
Citation: Mező, G.; Gomena, J.;
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Abstract: Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Neverthe-
less, its poor selectivity causes severe toxic side effects that, together with the development of drug
resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a
possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promis-
ing targeting moieties for drug delivery. However, the development of peptide–drug conjugates
(PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation,
but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose,
suitable linker systems are needed that connect the drug molecule with the homing peptide. The
applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the
groups possess advantages and disadvantages that are summarized briefly in this manuscript. More-
over, in this review paper, we highlight the benefit of oxime-linked anthracycline–peptide conjugates
in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction
proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select
the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used
properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates
for targeted tumor therapy.

Keywords: targeted tumor therapy; peptide–drug conjugates; homing peptides; daunomycin; oxime
linkage; in vivo tumor growth inhibition

1. Introduction

Cancer is currently the second leading cause of death globally, with 10 million deaths
in 2020 worldwide. The number of new cases is expected to increase from 19.2 million to
28.4 million by 2040 [1,2]. One of the main therapeutic approaches for cancer is chemother-
apy. Nevertheless, most cytotoxic agents applied in clinics for cancer chemotherapy show a
narrow therapeutic window because of their inability to distinguish between the cancer
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and healthy cells, resulting in toxic side effects [3]. In addition, resistance to drugs may
develop during the treatment, preventing complete tumor regression. To overcome these
drawbacks, targeted therapeutic approaches that increase tumor selectivity have been
investigated [4–6]. For this purpose, an anticancer drug is attached to a targeting moiety
that can specifically bind to the tumor-related and/or overexpressed receptors on the cancer
cells [7,8]. Two types of drug delivery systems (DDSs) are mainly applied: antibody–drug
conjugates (ADCs) and small-molecule–drug conjugates (SMDCs) [9]. Among the latter
ones, there is a special interest in peptide–drug conjugates (PDCs) [10]. Peptides, similarly
to antibodies, can exhibit high binding affinities to the cell surface receptors; therefore,
they hold a great potential as efficient homing devices for drug targeting. Although sev-
eral ADCs are in clinical use to treat different types of tumors [11], PDCs provide some
advantages, such as a lack of or reduced immunogenicity, better tissue penetration and
an internalization capability, as well as lower costs of production, while possessing high
selectivity for their target [9,10,12]. Their structures have been well characterized, and
their relative drug content is higher compared to that of the ADCs. However, the PDCs
are degraded and eliminated from the bloodstream quite rapidly. Despite this drawback,
the mentioned benefits keep the interest in PDCs at a high level, especially the ones with
increased plasma stability. In addition, the existence of many tumor types with different
cell surface structures, despite deriving from the same organs, call for the treatment of a
broad spectrum of cancers and the development of a large number and variety of homing
devices [10].

PDCs usually consist of three parts: (i) the homing peptide that recognizes the cell
surface receptor or other proteins on the cancer cells, (ii) the payload (appropriate drug
molecule) and (iii) a spacer/linker that connects the homing peptide and the payload
(Figure 1). The linker system plays a very important role in drug release, which may
influence the anticancer activity of the conjugates. However, it is more substantial to
find suitable homing peptides that can deliver the drug to cancer cells with high efficacy
and selectivity. In addition, there are many different receptors on tumor cells that can be
targeted by DDSs; furthermore, the receptor population varies depending on the tumors.
Considering that there are many different receptors expressed on tumor cells which can be
targeted by peptides, the development of numerous PDCs has significant relevance [13].
There are well-known receptors (e.g., some hormone receptors) that are overexpressed on
tumor cells [14,15], but many more targets and associated homing devices have been dis-
covered by phage display [16,17]. Nevertheless, a significant effort is required to optimize
the structure of the homing peptides to increase their activity, selectivity and stability [18].
It is worth mentioning, that the synthesis of PDCs can be problematic, and because of the
low yield, they might not be suitable as drug candidates [19]. To overcome this drawback,
15 years ago, we started to investigate a new structure of PDC based on an oxime link-
age [20]. According to the results obtained throughout the years, we conclude that this
linker strategy offers various benefits for the identification of suitable homing peptides for
drug delivery. This efficient and cheap ligation method allows for the fast analysis and
comparison of various homing devices. The best candidates can be selected for further
optimization using other drugs and/or linkers to develop conjugates with even higher
anticancer activity. The oxime-linked PDCs can also be prepared without problems in large
amounts for in vivo experiments. Therefore, this ligation method provides an efficient tool
for the development of PDCs for therapeutic purposes.
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Figure 1. Schematic of three-component structure of peptide–drug conjugates.

