiled candidate genes involved in various biological
pathways, including cell wall metabolism and protein kinases [82]. In a recent study [83],
the authors identified a total of 48 SNPs and 37 candidate genes associated with starch
pasting properties and maize kernel quality traits, further expanding our knowledge of
maize kernel traits. The continued growth of GWAS indicates its increasing significance in
maize genetic research, emerging as a pivotal tool for unraveling the genetic mechanisms
governing agronomic traits and key phenotypes [3,84,85]. To date, GWAS has explored a
wide array of traits, spanning molecular, cellular, agronomic, quality, and quantitative traits,
while also considering interactions with biotic and abiotic factors. These research endeavors
have culminated in the identification of numerous candidate genes associated with various
maize traits. Future studies should prioritize the functional validation of candidate genes
and field evaluations of germplasm harboring causal or associated SNPs and genes. These
efforts hold promise for generating abiotic stress-resistant maize genotypes with high-yield
characteristics, contributing to the advancement of maize agriculture.

6. Factors Affecting Maize Production

Maize stands as one of the foremost cereal crops, with grain yield emerging as a critical
composite trait vulnerable to an array of environmental factors. These factors, comprising
both biotic and abiotic stresses, pose a significant threat to maize cultivation [42,48,86].
Plants have developed intricate molecular pathways to contend with these environmental
challenges. In recent years, the constantly shifting climate conditions have led to an escala-
tion in the frequency and intensity of extreme weather events, resulting in substantial crop
losses. In parallel, the global expansion of trade has facilitated the spread of disease-causing
pathogens to new regions, where they adapt, giving rise to persistent outbreaks [87]. Simul-
taneously, insect pests and pathogenic diseases can assail maize at various stages of growth,
affecting both grain yield and quality. Researchers have conducted numerous studies, exten-
sively exploring these biotic stresses in the field [88–91]. Abiotic stresses, on the other hand,
encompass adverse environmental conditions such as drought, heat, chilling, flooding, and
salinity [92–97]. These stresses not only hinder plant growth and development but also
impact nutritional composition, ultimately influencing maize grain quality. Recognizing
and evaluating a plant’s ability to withstand both biotic and abiotic stress is a pivotal step
towards enhancing maize productivity [81]. In maize, the genotypic diversity regarding
stress tolerance can be assessed through appropriate screening processes, alongside the
identification of traits correlated with stress resilience [98]. Hence, screening for stress
resistance has relied on potential traits, including plant height, anthesis–silking interval,
ear height, and grain yield components under stress conditions. Furthermore, certain
characteristics exhibit strong heredity and high relevance to stress tolerance, such as brace
roots for water stress, stay-green traits, tassel sterility, silk balling, and tassel blast, which
are affected by heat stress [15]. These traits hold promise for identifying stress-tolerant
maize varieties in future molecular breeding programs.

Understanding the molecular mechanisms governing plant stress responses is pivotal
in developing climate-resilient maize varieties [99]. GWAS have proven invaluable in eluci-
dating the intricate genetic architecture, susceptibility loci, and candidate genes involved
in both biotic and abiotic stress pathways. In the following sections, we will delve into
select studies that employ GWAS to unravel the genetic underpinnings of biotic and abiotic
stress resilience in maize, as conducted by other researchers. Biotic stress, typically induced
by diseases or insect pests, ranks among the primary contributors to maize yield losses.
Several diseases have been identified in maize, including turcicum leaf blight, maize rough
dwarf disease, ear rot, aflatoxin contamination, and sugarcane mosaic disease.
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In addition to the biotic stresses mentioned earlier, maize cultivation faces threats
from various pests, including stem borers, rootworm, pink borer, shoot fly, storage pests
like weevils, and termites [100,101]. Addressing these challenges is essential to safeguard
maize production. Initially, researchers utilized nested association mapping populations
to identify 32 QTL with subtle additive effects on southern leaf blight resistance in maize.
Notably, many of these QTL were found to be located near or within genes previously
implicated in plant disease resistance [102]. The use of GWAS has enabled the creation
of molecular markers, facilitating the indirect selection of traits such as resistance to corn
earworm, which is otherwise challenging to achieve through conventional breeding pro-
grams [103]. Moreover, GWAS employing gene-set enrichment approaches have been
instrumental in identifying groups of genes that collectively contribute to resistance. For
example, 4 loci and 16 candidate genes were discovered through GWAS in maize ker-
nels, conferring resistance to Aspergillus flavus fungal disease in grains [104]. Another
GWAS identified 14 SNPs associated with resistance to northern corn leaf blight caused
by Exserohilum turcicum [105]. GWAS have been instrumental in pinpointing genomic
loci and allelic variants that govern resistance to maize lethal necrosis [106]. Certain maize
lines, such as dent and flint, inherently resist gibberella ear rot, a fungal disease caused by
Gibberella pathogens [107]. A GWAS conducted by [108] identified the major QTL qRtsc8-1,
accounting for a substantial portion of the observed variation in tar spot resistance (18%
to 43%). In another study [109], the authors utilized GWAS to identify 22 SNPs and two
candidate genes linked to resistance against maize rough dwarf disease.

