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Abstract: Epidermal growth factor receptor (EGFR) inhibitors have been used in clinical for the treat-
ment of non-small-cell lung cancer for years. However, the emergence of drug resistance continues to
be a major problem. To identify potential inhibitors, molecular docking-based virtual screening was
conducted on ChemDiv and Enamine commercial databases using the Glide program. After multi-
step VS and visual inspection, a total of 23 compounds with novel and varied structures were selected,
and the predicted ADMET properties were within the satisfactory range. Further molecular dynamics
simulations revealed that the reprehensive compound ZINC49691377 formed a stable complex with
the allosteric pocket of EGFR and exhibited conserved hydrogen bond interactions with Lys 745 and
Asp855 of EGFR over the course of simulation. All compounds were further tested in experiments.
Among them, the most promising hit ZINC49691377 demonstrated excellent anti-proliferation activity
against H1975 and PC-9 cells, while showing no significant anti-proliferation activity against A549
cells. Meanwhile, apoptosis analysis indicated that the compound ZINC49691377 can effectively
induce apoptosis of H1975 and PC-9 cells in a dose-dependent manner, while having no significant
effect on the apoptosis of A549 cells. The results indicate that ZINC49691377 exhibits good selectivity.
Based on virtual screening and bioassays, ZINC4961377 can be considered as an excellent starting
point for the development of new EGFR inhibitors.

Keywords: epidermal growth factor receptor (EGFR); virtual screening; molecular dynamics

1. Introduction

Non-small-cell lung cancer (NSCLC), the most frequently reported subtype of all lung
cancer cases, makes up 80–85% of the disease. The receptor tyrosine kinase superfamily
member epidermal growth factor receptor (EGFR) promotes the development of NSCLC [1],
which is frequently caused by activating mutations in EGFR kinase. The most common mu-
tations are deletion mutation in exon 19 and L858R point mutations changing from leucine
to arginine at position 858 in the EGFR kinase. First generation EGFR inhibitors, exempli-
fied by the US Food and Drug Administration (FDA)-approved gefitinib and erlotinib, are
effective for advanced NSCLC [2,3]. Despite the effectiveness of these inhibitors in clinical
trials, drug resistance arises due to various mechanisms, including T790M mutation [4].
The gatekeeper T790M mutation, which resulted from the replacement of threonine with
methionine at position 790 in the EGFR ATP-binding pocket, was discovered in almost
half the patients treated with these drugs. The T790M mutation improves ATP affinity
thereby decreasing the effectiveness of reversible ATP-competitive inhibitors, leading to
drug resistance [5]. Second- and third-generation EGFR inhibitors, exemplified by Afatinib,
Dacomitinib, and Osimertinib, covalently target the T790M mutant by reacting with Cys
797 residue adjacent to the EGFR ATP site [6]. However, resistance developed through
different mechanisms, and C797S mutation serves as a primary mechanism for resistance.
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The irreversible covalent EGFR inhibitors become clinically ineffective, because they are
unable to form a covalent bond with EGFR after the change of Cys797 to a less reactive
serine residue [7–9].

All currently FDA-approved EGFR kinase inhibitors are ATP competitive inhibitors,
specifically targeting the highly conserved ATP binding site [10], which highlights the
need for new inhibitors with different mechanisms of action [11]. Recently, mutant se-
lectivity inhibitors EAI001 (Figure 1) were identified [12], which showed high potency
for EGFRL858R/T790M with IC50 value of 24 nM. Following further optimization, EAI045
achieved more potent activity against EGFRL858R/T790M with IC50 values of 3 nM and
exhibited about 1000-fold high selectivity against the WT EGFR. EAI001 binds to the al-
losteric binding pocket that is created by the displacement of the C-helix rather than the
ATP-binding pocket, as confirmed by the co-crystal structure of EAI001 bound to EGFR.
The released crystal structure provides the possibility of conducting structure-based virtual
screening (SBVS) to discover allosteric inhibitors with unique chemical scaffolds. Molecular
docking has been recognized as the most popular method for SBVS [13]. It can predict
the binding conformations of the ligands and rank the ligands according to scoring func-
tions. In this study, we aim to discover potential EGFR inhibitors with diverse scaffolds
through high throughput virtual screening and biological evaluation. The workflow of the
current study is represented in Figure 2. Molecular docking was conducted on ChemDiv
and Enamine commercial databases. After multi-step VS and visual evaluation, a total of
23 structurally unique and diverse compounds were chosen and the predicted ADMET
properties are within the satisfactory range. Molecular dynamics simulations revealed
that the reprehensive compound ZINC49691377 formed a stable complex with EGFR.
All selected compounds were further subjected to biological evaluation. Among them,
ZINC49691377 showed good anti-proliferation activity against H1975 and PC-9 cells, while
showing no significant anti-proliferation activity against A549 cells. Apoptosis analysis
indicated that ZINC49691377 can effectively induce apoptosis of H1975 and PC-9 cells in a
dose-dependent manner, while having no significant effect on apoptosis of A549 cells. The
results indicated that ZINC4961377 with a new scaffold can be considered as a good point
for further optimization.
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2. Results and Discussions
2.1. Molecular Docking Protocol Assessment