2. Linker Systems

In DDSs, the linker connects the drug with the homing motive by covalent bonding.
Thus, the linkers are bifunctional compounds suitable for chemical reactions with functional
groups both on the targeting moiety and on the payload (Figure 1) [4]. An appropriate
linker should provide stability to the conjugate during circulation to prevent the premature
release of the toxic agent, leading to off-target toxicity that might cause serious side effects.
Nevertheless, the toxic payload or its active metabolite should be released in the targeted
cancer cells efficiently to exert the desired antitumor effect. The PDCs enter the tumor cells
mainly by receptor-mediated endocytosis, followed by accumulation in the endosomes and
lysosomes, where the pH is significantly lower (4.5–6) in comparison with the extracellular
environment (7.2–7.4). In addition, lysosomal enzymes like cathepsin B can take part in
the degradation process. It should be considered that the linker is introduced during the
synthesis process of a DDS. Therefore, the ligation reactions need to be selective, and the
obtained conjugate has to be stable under further synthesis conditions and the working-up
procedures. There are several applied cleavable and non-cleavable linker systems that had
been well described in numerous publications. A broad overview about peptide–drug
conjugates with different linkages and applications was published in 2018 by Chatzidiseri
and co-workers [21]. Therefore, we discuss here only the most widely linkage systems for
peptide–drug conjugates with some recently published examples (Table 1).

Table 1. Advantages and disadvantages of different linker systems.

Linkage Used Functional Groups on
Peptides and Drugs Advantage Disadvantage Refs.

Ester
-CO-O- -COOH + HO- free drug release by

esterases or pH

not fully stable in
circulation;

no selective bond
formation, low yield;

O-N acyl shift

[22–24]

Hydrazone
-CO-NH-N=C- -CO-NH-NH2 + O=C<

bond formation by
chemo-selective

ligation; free drug
release at pH < 5 (in

lysosomes)

difficulties during the
purification because of

acid sensitivity
[25–28]

Self-immolative
-NH-Bz-O-CO-NH-

c Y-CO-O-(CH2)2-S-S-C-

-Aaa1-Aaa2-PABC-X a +
NH2-

-COOH + HO-(CH2)2-S-S-C-

enzyme or GSH b

cleavable spacers; the
free drug can be

released; it increases
the distance between

the drug and the
homing peptide

it might influence the
receptor affinity of

peptide–drug
conjugates

[19,29–35]
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Table 1. Cont.

Linkage Used Functional Groups on
Peptides and Drugs Advantage Disadvantage Refs.

Disulfide
-C-S-S-C- -SH + HS-

drug release is easy
under reductive

circumstances in tumor
cells

rarely used for direct
drug conjugation;

additional
self-immolative spacer

is required;
the asymmetric

disulfide bonds are not
adequately stable

[36–39]

Amide
-C-CO-NH-C- -COOH + H2N-

selective conjugation is
not easy; in the most
cases, there is no free

drug release

[19,32,40–43]

Thioether
-C-S-C-

-Mal c + HS-
or

-CO-CH2-Cl + HS-

bond formation by
chemo-selective

ligation (by alkylation
or Michael addition)

no free drug release;
disulfide byproduct
during the thioether

bond formation;
sulfide oxidation

[35]

Oxime
-C-O-N=C- -CO-CH2-O-NH2 + O=C<

bond formation by
chemo-selective

ligation with
quantitative reaction;

active metabolite
release

no free drug release [20,44–47]

a Aaa1-Aaa2: Val-Cit, Val-Ala and Phe-Lys; PABC-X: 4-aminobenzyl-4-nitrophenyl carbonate. (X might be a
different active ester as well); b GSH: glutathione; Y: CH2, NH or O; c Mal: maleimid.

2.1. Ester Linkage

In the first peptide–drug conjugates, an ester linkage was preferred because many
of drugs contain an appropriate hydroxyl group for conjugation, and it provides easy
drug release. Usually, succinic or glutaric anhydrides are used to insert the linker for ester
linkages. After the formation of a stable amide bond to an amino group of the peptide, the
free carboxylic group is conjugated to a hydroxyl function on the drug molecule, resulting
in an ester linkage. Many anticancer agents (e.g., doxorubicin (Dox), paclitaxel (PTX),
camptothecin (CPT), gemcitabine and dimethylglycine etoposide) have been conjugated
to homing peptides in this way [23,24,48–50]. The ester bond can be hydrolyzed enzymat-
ically after internalization by the esterases in the cancer cells, and thus, release the free
drug, which provides a strong antitumor effect. Furthermore, the esters can be cleaved in
lysosomes by using pH-responsive linkers [22]. However, the ester bond is not fully stable
in the extracellular environment; early release can occur in circulation before reaching the
target cells. This might be the reason why the effect of the rather promising Zoptarelin
Doxorubicin (a GnRH derivative–doxorubicin conjugate) did not significantly differ from
that of free Dox in clinical trials [51]. In addition, considering that the concentration of
esterases in mice blood is higher than that in human blood, esterase inhibitors have been
used in preclinical studies to prevent the decomposition of the PDCs [52]. Furthermore,
we observed an O-to-N acyl shift (from the aglycone part to the amino-sugar moiety in
Dox) during synthesis that has been verified by the fragmentation of the glycosidic bond
using tandem mass spectrometric analysis [53–55]. The acylation of the amino group of
anthracyclines might lead to the loss of antitumor activity [56].