These findings have shed light on candidate genes encoding proteins and enzymes
involved in signal transduction, stress response, and various aspects of transcriptional and
post-transcriptional control of cell component synthesis. They hold significant promise for
molecular breeding in maize to enhance disease resistance and advance our understanding
of the genetic basis of resistance in maize. Similarly, abiotic stresses exert a considerable
impact on maize growth and yield, especially in the context of ongoing climate change.
Maize’s tolerance to abiotic stressors like drought, heat, salt, cold, and water submersion
has been investigated extensively through GWAS. This approach has offered insights
into potential SNPs and candidate genes for enhancing maize yield. For instance, the
gene ZmVPP1, encoding vascular pyrophosphatase, has been found to improve drought
tolerance in maize seedlings [110], and GWAS have identified ten loci associated with
metabolites linked to drought tolerance [85].

In the context of cold stress, genes like ZmACA1, ZmDREB2A, ZmERF3, and Zm-
COI6.1 have been identified in maize [111]. GWAS have also uncovered 24 ZmFKBP genes
involved in multiple signaling pathways during stress [112], as well as ZmPP2C2 and
ZmMKK4 [113,114]. Low-phosphorus-responsive genes have been identified in maize
seedlings through GWAS, along with 259 genes associated with phosphorus stress toler-
ance [115]. Additionally, four QTL and candidate genes have been linked to thermotoler-
ance in maize seeds [116], and Zm00001eb198930 has been identified as responsive to high
salt tolerance [117]. Chilling stress has also been a focus of GWAS, with the authors of [118]
identifying 19 genes highly associated with early growth and chlorophyll fluorescence
traits under chilling stress in field conditions. A recent study [119] highlighted three genes
associated with chilling tolerance during maize germination. While GWAS have proven
valuable in uncovering genetic factors related to stress tolerance, it is important to note that
environmental factors play a significant role in gene expression. Thus, the results of GWAS
should be validated under field conditions to account for the influence of shifting environ-
mental factors. Field phenotyping can be challenging due to stress heterogeneity, varying
plant responses, and simultaneous stress effects. Furthermore, GWAS have successfully
identified several candidate genes associated with common abiotic and biotic stressors in
maize, thereby revealing the genetic basis. For instance, a GWAS conducted under field
conditions identified eight SNPs and favorable alleles associated with kernel moisture
content in maize [120]. Additionally, GWAS were carried out to elucidate the genetic basis
of various phenotypic traits at the sequence level in maize under field conditions [81,121].
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Thousands of genomic regions associated with agronomical traits have been identified
through the application of GWAS under both biotic and abiotic stress conditions in maize,
conducted in both controlled environments and field conditions [15]. In some cases, GWAS
may not yield the expected number of linked SNPs, which could be due to limited genetic
variation in the population or limitations in sequencing technology resolution. In such in-
stances, WGS may be the preferred approach. In conclusion, GWAS have been instrumental
in identifying candidate genes and SNPs related to various stress resistances in maize, both
biotic and abiotic. These findings hold promise for the development of stress-tolerant maize
cultivars through molecular breeding and provide valuable insights into the underlying
molecular mechanisms.