In this research, to explore the possibility of discovering potential EGFR inhibitors, a
virtual screening was carried out on commercial databases using the co-crystal structure
of EAI001 bound to EGFR (PDB ID: 5D41) [12], which has a resolution of 2.31 Å. All the
programs used were from Schrödinger Suite package 2017-1, and the widely used Glide
program [14,15] was used for docking and virtual screening. First, in order to validate the
reliability of three docking protocol, the native EAI001 was re-docked into the binding site
using HTVS (high-throughput virtual screening), SP (standard precision) and XP (extra
precision) mode using the default parameters in the Glide program in accordance with our
previously published protocol [16]. The obtained best docking scores or binding energy for
EAI001 were estimated to be −11.472 kcal/mol, −11.532 kcal/mol, and −11.005 kcal/mol
(Table 1), respectively. As shown in Figure 3, the docking conformation with the best
docking score overlap well with original crystal conformation at the allosteric site of EGFR
and the associated root mean-square deviations (RMSDs) were 0.048 Å, 0.178 Å, and
0.163 Å, respectively [16]. In general, when the RMSD is below 2.0 Å, molecular docking is
reliable [17]. Our results indicated that the current docking simulation methods are suitable
for the virtual screening of novel inhibitors. As a result, structure-based virtual screening
was conducted by employing the Glide HTVS, SP and XP methods in this study.
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Table 1. The docking results of co-crystallized EAI001 generated by Glide HTVS, SP and XP.

HTVS SP XP

G-score (Kcal/mol) −11.472 −11.532 −11.005
RMSD (Å) 0.048 0.178 0.163

2.2. Structure-Based Virtual Screening

Two databases, Chemdiv and Enamine, were rationally selected according to the
structural diversity and commercial availability of the compounds. First, ChemDiv and
Enamine databases were downloaded from the ZINC website [18,19], prepared using the
Ligprep module, and filtered using Lipinski’s rule of five to improve compound drug-
likeness [20]. The optimized databases were then submitted to the successive virtual
screening workflow (VSW) using Glide 7.4 in Schrödinger suite 2017-1. Briefly, compounds
were sequentially filtered using the HTVS, SP, and XP docking protocol, with the retaining
ratios set as 1%, 10%, and 50%, respectively. At the final stage of VS, we conducted a visual
inspection and selected compounds with key ligand–protein interactions necessary for
the inhibition reported by us [16,21]. The ZINC code and the docking scores (G-score,
Kcal/mol) based on XP mode are listed in Table 2, and the structures are shown in Table S1.
Generally, the lower the Glide score, the better the predicted affinity of the compounds
binding to the protein target. The chosen compounds showed the best docking scores and
interacted with several key kinase residues in EGFR allosteric site. Take ZINC49691377
as an example, the XP docking score was estimated to be −14.03 kcal/mol, which was
lower than that of EAI045 and EAI001. ZINC49691377 showed necessary ligand–protein
interactions for the inhibition (Figure 4). Specifically, 3-hydroxy-pyridine moiety stacks with
the side chain of Leu 788, Ile 789, and the gatekeeper Met790, the 4-fluoro-phenyl moiety
interacts with Phe 856 side chain through π-π stacking interaction, while the quinoline
moiety extends into a hydrophobic pocket composed of Leu 747, Ile 759, Met 766 Leu 777,
and Leu 788. One hydrogen bond was formed between N-atom and Asp 855 in the DFG
motif located. On the other hand, a salt bridge was formed between 3-hydroxy-pyridine
moiety and the catalytic residue Lys 745.