2.2. Hydrazone Linkage

Hydrazone bonds can be generated between carbonyl-containing cytotoxic agents and
hydrazide-containing peptides in slightly acidic conditions. It has been written that they
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are stable under physiological conditions, but highly sensitive to acids and decompose
under pH 5 [26]. Therefore, the hydrazone-linked drug molecule can be released easily
in lysosomes, providing very good in vitro IC50 values, but these results might not be
relevant for the prediction of in vivo data. In addition, the pH sensitivity of the hydrazone
bond prevents the application of the widely applied RP-HPLC conditions, making the
isolation procedure of these PDCs more difficult and providing lower yields [53]. Moreover,
some studies indicated that these types of conjugates are unstable during circulation,
causing substantial side effects in vivo. However, the hydrolysis rate and the corresponding
stability profile of hydrazone linkers are highly variable compared to those of the other
cleavable linker systems, which affect their utility [57]. Recently, doxorubicin has been
the most applied drug for the development of peptide–drug conjugates with a hydrazone
linkage [25–28].

2.3. Self-Immolative Linkers

Using self-immolative spacers is highly accepted because the free drug can be released
from these constructs in tumor cells by enzymes or under reductive circumstances, while
they are fairly stable in circulation. Self-immolative linkers are covalent constructs that
disassemble in response to specific stimuli via intramolecular reactions that lead to sta-
ble products [58]. One prominent example is the enzyme-cleavable spacer consisting of
p-aminobenzyl alcohol (PAB), which is often combined with enzyme cleavage site mo-
tifs, like cathepsin B-cleavable dipeptides (mainly Val-Ala, Val-Cit and Phe-Lys), that can
connect different hydroxyl- or amine-containing drugs to the targeting peptides. In these
structures, the amino function of PAB is acylated by the carboxyl group of the dipeptide,
and the -OH group forms either a p-aminobenzyl carbonate or carbamate (PABC) with
the drug molecule. The N-terminus of the dipeptide can be attached to amino, thiol or
azido functions of the homing moiety through bifunctional agents (e.g., glutaric acid,
maleimidohexanoic acid and pentynoic acid) via amide, thioether or triazole bonds, respec-
tively [29]. After the internalization of the PDCs, the amide bond between the cathepsin
B-cleavable dipeptide and PABC is enzymatically hydrolyzed in the lysosomes, followed
by the 1,6-elimination of the PABC moiety, resulting in the release of the free drug. This
type of spacer increases the distance between the original stimulus-responsive cleavage
site and the drug, providing the efficient release of a prodrug with an instable residual
spacer structure. However, the influence of a larger spacer on the receptor recognition of
the homing peptide is rarely investigated.

In our recent study, GnRH derivative–drug conjugates with a self-immolative linker
showed a significantly (on average, 5–10 times) lower receptor binding affinity in com-
parison to that of the oxime-linked conjugates, indicating that the linker structure has an
impact on antitumor activity [19]. Nevertheless, this might be highly influenced by the
peptide sequence and conjugation site. In addition, the development of conjugates with
self-immolative spacers involves several reaction steps with low overall yields [19].

An additional widely used self-immolative linker is a disulfide-containing linker
combined with ester, carbonate and carbamate for connection to the drug molecules. These
linkers can be cleaved within the intracellular reducing environment by GSH, followed by
thiirene release, providing the free drug [28,30,32,34].

2.4. Disulfide Bond

The strategy behind the use of disulfide bonds between a targeting peptide and a
drug molecule relies on the reductive environment in cancer [59]. Disulfide crosslink-
ing has been widely applied to improve the stability of drug cargos in the extracellular
milieu, while promoting smooth release after the cellular uptake thanks to the 1000-fold
concentration ratio of glutathione between the intracellular and extracellular environments
(10 mM vs. 10 µM). Indeed, this strategy substantially stabilized the complexes in blood
circulation and promoted the efficient release of drug cargos, ranging from proteins to
nucleic acids [36,37]. Considering that the majority of the known anticancer drugs do
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not contain thiol groups, self-immolative linkers based on 1,6-elimination are combined
with thiol-assisted cyclization in the applied linker system (see above) [34]. Moreover, it
is worth mentioning that the stability of disulfide bonds, especially the asymmetric ones,
is not always adequate [60]. Therefore, this must be monitored during in vitro biological
assays and in the blood plasma. For the development of appropriate disulfide linkages,
usually a bifunctional reagent (N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP)) is
first attached to the amino functional group on the peptide and followed by a thiol exchange
reaction [38]. If possible, the application of 3- or 5-nitro-2-pyridinesulfenyl (Npys) instead
of 3-(2-pyridyldithio)propionate is preferred to achieve thiol exchange in a slightly acidic
condition, thus preventing the unwanted disulfide rearrangement that can happen in a
slightly alkaline condition [39].