7. Identification of SNPs, QTL, and Candidate Genes for Trait Improvement

In recent decades, an extensive body of research has been dedicated to conducting
GWAS to pinpoint QTL, SNPs, and candidate genes associated with complex targe traits,
not only in maize but also in various other crops [122–124], which offer valuable insights
for trait improvement. GWAS have identified thousands of genomic regions linked to
various agronomic traits in plants, which are needed for the functional validation of al-
lelic variants, and many GWAS on different plants, including Arabidopsis, rice, wheat,
maize, soybean, etc., are reviewed [19,122,125–127]. Moreover, GWAS is being carried out
not only on cereal crops but also on a wide range of crops, including cotton [128–130],
tomato [131–133], sesame [45], peanut [134], lettuce [135], and peach [136]. Collectively,
these studies combined with a purpose-developed population, database of allelic variation,
and genotype–phenotype association offer resources for comprehending crops’ functional
genomics, in addition to confirming previously validated trait association and also hap-
lotypes. Here, we highlight key publications from 2018 to 2023 that have contributed to
GWAS in maize (Table 1). For instance, the first candidate gene identified by GWAS, fatty
acid desaturase 2 (fad2), revealed that changes in oleic acid content in maize grains result
from allelic variations within the fad2 gene’s 5’ untranslated region [15,36]. Furthermore,
GWAS has associated three candidate genes, ACP, COPII, and LACS, with oil content in
maize kernels, along with four other genes [76].

Crucial maize plant architecture traits, such as plant height, ear height, leaf length, number
of tassel branches, main axis length, and root architecture, significantly impact kernel yield.
Recent studies have identified 189 candidate genes and 63 loci associated with root architecture
in maize [137]. Additionally, two candidate genes, Zm00001d018617 and Zm00001d02365,
encoding gibberellin 2 oxidase and auxin factor 2, have been linked to plant height and the
optimization of maize-stalk characteristics for improved biofuel production [138].

In the context of nutrient content, several SNPs, including S3_40522792, S2_1926586,
S9_151265550, S3_186200393, S4_161165956, and S4_167189737, have been validated and
associated with kernel zinc and iron content in maize [39,139,140]. GWAS have also
revealed 32 SNPs significantly associated with maize lethal necrosis [141] and 44 SNP
markers linked to hypersensitive defense reactions in maize [142]. Furthermore, the gene
Zmm22 has been implicated in vegetative growth, stalk diameter, and plant height [35], and
it also plays a role in flowering time and reproductive transition in maize [143]. Another
study integrated GWAS and co-expression analysis, identifying two genes, Zm00001d002266
and Zm00001d049584, that regulate seedling root length in response to drought stress in
maize [144].

Similarly, integrating GWAS and RNA-seq data, two candidate genes, Zm00001d04319
and Zm00001d039219, have been associated with cold-stress responses during maize ger-
mination [145]. Additionally, 46 SNPs and 29 genes have been linked to grain-quality
traits through GWAS [75]. Recent research has unveiled 27 candidate genes significantly
involved in husk senescence, with key functions in husk senescence, husk morphogenesis,
and responses to abiotic stress [146]. Collectively, a plethora of genes have been identified
through QTL and GWAS analyses in various maize populations [147], facilitating gene
cloning via diverse approaches.
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Table 1. GWAS-based identified SNPs/QTL candidate genes that contribute to maize improvement.

Phenotypes Traits Population Sample
Size SNPs/QTL/Genes Chromosomal

Location References

Ear traits (ear length,
diameter, kernel length and

width, cob diameter)

Inbred association
population 292 20 SNPs 1, 2, 3, 4, 5, 6, 7, 8,

9, and 10 [124]

Corn earworm resistance Diverse inbreed lines 287 51 SNPs 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [103]

Root architecture traits Diverse inbred lines 300 19 SNPs 1, 2, 5, 7, and 8 [103,148]

Gray leaf spot resistance Diverse inbred lines 157 7 SNPs 1, 2, 3, 4, 5, 6, 7,
and 10 [149]

Leaf angle and leaf orientation diverse inbred lines 80 33 SNPs 1, 3, 4, 5, 6, 7, and 9 [150]
Male inflorescence

morphology
Nested association

mapping population 942 242 SNPs 1, 4, and 6 [151]

Starch pasting properties Diverse inbred lines 230 60 QTNs 1, 2, 3, 4, 5, 6, 7,
and 8 [152]

Tocopherol content Diverse inbred lines 208 32 SNPs and 4
candidate genes

Multiple
chromosomes [153]

Stalk lodging resistance Diverse inbred lines 257 423 QTNs and 63
candidate genes 1, 2, 3, 5, 6, 8, and 9 [154]

Southern corn rust resistance Diverse inbred lines 253 7 SNPs 4, 8, and 10 [155]
Corn ear rot resistance Diverse inbred lines 242 5 candidate genes 5, 7, and 10 [156]