Table 2. ZINC code, Glide XP score (G-Score) value, ADMET properties of selected compounds.

G-Score
(kcal/mol) MW a logPo/w b logS c PSA d PCaco e PMDCK f logBB g logHERG h Violation

of Ro5 i

EAI045 −11.96 383.38 2.93 −4.67 86.8 877.17 1538.77 −0.60 −6.32 0
1 ZINC49691377 −14.03 361.38 4.14 −5.06 71.00 1072.92 966.13 −0.67 −6.56 0
2 ZINC09616958 −13.03 356.42 4.60 −5.38 69.31 907.73 445.56 −0.93 −6.68 0
3 ZINC09775243 −12.33 361.83 4.98 −5.49 48.91 2785.90 3693.51 −0.11 −6.37 0
4 ZINC10910059 −12.19 355.40 3.70 −4.70 74.03 1303.15 658.64 −0.63 −6.73 0
5 ZINC89827617 −12.07 329.79 3.47 −4.33 91.10 259.21 543.26 −0.80 −4.02 0
6 ZINC22017635 −11.99 342.40 4.95 −5.86 53.87 2283.11 1946.38 −0.18 −6.47 0
7 ZINC53674458 −11.93 328.37 4.37 −5.43 55.48 2342.50 1241.45 −0.35 −7.23 0
8 ZINC69419433 −11.89 348.40 3.66 −5.49 96.22 758.32 366.85 −0.97 −6.61 0
9 ZINC15778674 −11.53 363.35 4.10 −5.50 82.31 1408.00 1056.08 −0.52 −7.12 0

10 ZINC29507326 −11.52 365.38 3.72 −5.02 66.11 1657.03 1656.87 −0.20 −6.36 0
11 ZINC05577262 −11.52 363.35 3.80 −5.18 78.59 1483.36 1371.80 −0.35 −6.52 0
12 ZINC03876430 −11.42 341.41 4.58 −6.18 58.56 2121.51 1115.36 −0.27 −6.47 0
13 ZINC18205922 −11.41 347.80 4.92 −5.84 47.30 3375.47 4550.21 0.01 −6.88 0
14 ZINC00036286 −11.36 343.42 4.85 −5.17 48.57 3155.77 1713.26 −0.22 −6.19 0
15 ZINC20531081 −11.31 342.40 4.21 −5.18 61.33 2484.77 1323.15 −0.30 −7.00 0
16 ZINC89756684 −11.30 331.38 4.22 −5.47 65.15 2241.61 1183.76 −0.37 −6.89 0
17 ZINC01201194 −11.28 382.25 4.87 −6.31 57.21 2291.39 6343.36 0.11 −6.39 0
18 ZINC01108543 −11.27 368.43 4.49 −5.03 56.21 1887.49 982.99 −0.27 −5.35 0
19 ZINC13351329 −11.08 355.44 4.77 −5.87 54.80 1767.73 1368.58 −0.17 −5.27 0
20 ZINC04918676 −11.06 356.42 3.55 −4.44 70.31 1237.96 623.09 −0.45 −5.44 0
21 ZINC04784223 −11.06 371.44 4.75 −5.43 70.92 1544.54 791.45 −0.65 −6.62 0
22 ZINC43232082 −10.99 374.36 4.35 −5.30 62.00 2051.67 5859.35 −0.05 −4.64 0
23 ZINC00178936 −10.70 345.42 4.33 −5.97 56.46 2085.50 2130.51 −0.23 −6.85 0

a MW: Molecular weight of the molecule (Range or recommended values: 130.0–725.0). b logPo/w: Predicted
octanol/water partition co-effcient log P (acceptable range: −2.0 to 6.5). c logS: Predicted aqueous solubility; S in
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mol/L (acceptable range: −6.5 to 0.5). d PSA: Polar surface area (acceptable range: 7.0 to 200.0). e logHERG: K+

ion channel related toxicity (logHERG: concern below −5). f PCaco: Predicted apparent Caco-2 cell permeability
in nm/s. (Range or recommended values <25 poor, >500 great); g PMDCK: Predicted apparent MDCK cell
permeability in nm/s (acceptable range: >500 is high, <25 is poor). h QPlogBB: the predicted partition coefficient
of the brain/blood barrier (logBB: −3.0 to 1.2). i Violation of RO5: number of violations of Lipinski’s rule five,
consisting of five rules for drug-like compounds, which require MW < 500, logPo/w < 5, number of donor
H-bond ≤ 5, number of acceptor H-bond ≤ 10).
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2.3. ADME and Toxicity Prediction