2.5. Amide Bond

The attachment of homing peptides through amide bond requires an amino- or car-
boxyl functional group on the drug molecules, such as anthracycline [19,40], methotrexate
(MTX) [32,41] or chlorambucil (CLB) [42,43]. However, the biological effect of these drugs
is the greatest when the functional group is free (i.e., amine on the anthracycline, carboxyl
group, especially the γ-carboxyl on MTX, or on chlorambucil). The direct coupling of these
two components very rarely results in conjugates with significant tumor growth inhibition
because of poor drug release. The effect of the conjugates highly depends on the released
metabolites, but they are rarely investigated. In the case of MTX, an additional difficulty is
the selective functionalization of the appropriate carboxyl group and racemization. When
MTX is randomly attached to the amino group of a peptide, mainly the γ-carboxyl group of
the glutamic acid moiety acylates, affording both L-α- and D-α-isomers, but the separation
of the isomers of larger peptides is problematic. It is also well known that the free amino
group on the sugar moiety of anthracyclines is important to exert antitumor activity. There-
fore, conjugates with adequate antitumor activity are preferably obtained by connecting
these to the homing peptides via self-immolative linkers or through enzyme labile spacer
(e.g., GFLG) [19,40]. Neuropeptide Y derivatives are attached to MTX directly or through
either a GFLG spacer or a self-immolative spacer (disulfide/ester), releasing thiirene and
free MTX after intracellular reduction [32,41]; this leads to a significantly higher bioactivity
level. Böhme et al. attached CLB to an integrin-binding RGD peptide through amide-, ester-
and carbamate bonds [32]. They reported that the amide bond has higher chemo- and
biostability that the other two, but detected no release of the free drug, resulting in a lower
in vitro antitumor activity level. Recently, daunomycin was conjugated to GnRH peptides
either through an amide bond by the aid of a glutaric acid linker or by a self-immolative
linker on the sugar moiety [19]. The drug release and antitumor activity of the conjugates
were compared. The results demonstrated that the conjugate obtained with the amide bond
could not release the free drug and had a lower in vitro antitumor activity level than the
others. All these results suggest that the direct amide linkage between the homing peptides
and drug molecule should not be the preferred route for the development of potential drug
candidates for targeted tumor therapy.

2.6. Thioether Linkage

A thioether bond formed by the chemo-s elective ligation of thiol and haloacetyl groups
is one of the most stable ones in both chemical and biological environments. Therefore, the
direct coupling of drugs to homing peptides via such a type of thioether linkage is not often
used for drug targeting. Nevertheless, the application of a thioether linkage in PDCs that
can be developed easily by chemo-selective ligation, which is quite popular. However, in
these cases, the applied bifunctional linkers are attached to the homing peptides through a
thioether bond using Cys in the peptides, maleimide or a more reactive chloroacetyl group
in the linker. The other functional group of the linker is connected to the drug with other
types of bonds. Therefore, drug or metabolite release is influenced rather by this linkage,
not by the thioether bond [35]. It worth mentioning that the substituted succinimide ring
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developed through a Michael addition reaction is not always stable and may open. In
addition, the thioether bond may oxidize to form sulfoxide derivatives.

It is worth noting that in the conjugates applied for diagnosis (PET and MRI) or
targeted radiotherapy, the homing peptide can be attached to the radiolabeled chelator
directly through a non-cleavable covalent bond because the release from the peptide is not
required for efficiency [61]. This is the case also when drug-loaded targeted nanocarriers
are used for therapeutic approaches [62]. For these purposes, the application of a thioether
linkage is an excellent choice because it can be developed easily by chemo-selective ligation
with a good yield.

2.7. Oxime Linkage

The oxime bond belongs to the family of non-cleavable linkers. This type of linkage
can be obtained by the reaction of a carbonyl group (either aldehyde or ketone) and an
alkoxyamine functional group, but most often by an aminooxyacetylated amino group on
the homing peptide. This chemo-selective click-type reaction proceeds fast in a slightly
acidic buffer solution (pH 5–6) with excellent yields (almost quantitative) [20]. The oxime
bond is relatively stable in a broad pH range, from pH 2 to 9 [44]. Therefore, the oximes
are more stable against hydrolysis than the imines and hydrazones, but they are less stable
than the triazoles formed by azide-alkyne cycloaddition and thioether linkage. The oxime
linkage is also stable under physiological conditions; therefore, it has been widely used for
the development of different bioconjugates, peptide–polymer conjugates, oligonucleotide
conjugates, glycoconjugates, labelled bioconjugates, targeted liposomes and large proteins,
by fragment assembly with chemo-selective ligation [45–47]. However, this is applied very
rarely to PDCs because of the lack of free drug release.

In this manuscript, we provide an overview of the possibilities of applying oxime-
linked PDCs for the development of drug candidates for targeted tumor therapy.