Ear rot resistance Diverse inbred lines 244 8 candidate genes 1, 2, 3, 5, 7, and 9 [107]
Fumonisin accumulation in

kernels Diverse inbred lines 270 39 SNPs/17 QTL 3 and 4 [157]

Stalk anatomy and stalk
biomass Diverse inbred lines 492 16 candidate genes Multiple

chromosomes [35]

Plant architecture (plant
height, leaf length and width

and leaf angle
Diverse inbred lines 87 36 QTL [158]

13 seedling traits under low
phosphorus stress Diverse inbred lines 356 551 SNPs 1, 2, 3, 4, 5, 6, 7, 8,

9, and 10 [159]

Plant height Maize hybrids 300 9 SNPs and 2
candidate genes 1, 2, 4, 7, 9, and 10 [138]

Tassel architecture Association panel 359 55 candidate
genes/19 QTL

1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [160]

Popping expansion Diverse inbred lines 183 4 SNPs [161]
maize lethal necrosis (MLN)
and Maize chlorotic mottle

virus (MCMV)

Three double-haploid
populations 965 54 SNPs and 40

QTL
1, 2, 3, 4, 5, 6, 7, 8,

and 9 [162]

Goss’s wilt NAM population 515 10 SNPs and 8
candidate genes [163]

Salt tolerance Diverse inbred lines 150 7 SNPs and 8
candidate genes 1, 3, and 6 [164]

Drought tolerance Diverse inbred lines 210 26 QTL promising
candidate genes 1, 2, 5, 8, and 10 3 [165]

Thermos tolerance of seed Diverse inbred lines 261
4 QTL, 17

candidate genes
and 42 SNPs

1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [116]

Grain yield and flowering
time

Inbred association
panel 300 1549 SNPs and 46

candidate genes 1, 2, 4, 5, 8, and 10 [166]

Husk tightness Diverse inbred lines 508 27 candidate genes 1, 2, 3, 5, 6, 7, 8,
and 10 [146]

Kernal row number Diverse inbred lines 639 49 candidate genes
and 1, 2, 3, 5, 9, and 10 [167]

Agronomic traits Inbred lines 513 3 SNPs 4, and 3 [168]

Striga resistance White maize inbred
lines 132 24 SNPs 1, 3, 4, 5, 7, 8, 9,

and 10 [169]

Maize leaf necrosis resistance Diverse inbred lines 1400 32 SNPs and 9
candidate genes 1, 3, 4, 7, 9, and 10 [141]
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Table 1. Cont.

Phenotypes Traits Population Sample
Size SNPs/QTL/Genes Chromosomal

Location References

Low nitrogen tolerance Diverse hybrid lines 49 7 candidate genes Multiple
chromosomes [170]

Agronomic traits Inbred association
lines 224 97 candidate genes

and 73573 eQTL
1, 2, 3, 4, 5, 6, 7, 8,

9, and 10 [171]

Seminal root length Inbred association
lines 209 7 candidate genes - [144]

Low temperature Diverse inbred lines 222 30 SNPs and 82
candidate genes

Multiple
chromosomes [145]

Leaf cuticular conductance Diverse inbred lines 468 9 SNPs and 7
candidate genes 1, 4, 7, 8, and 10 [172]

Yield related traits Double haploid
population 250

138 SNPs, 100 QTL,
and 52 candidate

genes

1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [173]

Root architecture system Diverse inbred lines 380 87 SNPs and 77
candidate genes

Multiple
chromosomes [174]

Fusarium verticillioides
resistance

Maize association
population 230 42 SNPs and 25

candidate genes
1, 2, 3, 4, 5, 6, 7, 8,

9, and 10 [175]

Corn leaf blight Association mapping
panel 419 22 SNPs 1, 6, 7, 8, 10 [176]

Aspergillus flavus resistance
in kernels Diverse inbred lines 313 4 SNPs and 16

candidate genes 1, 2, 8, and 9 [104]

Fusarium ear rot resistance Diverse inbred lines 508 34 SNPs - [177]
Gray leaf spot resistance Diverse inbred lines 410 22 SNPs 1, 2, 6, 7, and 8 [178]

Agronomic traits Elite inbred lines 350 129 SNPs 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [179]

Aboveground dry matter Diverse inbred lines 412 129 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [84]

Stover yield MAGIC population 408 13 SNPs - [180]
Root architecture traits RILs population 179 8 SNPs 1, 2, 4, and 10 [181]