For the chosen 23 compounds, the drug-likeness and properties of absorption, distribu-
tion, and metabolism, excretion, and toxicity (ADMET) were predicted using QikProp. The
results are shown in Table 2. Drug-likeness of compounds was assessed by observing the
physicochemical properties like molecular weight (MW), predicted octanol/water partition
coefficient (logP), predicted aqueous solubility (logS, S in mol/L), polar surface area (PSA).
MW refers to the mass of a molecule, which evaluates drug-likeness or determine if a
chemical compound with a certain pharmacological or biological activity has properties
that would make it a likely orally active drug in humans. The logP value represents the
partition coefficient between octanol and water, which is critical for measuring hydropho-
bicity of molecules and helps to evaluate absorption and distribution of drugs within the
body. Aqueous solubility indicates the extent to which a molecule is soluble in water. The
molecular polar surface area (PSA) is a physical chemical property describing the polarity
of molecules. It is defined as the surface sum over all polar atoms, primarily oxygen and ni-
trogen, also including their attached hydrogens [22]. PSA is a descriptor that was appeared
to relate well with passive molecular transport through membranes and, consequently,
permits forecast of transport properties of drugs in the intestines and blood–brain barrier
crossing. Molecules with a polar surface area of greater than 140 angstroms squared tend
to be poor at permeating cell membranes, while a PSA less than 60 angstroms squared
usually be good at permeating cell membranes. The ADMET profile includes Caco-2 per-
meability, MDCK permeability, blood–Brain barrier (BBB), and the blockage of HERG
K+ channels was calculated. Caco-2 cells are a model for the intestine-blood barrier, and
Caco-2 permeability is great markers of drug absorbance in the intestine [23]. Madin-Darby
canine kidney (MDCK) monolayers, are widely used to make oral absorption estimates,
the reason being that these cells also express transporter proteins, but only express very
low levels of metabolizing enzymes [24]. They are also used as an additional criterion to
predict BBB penetration. Thus, our calculated apparent MDCK cell permeability could be
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considered to be a good mimic for the BBB (for non-active transport). The blood/brain
partition coefficients (logB/B), a predictor for access to the central nervous system (CNS),
were computed, which can be used to predict their neurotoxicity. The human ether-a-go-go
related gene (HERG) K+ channel appears to be the molecular target responsible for the
cardiac toxicity of a wide range of therapeutic drugs [25]. HERG K+ channel blockers
are potentially toxic and the predicted IC50 values often provide reasonable predictions
for cardiac toxicity of drugs in the early stages of drug discovery [26]. In this work, the
estimated or predicted IC50 values for blockage of this channel have been used to model
the process. The recommended range for predicted log IC50 values for blockage of HERG
K+ channels (logHERG) is >−5. Also, compounds that pass Lipinski’s rule exhibit good
oral absorption in humans. Violations from Lipinski’s rule of five were also studied [27].
Compounds with fewer (or preferably no violations) of the rule are most probably orally
available. The study of in silico ADMET predictions helps in the drug development process
to produce novel molecules that are safe for human consumption and exhibit good oral
absorption in humans. All 23 compounds displayed the ADMET properties within a range
appropriate for human usage and showed no violations of Lipinski’s rule of five, showing
their potential as drug-like molecules.

2.4. MD Simulations Analysis

To monitor the stability of the docked complex, molecular dynamic (MD) simulations
were carried out using the Desmond 4.9 [28] in Schrödinger suite 2017-1. MD simulation of
the docked complex of ZINC49691377-EGFR with the best docking score was performed
for a total of 100 ns. For comparation, the co-crystal structure of EAI001 with EGFR was
also subjected to 100 ns molecular dynamics.

In order to monitor the conformational stability throughout simulations, the root
mean square deviation (RMSD) values of EGFR Cα atoms and the ligand were determined
relative to the starting structure. The results were displayed in Figures 5 and S1. RMSDs of
carbon alpha atoms less than 3.00 Å during the simulation indicated that protein fluctuation
was within acceptable variation, demonstrating the stability of the protein structure. The
RMSDs of the ligand revealed that ZINC49691377 and EAI001 remained stable within the
active pocket of EGFR during the simulation.
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ZINC49691377-EGFR during 100 ns MD simulation.