3. Synthesis of Oxime-Linked Peptide–Drug Conjugates

The crucial steps during the synthesis of aminooxyacetylated peptides are the incorpo-
ration of aminooxyacetic acid (Aoa), including a protecting group, and the final cleavage
and the working-up procedure of the Aoa-containing peptide derivatives (Scheme 1). In
most cases, Boc-protected Aoa is attached to a peptide chain in the last step of solid-phase
peptide synthesis [63]. It has been observed that over-acylation (additional Boc-Aoa-OH
connected to the Aoa moiety) may occur as the main side reaction. Many approaches have
been investigated to overcome this problem, including carbodiimide-mediated one-pot
acylation without a base or the application of Boc-Aoa-OSu active ester as an acylating
agent, as well as the use of a high excess (8 equiv) of Boc-Aoa-OH and coupling agents for a
short acylation time (10 min) [64,65]. Nevertheless, the coupling of the diBoc-protected Aoa
derivative has proved to be the best solution [66]. However, the aminooxyacetyl moiety
is very sensitive to molecules containing carbonyl groups, with the partial impact of the
peptide sequence. Therefore, the free NH2-O-R group reacts often with these compounds
during the working-up procedure after the final cleavage of Aoa-modified peptides from
the resin. These carbonyl group-containing derivatives might come from the plastic tubes
or residues of acetone used in a laboratory. This cannot be prevented even by using diBoc-
protected Aoa or working in argon. We found a highly sensitive peptide to this side reaction;
the synthesis of a somatostatin analog developed in Schally’s laboratory [67] elongated with
Aoa (H-Aoa-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2) was unsuccessful. After sev-
eral trials to optimize the reaction conditions, we elaborated the following procedure: The
semi-protected peptide H-D-Phe-Cys-Tyr-D-Trp-Lys(Dde)-Val-Cys-Thr-NH2 was cleaved
from Rink Amide MBHA resin and reacted with Boc-Aoa-OPcp to incorporate Aoa into
the N-terminus in a solution [68]. After the efficient coupling reaction, the Dde-protecting
group was removed with 2% hydrazine in DMF. Surprisingly, during the cleavage of Dde,
a cyclic peptide also formed (Boc-Aoa-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2). The
Boc group was cleaved in 95% TFA solution in the presence of 10 equiv-free Aoa as a
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“carbonyl capture” reagent that could prevent the reaction of the peptide with any carbonyl
derivative. The crude product was purified by RP-HPLC, and the solvent was evaporated,
followed by direct ligation to daunomycin (Dau) in 0.2 M NaOAc solution at pH 5. This
procedure proved to be very efficient to prepare oxime-linked Dau-peptide conjugates.
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Later, isopropylidene-protected Aoa was investigated in our laboratory as an alterna-
tive to 1-ethoxyethylidene to prevent over-acylation [69]. The preparation of this compound
is simple: free Aoa is dissolved in acetone, and the solvent is then evaporated. The crys-
talline compounds can be used directly for coupling. However, this protecting group is
moderately labile to the cleavage conditions of the peptide from the resin. Depending on
the sequence next to the isopropylidene-protected Aoa peptide, some unprotected com-
pounds can be detected by HPLC. It is worth collecting this fraction as well and using it
for conjugation as described above. The isopropylidene group can be removed from the
lyophilized protected fraction with 1 M methoxyamine under a slightly acidic condition (0.2
M NaOAc solution at pH 5), followed by the same working-up procedure and conjugation
to Dau (Scheme 1).

4. Development of Oxime-Linked Peptide–Daunomycin Conjugate

Anthracyclines are widely used in cancer chemotherapy, and they are one of the most
important derivatives in the development of PDCs. The autofluorescence properties of
anthracyclines represent the main benefit for their use as payloads for our conjugates. This
feature enables the investigation of cellular uptake and localization by flow cytometry
and/or confocal microscopy without using an additional fluorescent dye. As a result, all the
in vitro and in vivo experiments can be performed using the same batch of each conjugate.
The first oxime-linked Dau and Dox conjugates were developed by Pessi et al. [70]. It
was indicated that the carbonyl group in position 13 of Dau is more reactive in oxime
bond formation than that of Dox. Therefore, in our research, Dau was applied for the
development of oxime-linked PDCs. Chemo-selective ligation can be performed under
slightly acidic conditions (e.g., 0.2 M NaOAc or NH4OAc buffer solution at pH 4–5) [20].
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This click-type reaction provides the conjugate in a good yield (close to 100%) in few
hours (depending on the peptide) in the presence of a minor excess of Dau. Therefore, the
purification of the conjugate is simple because of the lack of a side product and results in a
negligible loss of the final product.