Grain quality traits Diverse inbred lines 248 49 SNPs and 29
candidate genes

1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [75]

Root hair length Diverse inbred lines 281 11 1, 2, 4, 5, 6, and 10 [182]

Cold tolerance Diverse inbred lines 80 4 SNPs and 12
QTL, 1 gene 3 [183]

Heavy metal stress Double haploid lines 187 15 QTL and 4
genes 1, 2, 4, 7, and 10 [184]

Heat tolerance Double haploid lines 662 46 SNPs 1, 2, 3, 6, 7, and 8 [185]

Cadmium toxicity Diverse inbred lines 513 12 SNPs and 1
candidate genes 2 [186]

Seedling germination traits MAGIC population 420 28 SNPs 2, 4, 5, 6, 7, 8, and 9 [187]

Grain yield and related traits Inbred association
panel 309 22 SNPs - [188]

Accumulation of
micronutrients (Fe, Zn, Cu,

Mn)
Diverse inbred lines 305 36 SNPs and 11

candidate genes 2, 3, 4, 6, and 8 [189]

Salt tolerance Inbred association
panel 305 120 candidate

genes - [73]

Kernel moisture and
dehydration rate Diverse inbred lines 132 334 QTNs 2, 3, 4, 5, 8, and 9 [190]

Root traits Diverse inbred lines 319 559 SNPs Multiple
chromosomes [191]

Leaf angel Diverse inbred lines 285 96 SNPs 1, 2, 3, 4, 5, 6, 7, 9,
and 10 [192]

Root system architecture Diverse inbred lines 421 63 SNPs and 189
candidate genes

1, 2, 3, 4, 5, 6, 7, 9,
and 10 [137]

Grain yield quality traits Association mapping
population 410 42 SNPs 1, 2, 3, 4, 5, 6, 7, 8,

9, and 10 [193]
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Table 1. Cont.

Phenotypes Traits Population Sample
Size SNPs/QTL/Genes Chromosomal

Location References

Yield related traits Diverse inbred lines 291 59 SNPs and 66
candidate genes

1, 2, 3, 4, 6, 7, 8, 9,
and 10 [79]

Grain yield and other traits Diverse inbred lines 169 40 SNPs and 6
candidate genes 1, 2, 8, and 10 [194]

Metaxylem vessel brace roots Association mapping
panel 508 9 SNPs and 5

candidate genes 2, 4, 7, 8, and 10 [195]

Brace root Association mapping
panel 508 6SNPs and 27

candidate genes 3, 4, 5, 8, 9, and 10 [196]

Kernal related traits Association panel 205 139 SNPs and 15
candidate genes 1, 2, 3, 5, 6, 7, and 9 [80]

Seed germination traits Diverse inbred lines 321 58 SNPs 1, 4, 5, 6, 8, 9, and
10 [197]

Stalk lodging resistance Diverse inbred lines 248 85 SNPs 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [198]

Drought and heat resistance Diverse inbred lines 162 117 SNPs and 20
candidate genes 1, 2, 5, and 7 [199]

Heat resistance Diverse inbred lines 375 14 SNPs 1, 2, 4, 5, and 9 [200]
Rough dwarf disease

resistance Diverse inbred lines 292 22 SNPs 1, 3, 4, 7, and 8 [109]

Alkaline stress resistance Association panel 200 9 SNPs 3, 4, 5, 6, and 9 [201]
Stalk sugar content and

agronomic traits Diverse inbred lines 188 92 SNPs 1, 3, 4, 6, 7, 8, and
10 [202]

Quality traits and starch
pasting Diverse inbred lines 292 48 SNPs 37

candidate genes
1, 3, 4, 5, 6, 7, 8, 9,

and 10 [83]

Chlorophyll content Diverse inbred lines 378 19 SNPs 2, 4, 5, 6, and 10 [203]

Chlorophyll content Diverse inbred lines 290 140 QTNs and 11
key genes - [204]

Ear diameter Multiple parent
population 162 11 SNPs and 3 QTL 1, 2, 3, 6, 8, and 9 [205]

Stalk strength Diverse inbred lines 345 94 QTL and 241
SNPs

1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [206]

Chilling tolerant Diverse inbred lines 190 26 SNPs and 37
candidate genes 4, 6, 8, and 9 [119]

Striga resistance Diverse inbred lines 141 22 SNPs 1, 3, 4, 5, 6, 7, 8, 9,
and 10 [123]