In order to examine the flexibilities of the individual residues that may have con-
tributed to the overall fluctuations in the system, root mean square fluctuation (RMSF) of
the complex was calculated (Figures 6 and S2). Higher fluctuation values in the residues
suggest greater flexibility in the course of MD simulations. In general, residues without
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any interactions are more flexible. As shown in Figures 6 and S2, the two systems showed
similar RMSF distributions and exhibited no unusual fluctuations. High fluctuations were
observed in regions containing residue numbers 161–178 (Ala 859-Val 876). The RMSF
profile was corroborated with the findings in our previous publication [16,21].
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ZINC49691377-EGFR during 100 ns MD simulation.

The most stable possible interactions between ligands and proteins over the MD
simulation are better understood due to the visualizations of the protein–ligand contacts
(Figures 7 and S3). The main types of interactions that assisted in stabilizing the ligands
were hydrogen bonding, hydrophobic, and water bridge interactions. For compound
EAI001, Lys 745 formed a hydrogen bond with the of isoindolin-1-one moiety with a high
percentage of 53%, aminothiazole moiety exhibited strong hydrophobic interactions with
EGFR, and the phenyl substituent is in contact with Phe856. For ZINC49691377, Lys 745
directly formed two H-bond interactions with the hydroxyls on the pyridine ring and
quinoline ring with high percentages of nearly 95% and 92%, respectively, and Asp 855
formed a hydrogen bond with ZINC49691377 with a percentage of nearly 99% over the
course of MD simulation. In addition, ZINC49691377 formed hydrogen bonds with Thr
854 and Asp 855 via water bridge. This suggests that hydrogen bonding plays a significant
role in accommodating and stabilizing ZINC49691377 at the binding site. In addition,
hydrophobic interactions with Phe 723, Leu 747, Met 766, Leu 777, Leu 788, Met 790, Phe
856, and Leu 858 were demonstrated to be crucial for ligand binding. As illustrated in
Figure 8 and Figure S4, the timeline representation of the interactions and contacts between
ZINC49691377, EAI001 and EGFR during 100 ns MD simulation revealed that Lys 745 and
Asp 855 were crucial for ligand binding within the active site.

The stability of the complex was also confirmed by measuring the ligand properties
of the RMSD, rGyr (radius of gyration), intraHB (intramolecular hydrogen bond), MolSA
(molecular surface area molecular surface area), SASA (solvent-accessible surface area),
and PSA (polar surface area) in the EGFR protein pocket (Figures 9 and S5), which kept an
equilibrium throughout the 100 ns MD simulation.
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Figure 8. A timeline representation of the interactions and contacts between ZINC49691377 and
EGFR during 100 ns MD simulation. The top panel shows the total number of specific contacts the
protein makes with the ligand over the course of the trajectory. The bottom panel shows which
residues interact with the ligand in each trajectory frame. Some residues make more than one specific
contact with the ligand, which is represented by a darker shade of orange, according to the scale to
the right of the plot.
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moment of inertia. Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds
(HB) within a ligand molecule. Molecular Surface Area (MolSA): Molecular surface calculation with
1.4 Å probe radius. This value is equivalent to a van der Waals surface area. Solvent Accessible
Surface Area (SASA): Surface area of a molecule accessible by a water molecule. Polar Surface Area
(PSA): Solvent accessible surface area in a molecule contributed only by oxygen and nitrogen atoms.