4.1. Degradation of Oxime-Linked Peptide–Drug Conjugates in the Presence of Cathepsin B or
Lysosomal Homogenate

Since the oxime bond is a non-cleavable linkage, it is important to identify the drug-
containing metabolites released during the degradation of conjugates after their internal-
ization into cells. Therefore, the proteolysis of many conjugates was investigated in the
presence of cathepsin B, a lysosomal enzyme over-expressed in tumor cells and in rat liver
lysosomal homogenate [71]. It was observed that the cleavage sites are similar in both
the systems, but more cleavage sites were detected in the lysosomal homogenates [53,72].
Therefore, the latter one might be more relevant for these experiments. The smallest
Dau-containing metabolite detected after incubation in lysosomal homogenate is Dau=Aoa-
Aaa-OH, where Aaa is the amino acid of the homing peptide to which Dau is connected
via the oxime linkage [72]. For instance, H-Lys(Dau=Aoa)-OH is released when the drug
molecule is connected to the side chain of Lys. However, depending on the peptide se-
quence, sometimes this metabolite could not be observed, and the metabolites with larger
peptide fragments were not active. The incorporation of a cathepsin B-cleavable spacer
(e.g., GFLG or LRRY) between the homing peptide and the Aoa moiety might overcome
this problem [58,73].

Because the smallest Dau-containing metabolites differ depending on the amino acid
linked to Aoa; some relevant metabolites have been synthesized to investigate their DNA
binding activity [72]. The structure of these metabolites and their apparent equilibrium
binding constants are presented in Figure 2.
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The binding affinity was lower in the case of the larger fragments. According to these
results, it can be concluded that the metabolites are able to bind to DNA, but with less
affinity than Dau itself. The binding efficacy depends on the amino acids remaining in
the metabolite, and thus, has an impact on the antitumor activity of the conjugates. This
observation suggests that different homing peptides with different amino acids on their
N-terminus cannot be compared directly; therefore, the incorporation of the same enzyme-
labile spacer between the homing peptide and Aoa moiety is recommended in the case of
comparative studies. Conjugates providing the same metabolite allow for an appropriate
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comparison of the targeting efficacy of homing moieties. It is worth mentioning that the
fluorescence intensity of the smallest metabolites is similar to that of free Dau [72]. Thus,
the cellular uptake of free Dau and the conjugates can be followed properly.

4.2. Cardiotoxicity of Oxime-Linked Anthracycline–Peptide Conjugates

The main drug-related toxic side effect of anthracyclines is cardiotoxicity, leading
to cardiomyopathy and heart failure [74]. Comparative experiments to determine the
cardiotoxicity of peptide–anthracycline conjugates with different linkages might be infor-
mative for the other conjugates with different types of drugs as well. For this purpose,
human cardiomyocytes (HCM) and human umbilical vein endothelial cells (HUVEC) were
used as models. The long-term (0–72 h) cytotoxic effect of sixteen GnRH-based conju-
gates containing Dox and Dau was determined by real-time impedimetric sensing using
the xCELLigence SP system (ACEA Biosciences, San Diego, CA, USA) [75]. The results
indicated that the ester-linked GnRH-Dox conjugates, including Zoptarelin Doxorubicin,
showed significant toxicity at 100 nM and 1 µM, which was remarkably pronounced on the
HCM cells. The cytotoxic effect was comparable to that of the free drug, especially at the
highest concentration. In contrast, the conjugates with oxime-linked Dau showed no or
only a minor toxicity on both the cell lines (Table 2). These data confirm that the linkage
between the payload and homing peptide has a significant influence on early drug release
and, consequently, an undesired toxic side effect. We may also conclude that the search for
more suitable homing peptides might be more important than the application of cleavable
bonds between the drug and the peptide to develop efficient DDSs.

Table 2. Comparative study of cytotoxic effects and cardiotoxicity elicited by selected GnRH-based
anthracycline conjugates.

Types of the Compounds Names of the Compounds IC50 Values (µM) Cardiotoxicity

MCF-7 a HT-29 b HCM c HUVEC d

drug molecules doxorubicin (Dox) 0.1 ± 0.0 0.1 ± 0.0 +++ +++
daunorubicin (Dau) 0.4 ± 0.1 0.3 ± 0.2 +++ +++

reference conjugate with
ester bond-linked Dox Zoptarelin Doxorubicin 0.2 ± 0.1 1.9 ± 0.3 +++ +++

GnRH-III conjugate with
ester bond-linked Dox [8Lys(Dox-O-glut)]-GnRH-III 0.1 ± 0.1 2.4 ± 0.2 +++ +++

GnRH-III conjugate with
oxime bond-linked Dau [8Lys(Dau=Aoa)]-GnRH-III 6.5 ± 1.8 27.8 ± 4.2 0 0

[8Lys(Dau=Aoa-GFLG)]-GnRH-III 3.9 ± 1.2 22.5 ± 1.7 + ++
[8Lys(Dau=Aoa-LRRY)]-GnRH-III 1.8 ± 0.5 28.6 ± 5.5 + ++
[4Lys(Ac),8Lys(Dau=Aoa)]-GnRH-

III
3.1 ± 1.7 7.4 ± 2.6 + 0

GnRH-III conjugates with
two oxime bond-linked

Dau

[4Lys(Dau=Aoa),8Lys(Dau=Aoa)]-
GnRH-III

2.9 ± 0.9 6.8 ± 1.0 + 0

[8Lys(Dau=Aoa-K(Dau=Aoa))]-
GnRH-III

3.0 ± 0.4 5.6 ± 2.0 0 0

0: no cardiotoxicity; +: weak, ++: moderate; +++: strong cardiotoxicity. Cells: a human breast adenocarcinoma
(MCF-7), b human colorectal adenocarcinoma (HT-29)-derived cell lines as representative tumor cells. c Human
cardiac myocytes (HCM) and d human umbilical vein endothelial cells (HUVEC) were studied as healthy, cardiac
model cells.