Root hair length Association panel 200 88 QTL 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10 [207]

Total root length Diverse inbred lines 280 38 candidate genes 1, 2, 3, 4, 6, 7, 8,
and 9 [208]

Root morphology and
phosphorus acquisition Diverse inbred lines 561 7 SNPs 8 [209]

Leaf streak resistance Diverse inbred lines 200 11 SNPs 1, 2, 5, 7, 8 and 9 [210]
Drought resistance Association panel 379 15 candidate genes 1, 3, 4, 5, 6, 8, and 9 [211]

8. Pervasive Pleiotropy in Maize GWAS Studies

In the realm of maize research, numerous GWAS have unearthed thousands of SNPs
and candidate genes linked to various phenotypic traits, a phenomenon commonly referred
to as pleiotropic SNPs and candidate genes. Pleiotropy, in genetics, occurs when one or
more seemingly unrelated phenotypic traits are controlled by a single gene, a concept that
has garnered considerable attention in maize research [212]. Pleiotropy serves as a genetic
nexus connecting economically and agriculturally relevant traits, and it can also be detected
through linkage disequilibrium, adding a layer of complexity to our understanding of
maize genetics [213]. Numerous research studies have led to the discovery of pleiotropic
genes in maize, governing multiple aspects of maize crops. In this discussion, we delve
into the potential implications and underlying causes of pleiotropic SNPs and genes.
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One proposed explanation for pleiotropy is that a single gene may be involved in
various cell types or take part in signaling cascades targeting multiple endpoints. It
can be challenging to differentiate between genuine biological pleiotropy and mediated
or spurious pleiotropy. This is because genes typically function in complex pathways
and networks, leading to interconnected traits. Mediated pleiotropy arises when two
linked phenotypes share a common pathway, whereas spurious pleiotropy occurs when
a detected SNP is located within a small region of high linkage disequilibrium (LD),
encompassing two closely adjacent but distinct genes, each regulating different traits.
Despite the wealth of GWAS studies, an in-depth understanding of pleiotropic genes
remains elusive. However, we can consider pleiotropic genes as promising targets for
precise genome editing techniques, such as the CRISPR/Cas9 system. Such tools allow
us to explore the potential consequences of correlated phenotypes by fine-tuning specific
genomic regions containing pleiotropic genes in maize. Editing these genes can collectively
influence metabolic processes, potentially avoiding the need to target multiple genomic
regions individually. Furthermore, modifying pleiotropic genes could lead to the emergence
of novel phenotypes with significant effects.

While we’ve discussed several GWAS investigations that have identified pleiotropic
genes influencing seemingly unrelated traits, it is important to note that comprehensive
validation of pleiotropic genes discovered via GWAS is lacking. As more GWAS reports
continue to emerge, maize breeders are likely to pay increased attention to pleiotropic
genes. However, it is worth noting that there is currently limited research on the functional
validation of pleiotropic genes or SNPs identified through GWAS [20]. In the future,
with the development of new statistical models and genomic tools for GWAS studies,
we may gain further insights into pleiotropic loci. As researchers increasingly focus on
pleiotropy, the growing number of phenotypic–genotypic associations will likely expand
our understanding of this intriguing genetic phenomenon.

9. Benefits and Limitations of GWAS

Over the past decade, GWAS have sparked a revolution in our understanding of
the intricate genetic architectures underlying major agronomic traits. These studies have
forged robust connections between genetics and complex quantitative traits, contributing
significantly to our comprehension of maize functional genomics and genetics. Notably,
GWAS has led to the discovery of novel genes and biological pathways, propelling success-
ful molecular breeding programs across various crops [3,15]. While GWAS have been a
powerful tool, it is not without its controversies. The following discussion will delve into
both the benefits and limitations of GWAS.

9.1. Benefits of GWAS

1. Integration of genotype and phenotype: GWAS is a potent method for seamlessly inte-
grating genotype and phenotype data, enhancing our understanding of complex traits.

2. Identification of causal and predictive factors: It has the capability to pinpoint both
causal and predictive factors associated with specific traits, allowing for in-depth
genetic analysis.

3. Applicability: GWAS can be conducted on breeding populations as well as natural
populations, broadening its utility.

4. Discovery of novel associations: It has successfully uncovered novel associations
between genetic variants and traits, expanding the scope of genetic research.