2.5. The Anti-Proliferation Activity of the Selected Compounds

All 23 selected compounds were purchased from the commercial source for biological
evaluation. The vendors had confirmed the purity of compounds by using LC-MS or
NMR experiments. The anti-proliferation activity of these 23 compounds against NSCLC
cell lines A549 harboring wide type EGFR, PC-9 expressing exon 19 deletion mutant, and
H1975 expressing EGFRL858R/T790M were assessed using MTT method, with EAI045 as
positive control (Table 3). As shown in Table 3, EAI045 inhibited anti-proliferation against
H1975 cells (EGFR L858R/T790M) with IC50 value of 23.64 µM, and showed no obvious anti-
proliferation against A549 (EGFRWT) and PC-9 (EGFRDel 19) cells. To our delight, four
compounds (ZINC49691377, ZINC03876430, ZINC01201194, and ZINC13351329) demon-
strated encouraging anti-proliferation activities. For example, ZINC01201194 displayed
good anti-proliferative activity against PC-9 and H1975 with IC50 values of 2.30 µM, and
4.79 µM (Table 3), respectively. ZINC49691377 demonstrated good anti-proliferative activ-
ity against H1975 and PC-9 cells with IC50 values of 10.02 µM and 20.48 µM (Table 3 and
Figure 10), respectively, which was more potent than the positive compound EAI045. We
also determined the antiproliferative activity of ZINC49691377 against A549 cells, human
epithelial cell line HaCaT and H3122 NSCLC cell line harboring the EML4-ALK fusion
gene variant 1 (Figure 10). As shown in Figure 10, ZINC49691377 did not show obvious
inhibitory activity against A549, HaCaT and H3122 cells (IC50 > 100 µM), showing good
cellular selectivity.

Table 3. The antiproliferative activity of selected compounds.

Title
Antiproliferative Activity (IC50, µM) a

A549 PC-9 H1975

EAI045 >100 >100 23.64 ± 4.78
1 ZINC49691377 >100 20.48 ± 0.03 10.02 ± 0.02
2 ZINC09616958 32.32 ± 1.57 82.34 ± 2.20 40.36 ± 0.95
3 ZINC09775243 96.17 ± 2.04 82.68 ± 2.47 61.10 ± 6.04
4 ZINC10910059 19.03 ± 0.76 13.98 ± 0.18 15.06 ± 0.50
5 ZINC89827617 >100 >100 >100
6 ZINC22017635 39.33 ± 3.95 18.95 ± 3.60 13.60 ± 1.46
7 ZINC53674458 >100 90.13 ± 1.75 78.74 ± 8.80
8 ZINC69419433 >100 >100 14.21 ± 4.57
9 ZINC15778674 >100 67.20 ± 2.20 40.13 ± 4.50
10 ZINC29507326 >100 85.25 ± 19.00 43.91 ± 15.16
11 ZINC05577262 >100 >100 74.26 ± 4.82
12 ZINC03876430 34.53 ± 0.74 38.05 ± 7.36 9.69 ± 0.91
13 ZINC18205922 12.52 ± 0.58 33.98 ± 4.50 20.24 ± 0.43
14 ZINC00036286 87.23 ± 0.68 70.19 ± 3.65 75.78 ± 4.24
15 ZINC20531081 >100 93.65 ± 6.67 62.98 ± 7.65
16 ZINC89756684 73.01 ± 10.27 73.06 ± 7.68 43.12 ± 1.34
17 ZINC01201194 8.20 ± 1.18 2.30 ± 0.63 4.79 ± 1.11
18 ZINC01108543 37.23 ± 3.20 30.95 ± 0.55 38.13 ± 1.22
19 ZINC13351329 10.80 ± 0.94 6.00 ± 0.76 16.52 ± 2.55
20 ZINC04918676 >100 >100 >100
21 ZINC04784223 >100 46.42 ± 1.97 >100
22 ZINC43232082 28.04 ± 2.02 30.69 ± 0.14 23.27 ± 1.62
23 ZINC00178936 >100 >100 >100

a The values are the average of two independent experiments performed in duplicate.
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2.6. The Cell Apoptosis of Compound ZINC49691377

To characterize the effect of ZINC49691377 on apoptosis progression, the Annexin-
V/propidium iodide (PI) biparametric cytofluorometric assay was carried out in A549
(EGFRWT), PC-9 (EGFRDel19) and H1975 (EGFRL858R/T790M) cells (Figure 11). As shown in
Figure 11, after treatment with ZINC49691377 at 2.5 µM, 5 µM and 10 µM, the percentage
of late apoptotic cells in H1975 cell line increased to 10.6%, 14.5%, and 20.7%, and the
percentage of early apoptotic cells increased to 5.74%, 11.5%, and 20.4%, respectively. And
in PC-9 cell line, the percentage of late apoptotic cells increased to 11.0%, 17.2%, and 21.4%.
The results stated that compound ZINC49691377 can effectively induce apoptosis of H1975
and PC-9 cells in a dose-dependent manner. However, ZINC49691377 had no significant
effect on apoptosis of A549 cell line at given concentrations.
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Figure 11. Apoptosis induction of compound ZINC49691377 in A549, PC-9 and H1975 cells. (A–C) Flow
cytometry analysis of Annexin V-FITC Apoptosis Detection Kit of apoptotic cells following 0.1% DMSO,
2.5 µM, 5 µM, and 10 µM of ZINC49691377 for 48 h. (D–F) Percentage of live, early apoptosis, late
apoptosis, and dead cells. The experiments were carried out twice, independently.