4.3. Application of Oxime-Linked Peptide–Daunomycin Conjugates for the Development of
Appropriate Drug Delivery Systems

Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipopro-
tein receptor-related protein-1 (LRP1), which can cross the blood–brain barrier via receptor-
mediated transcytosis and simultaneously target glioblastomas [76]. This peptide contains
three amino groups as possible conjugation sites, and all of them have usually been used to
produce PDCs [50,77]. Recently, we have studied the influence of these conjugation sites
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on the bioactivity of the conjugates on U87 human glioblastoma cells [78]. It was indicated
that the attachment of Dau via an oxime linkage at the side chain of Lys in position 15
significantly decreases the cellular uptake rate, and hence, the cytostatic effect of the conju-
gate, even if the desired drug metabolite was rapidly released in lysosomal homogenate.
In contrast, the modification of the side chain of Lys in position 10 provided efficient
cellular uptake, but resulted in the low-level cytostatic effect of the PDC. Most probably,
steric hindrance hampers the interaction with lysosomal enzymes, and subsequently, drug
release. In contrast, N-terminal modification with oxime-linked Dau showed adequate
cellular uptake and drug release, providing the most efficient conjugate (Figure 3). This
study indicates that the antitumor activity of such conjugates depends on many factors,
and the position of the drug may be more important than the number of the payloads
attached. Moreover, the increase in the cellular uptake of conjugates with a substituted
10Lys supports the suggestion that this position might be preferred for the attachment of
compounds that should not be released to cause antitumor activity (e.g., radioligands and
fatty acids).
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4.4. In Vivo Acute and Chronic Toxicity of Oxime-Linked Daunomycin–Peptide Conjugates

The most widely studied oxime-linked daunomycin–peptide conjugates were GnRH-
III-based derivatives. GnRH-III (<EHWSHDWKPG-NH2, where <E is pyroglutamic acid)
was first isolated from sea lamprey and has a very low-level hormonal effect in mam-
mals, but binds to both the human GnRH receptors (GnRH-IR and GnRH-IIR) [79]. Since
GnRH-III reveals a significant antiproliferative effect, GnRH-III derivatives may be putative
homing peptides for drug delivery, especially for the treatment of hormone-independent tu-
mors [80]. Nevertheless, the results of the in vivo acute and chronic toxicity measurements
of [8Lys(Dau=Aoa-GFLG)]-GnRH-III were representative of the other oxime bond-linked
GnRH-III-Dau conjugates with different homing peptides too. Acute toxicity was investi-
gated either on healthy adult Balb/c female mice or on immunodeficient mice [20,81–83].
The experiments lasted 14 days after a single treatment. The GnRH-III conjugates were
not toxic up to 30–50 mg Dau content of conjugates per kg body weight on the immuno-
competent mice and 20 mg Dau content/kg on the immunodeficient mice (either i.p. or
i.v. administration). In the case of the chronic toxicity studies, the appropriate dose of
conjugates with 15 mg Dau content (after optimization studies) was applied using five
treatments on every fourth day without any significant toxicity even on the immunodefi-
cient mice. Nevertheless, the results of the in vivo acute and chronic toxicity measurements
were representative of the other conjugates with different homing peptides too. Similarly,
bombesin-based Dau conjugates were reported to be safe up to 20 mg Dau content/kg on
the NSG mice in chronic toxicity studies [84]. In contrast, free Dau showed remarkable
toxicity at a dose >2 mg/kg on the healthy mice and >1 mg/kg on the immunodeficient
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mice. The results indicated that the conjugates are not toxic even at a much higher dose
than the free Dau.

4.5. In Vivo Tumor Growth Inhibition with Oxime-Linked Daunomycin–Peptide Conjugates

According to in vitro studies, the antitumor effect of the oxime-linked daunomycin–
peptide conjugates is 1–2 orders of magnitude lower (µM range) than the efficacy of the
free drug (several hundred nM), depending on the homing peptide and the tested cell
line [18,83]. However, it has to be taken into account that the free drug can enter the cells
by passive diffusion, while the conjugates are taken up by receptor-mediated endocytosis.
Therefore, the drug concentration will always be higher in the cells in vitro in the case of
the free drug. The difference might be smaller when multidrug-resistant cells are used
for in vitro studies. In addition, in 3D cell cultures like spheroids, the free drug is taken
up by the upper cells in the spheroids, while the conjugates can reach the cells that are
closer to the core [85]. Nevertheless, while in vitro studies are suitable for the comparison
of different conjugates, the real applicability of these conjugates can only be answered by
in vivo experiments.