5. Pathway independence: Unlike QTL mapping, GWAS does not require prior knowl-
edge of the biological pathways related to the studied traits, enabling the discovery of
new biological mechanisms.

6. Candidate gene discovery: GWAS can identify previously unidentified candidate
genes, contributing to the expansion of genetic knowledge.
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7. Collaboration promotion: GWAS encourages collaborative consortia, facilitating the
recruitment of a sufficient number of participants for robust analyses and fostering
continued collaboration.

8. Ancestry data: It provides ancestry data for each subject, aiding in matching case and
control subjects, ensuring the reliability of the analysis.

9. Structural variant consideration: GWAS takes into account two types of structural
variants sequence variation and copy number, yielding more comprehensive and
reliable data.

10. Complex trait understanding: It is well suited for unraveling the genetic contributors
to complex traits, where an individual’s genes may have a minor influence.

11. Data availability: GWAS data is often made publicly available, facilitating the discov-
ery of new trait association and promoting transparency.

12. Ethnic diversity: GWAS can shed light on ethnic differences in complex traits, con-
tributing to a more comprehensive understanding of genetic diversity.

9.2. Limitations of GWAS

1. Significance threshold: A major limitation is the need for a stringent significance
threshold to account for multiple test burdens, potentially missing important associa-
tions. Statisticians are strict about this, but if you can prove it with biological evidence,
it is not a problem.

2. Low-frequency variant analysis: GWAS is not appropriate for studying low-frequency
and rare variants. When this happens, a parental population needs to be constructed
to detect this rare variant.

3. Replication and population size: Findings must be replicated in independent samples
from diverse populations, necessitating large and diverse study populations.

4. Association vs. causation: GWAS identifies associations but does not pinpoint causal
variants and genes. Candidate gene selection and its biological validation are necessary.

5. Specific site identification: It may identify specific genetic sites rather than entire
genes, and many identified variants are not directly linked to protein-coding regions.

6. Missing heritability: GWAS cannot elucidate all genetic determinants of complex
traits, leaving much of the heritability unaccounted for.

7. Molecular biology insights: Findings related to GWAS variations do not necessarily
reveal the underlying molecular biology of traits. Biological validation is necessary.

8. Ongoing challenges: While technology, computing, methodology, population strati-
fication, and whole genome sequencing (WGS) may address some limitations, chal-
lenges persist in achieving a comprehensive understanding of complex traits.

In conclusion, despite a substantial number of GWAS studies conducted in the last
decade, the ongoing increase in such studies attests to their success in uncovering the
genetic basis of complex plant characteristics. Recognizing and addressing the limitations
of GWAS remain pivotal for future advancements in this field.

10. GWAS Interpretation with OMICS

GWAS have emerged as crucial tools for unraveling the genetic architecture of complex
traits. Over the last few years, GWAS have led to the discovery of thousands of genetic
loci and candidate genes associated with diverse complex traits, including responses to
abiotic and biotic stress [3,15,59,75,214]. The analysis of maize populations through GWAS
has been on the rise, providing valuable insights into the genetic basis of complex traits.
However, interpreting GWAS findings remains challenging, as they do not inherently
provide information about the underlying biological or environmental factors influencing
these traits [214,215]. To enhance maize development, especially in terms of resistance to en-
vironmental stress, it is essential to gain a deeper understanding of the genetic architecture
governing complex traits [118,139,197,216]. While GWAS identifies genetic associations, it
is limited in elucidating the intricate mechanisms and environmental influences driving
these associations. In recent years, a promising approach to complement GWAS and gain
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a more comprehensive perspective on complex traits is the integration of multi-omics
data [217]. This approach combines genomics, epigenomics, transcriptomics, proteomics,
metabolomics, and advanced statistical methods to provide a holistic view of the molecular
mechanisms underlying complex traits, including responses to abiotic and biotic stress, as
well as yield improvement [218]. Integrating multi-omics data offers several advantages,
for example, it allows researchers to delve deeper into the molecular mechanisms govern-
ing complex traits, shedding light on the underlying biological processes. Multi-omics
integration considers not only genetic factors but also environmental influences, providing
a more complete picture of trait variation. It aids in the identification of potential genes and
their associated pathways, facilitating a more nuanced understanding of trait regulation.