3. Materials and Methods
3.1. Protein Preparation

The three-dimensional atomic coordinates of EGFR bound with EAI001 (PDB ID 5D41)
was extracted from the Protein Databank Bank (PDB) (http://www.rcsb.org/ (accessed
on 8 June 2016)). Protein preparation was accomplished using the Protein Preparation
Wizard in Maestro according to our previous publication [21]. The initial structure was
preprocessed by assigning the corrected bond orders, adding the hydrogen atoms, filling in
missing side chains and missing loops using Prime, and generating the protonation states
of the ionizable residues using Epik at pH = 7. Then, the protein structure was minimized
using OPLS3 force field [29] with the default cutoff RMSD value of 0.3 Å. The native ligand
EAI001 was extracted from the crystal structure and prepared using the LigPrep module in
Maestro 11.1.

3.2. Preparation of the Databases

Commercially available compounds of the ChemDiv (about 1,400,000 compounds)
and Enamine (about 1,800,000 compounds) databases were downloaded from the ZINC
website. Ligprep of the Schrödinger Suite was used to prepare the ligand. The possible
stereoisomers, tautomers and ionization states were produced with Epik 3.9 at physiological
pH. Then, the compounds were energy minimization using OPLS3 force field. The database
was filtered using Lipinski’s rule of five [20] (specifically, a molecular weight (MW) less
than 500, an octanol-water partition coefficient logPo/w no greater than 5, number of
hydrogen bond donors no more than 5, number of hydrogen bond acceptors no more than
10). Then, the database was subjected to a subsequent virtual screening.

3.3. Docking-Based Virtual Screening

The prepared co-crystallized protein structure was employed for virtual screening
based on molecular docking. Before proceeding to the docking procedure, the protein
receptor grid defining the position and size of the active site for docking was generated by
selecting the center of co-crystalized ligand EAI001 as the centroid of the grid box using a
receptor grid generation tool with default settings. The co-crystalized ligand was redocked
using the Glide HTVS, SP and XP with default parameters. The best Glide scored docking
poses were chosen as the most likely binding conformation. Low RMSD values were
achieved between the co-crystallized and docked pose, demonstrating that Glide HTVS, SP
and XP were able to well reproduce the experimental conformation.

http://www.rcsb.org/
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Therefore, we started the subsequent virtual screening using Glide HTVS, SP and XP
with the same validation parameters. The top 1% of compounds from the initial HTVS
docking were kept and rescored in SP mode. The chosen top 10% of compounds were
subsequently subjected to extra precision (XP) docking analysis. After that, the top 50% of
compounds were virtually analyzed and checked the essential interactions responsible for
EGFR inhibition. Finally, 23 compounds were chosen based on the good XP GScore and
key interactions with the residues of binding pocket.

3.4. Prediction of ADMET Properties

ADMET properties were predicted using the default mode of QikProp 5.1 implemented
in the Schrödinger Suite. Properties assessed involved logPo/w (predicted octanol/water
partition coefficient), logS (Predicted aqueous solubility), PSA (polar surface area), PCaco
(Predicted apparent Caco-2 cell permeability), PMDCK (Predicted apparent MDCK cell per-
meability), logBB (the predicted partition coefficient of the brain/blood barrier), logHERG
(Predicted blockage of the HERG K+ channels). And the violations of Lipinski’s rule of five
(Ro5) were also calculated to evaluate drug-likeness.