In conclusion, the integration of multi-omics data with GWAS holds tremendous po-
tential for advancing our understanding of complex traits in maize. This approach enables
researchers to explore the intricate molecular networks that govern responses to environ-
mental stress and yield improvement. By combining genetic, epigenetic, transcriptomic,
proteomic, and metabolomic information, we can gain a more holistic view of the factors
shaping complex traits, ultimately contributing to the development of more resilient and
productive maize varieties.

11. Conclusions and Future Prospects in Maize

Maize, as a pivotal cereal crop, exhibits remarkable adaptability to diverse environmen-
tal conditions. Recent advancements in maize whole genome sequencing and resequencing
have paved the way for the identification of millions of genome-wide SNPs, QTL, and
candidate genes. This wealth of genetic information stems from a wide array of naturally
occurring variants gathered across different environments, reflecting years of genetic di-
versity accumulation. These comprehensive studies have been instrumental in mapping
genes governing critical aspects of maize, such as yield and its associated traits, tolerance
to biotic and abiotic stresses, and quality attributes. However, it is paramount to validate
the candidate genes and loci linked to specific traits, and the development of genomic
resources is pivotal in shaping the landscape of whole-genome prediction models.

GWAS have emerged as a powerful tool for predicting allele functions, pinpointing
mutations, and identifying candidate genes responsible for desired agronomic traits. The
advent of DNA sequencing has opened the door to deep analyses of natural variations
within plant genomes, allowing researchers to harness these resources in conjunction with
GWAS to elucidate the genetic underpinnings of complex features. Recent breakthroughs
in quantitative omics technologies such as transcriptomics, metabolomics, and epigenomics
have introduced innovative association studies like Metabolite-Wide Association Studies
(MWAS), Epigenome-Wide Association Studies (EWAS), and Transcriptome-Wide Associa-
tion Studies (TWAS). These holistic approaches augment the capabilities of GWAS, offering
valuable insights into the genes underlying agriculturally significant characteristics and
expediting genomics-assisted breeding.

To thrive in this evolving landscape, it is imperative to develop more efficient GWAS
computational techniques. A deeper comprehension of genetic variability at the SNP level
will prove invaluable in conserving, characterizing, and exploiting diverse germplasm.
GWAS, in turn, will enrich breeding programs by expanding access to desirable agronomic
traits and germplasm collections.

However, it is worth noting that a substantial portion of research has primarily focused
on the primary (additive) effects of genetic architecture. To comprehensively understand
the complexity of complex traits, which encompass gene networks, epigenetic influences,
interactions with the environment, and rapidly changing conditions, a multifaceted ap-
proach is needed. Potential solutions include acquiring pertinent phenotypic data, refining
statistical models, and verifying potential loci, all of which can expedite molecular breeding
strategies in maize. While GWAS remains indispensable with the integration of next-
generation sequencing (NGS) technology, advancements in statistical methodologies and
genomic designs hold the key to enhanced effectiveness.
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Careful consideration should be given to the selection of analytical methodologies,
with an option to combine complementary methods when tackling intricate genetic traits.
Moreover, improved population designs, core collection techniques, novel sequencing ap-
proaches, and statistical methods may unveil and manipulate genetic factors contributing to
quantitative variation. In this evolving landscape, innovative designs can enhance precision
and accuracy by reshaping allelic spectra and minimizing confounding variables. More-
over, it is imperative that candidate genes identified through GWAS undergo biological
validation. For a more interesting traits, peaks identified by a new GWAS can be compared
with known genomic region or related genes for validation [219]. Utilizing transgenic and
alternative methods, such as RNA interference, mutant validation, gene knockout, overex-
pression, and CRISPR/Cas9-mediated gene silencing, enables the exploration of new causal
genes underlying GWAS peaks [19,220,221]. In conclusion, we advocate for the integrated
use of muti-omics data alongside genetic design and appropriate analytical techniques, as
they hold the promise of uncovering the biological foundations of phenotypic variation in
maize molecular breeding programs.

12. Provoking Questions in GWAS

How can we achieve a high-resolution identification of causal genes and SNPs in order
to fully appreciate the role of pleiotropy in GWAS?

How might the insights gained from GWAS be applied in the near future to enhance
the genetics of crop plants?

How close are we to effectively developing climate-smart cultivars by harnessing
natural variations uncovered through GWAS?

When a trait of interest is influenced by a rare variant, why is that trait prevalent in a
large population, while GWAS struggle to uncover the associated rare variant?

Can the study of genes and processes that underlie phenotypic and physiological changes
enable us to predict how crops will respond to ever-changing environmental conditions?
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