3.5. Molecular Dynamics Simulations

Classical MD simulations were carried out using the Desmond program [28] in
Schrödinger suite 2017-1. The simulated systems were created by the System Builder
panel of Desmond by adding six Na+ to neutralize the system and setting the salt concentra-
tion to 0.15 M NaCl. The system was then dissolved in a 10 Å × 10 Å × 10 Å orthorhombic
box TIP3P water model [30] with periodic boundary conditions. The energy of the solvated
systems was first minimized in NVT ensemble for 20 ps at low temperature (10 K) to remove
high energies in the predicted model. Then a seven-step equilibration of the systems was
performed in NVT and NPT ensembles using the Desmond relaxation protocol. Finally,
the 100 ns production simulations were carried out in the NPT ensemble at 303.15 K and
standard pressure (1.01325 bar) with a time step of 2 fs [31]. Martyna-Tuckerman-Klein
chain coupling scheme [32] and the Nosé–Hoover chain coupling scheme [33] were used
to control pressure and temperature, respectively. A RESPA (reversible reference system
propagator algorithms) integrator [34] was used to calculated nonbonded forces, with the
short-range Coulomb interactions being created using a radius of cutoff 9 Å and long-range
interactions being calculated using the smooth Particle Mesh Ewald. The SID (Simulation
Interaction Diagram) program of Schrödinger suite was used to analyze trajectory.

3.6. Cancer Cell Proliferation Inhibition Assay

The anti-proliferative activities against human NSCLC-derived A549 cells (WT EGFR),
PC-9 cells (746–750 deletion in exon 19 of EGFR), H1975 cells (L858R/T790M double mutant
EGFR), HaCaT cells (immortalized human epithelial cell line), and H3122 cells (EML4-ALK
rearrangement driven NSCLC cells) were determined using the standard MTT assay as
reported previously [35], with EAI045 as the positive control. All cell lines were purchased
from Shanghai Cell Bank, China Academy of Science (Shanghai, China). All chemicals
and regents were bought commercially from Thermo Fisher Scientific (Waltham, MA,
USA) or Sigma-Aldrich Chemical Company (St. Louis, MO, USA) and used without any
additional purification. Briefly, cancer cells were seeded in 96-well plates at a density of
3–4 × 103 cells per well (100 µL) and cultured at 37 ◦C in a humid environment with 5%
CO2 for 24 h. On the second day, different concentrations of the test compounds were
added to the fresh culture medium and the mixture was incubated for 72 h. After that,
the tumor cells were then treated with the freshly produced MTT and incubated at 37
◦C for 4 h. The formed formazan crystals in each well were dissolved in 100 µL DMSO.
The absorbency was measured at 570 nm using a M1000Pro ELISA plate reader (Tecan,
Männedorf, Switzerland). The half-inhibitory concentration (IC50) was estimated using
non-linear regression analysis.
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3.7. Cell Apoptosis Assay

Apoptosis assay was performed as previously described [35]. H1975 cells were seeded
in 6-well plates at 3 × 105 per well, and PC-9 cells and A549 were seeded at 2 × 105 per well.
One day later, different concentrations of compounds were added to continue incuba-
tion for 48 h. The original medium was collected, washed with pre-cooled PBS, pancre-
atin without EDTA were added, digestion was terminated with the collected original
medium, the collected cells were centrifuged at 1000× g, 5 min, the cells were cleaned
with PBS, and were centrifuged again. Then disposed with an Annexin V-FITC apoptosis
detection kit (Beyotime-C1062L, BD Biosciences, San Jose, CA, USA) according to the in-
structions and apoptosis rate was determined by Flow Cytometry (LSRFortessa X-20, BD
Biosciences, USA).

4. Conclusions

In this study, virtual screening based on molecular docking was employed to dis-
cover novel EGFR inhibitors, which was conducted on ChemDiv and Enamine commercial
databases using Glide HTVS, SP and XP mode. After multi-step VS and visual evaluation,
a total of 23 structurally unique and diverse compounds were chosen. ADMET proper-
ties of all compounds predicted by using Qikprop fall within an acceptable range. The
molecular dynamics simulations (100 ns) demonstrated that ZINC49691377 formed a sta-
ble complex with EGFR and exhibited the conserved hydrogen bond interactions with
Lys 745 and Asp855 of EGFR over the course of simulation. All compounds were fur-
ther subjected into experimental testing. The representative ZINC49691377 showed good
anti-proliferative activity against H1975 and PC-9 cells with IC50 values of 10.02 µM and
20.48 µM, respectively, with no obvious inhibitory activity against A549, HaCaT and H3122
cells (IC50 > 100 µM), showing good cellular selectivity. Meanwhile, apoptosis analysis
indicated that compound ZINC49691377 can effectively induce apoptosis of H1975 and
PC-9 cells in a dose-dependent manner, with no significant effect on the apoptosis of A549
cell line at given concentrations. These results indicate that compound ZINC4961377 with
a new scaffold can be considered as a good point for further optimization.
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