For in vivo experiments, the tumors were either inoculated subcutaneously (s.c., the
most widely used protocol) or orthotopically (breast and colon tumors) in mice [20,81–83,86].
In some cases, the conjugates that showed significant tumor growth inhibition on the s.c.-
developed tumors were not potent on the orthotopically developed ones [82]. Therefore,
orthotopic implantation is preferred if it is possible. In most cases, the conjugates showed
higher tumor growth inhibition at the applied dose than the free drug at the maximum
tolerated dose. Moreover, the conjugates displayed significantly less toxicity and resulted
in the longer survival of the animals in comparison with free Dau administration. The
mice treated with Dau had to be sacrificed earlier in many cases because of their significant
weight loss. The conjugates also showed higher-level antimetastatic effects and a lower
proliferation index (reflects the extent of the proliferative activity of tumor cells) and the
vascularization of the tumor tissues in comparison with those of free Dau. Some examples
are summarized in the following paragraphs.

4.6. In Vivo Antitumor Effect of Oxime-Linked GnRH-III Derivative–Dau Conjugates

In our experiments, GnRH-III was applied as a targeting peptide. The conjugate
[8Lys(Dau=Aoa-GFLG)]-GnRH-III, in which Dau was connected to the side chain of Lys
in position 8 through an aminooxyacetylated cathepsin B-labile GFLG spacer, showed
significant tumor growth inhibition in s.c.-developed fast-growing C26 murine colon
cancer-bearing Balb/c mice [20]. The effect highly depended on the treatment schedule.
In the first attempt, the conjugate was administered i.p. at a dose of 8.86 µmol (5 mg Dau-
content/kg body weight) five times on days 7, 9, 11, 14 and 16 after tumor transplantation
(Treatment schedule A). The tumor volume inhibition was only 15.7% on day 26 when
the experiment finished. A slight enhancement in inhibition (22.3%) was detected when a
dose of conjugate corresponding to 15 mg Dau content/kg body weight (26.6 µmol) was
injected only once on day 7 (Treatment schedule B). An additional treatment on day 10
(Treatment schedule C) did not result in any further improvements (21.9% on day 29).
However, when the treatment schedule was changed to two treatments with the same
dose on days 4 and 7, 46.3% inhibition was observed on day 29 (Treatment schedule D). In
contrast, the treatments with free Dau at a dose of 2 mg/kg body weight (3.55 µmol) on
days 7, 9, 11, 14 and 16 showed only 22.6% inhibition on day 26. The median survival rates
of the treated animals in comparison to the control group were 1 (A), 1.23 (B), 1.21 (C) and
1.38 (D), respectively, and 0.81 for free Dau. These results indicate the lower toxicity and
the higher tumor volume inhibition effect of the conjugates in comparison with those of
free Dau, as well as the importance of the treatment schedule.

In another experiment, HT-29 human colon cancer was developed s.c. in immunode-
ficient SCID mice. Dau and two conjugates (with or without a GFLG spacer between the
GnRH-III homing peptide and the payload) were used for the treatment [81]. The first i.p.



Int. J. Mol. Sci. 2024, 25, 1864 13 of 25

administrations were performed on day 13 after tumor inoculation. All the mice treated
once with 2.5 mg/kg body weight (4.43 µmol) free Dau died within 10 days. In contrast,
the conjugates at a dose of 15 mg Dau content/kg body weight (26.6 µmol) that refers to
52 mg/kg [8Lys(Dau=Aoa)]-GnRH-III and 62.5 mg/kg [8Lys(Dau=Aoa-GFLG)]-GnRH-III
conjugates, respectively, did not show significant toxicity. The treatment was repeated on
days 23 and 30. Because of the significant weight loss in several mice in the control group,
the experiment was terminated on day 35. The tumor growth inhibition could be calculated
as reductions in the tumor volume by 44.3% and 57.6% and the tumor weight by 41% and
50%, respectively.

Interestingly, the conjugates were poorly effective on orthotopically developed tu-
mors [82,86]. In the case of the C26 colon tumor-bearing female Balb/c mice, only a 7%
reduction in tumor weight was detected on day 13 after the two treatments on days 4
and 7 with [8Lys(Dau=Aoa)]-GnRH-III, at a 26.6 µmol/kg (15 mg Dau content) dose. The
effect of free Dau (2 mg/kg on days 4 and 7) showed a better inhibitory effect (24.4%).
Interestingly, our novel developed GnRH-III derivative, in which Ser in position 4 was
replaced by Lys(Ac), was much more potent, with 49.3% inhibition. It is worth mentioning
that the rate of cellular uptake of the [4Lys(Ac), 8Lys(Dau=Aoa)]-GnRH-III conjugate by
the tumor cells was significantly higher than that of the conjugate with the native GnRH-III
sequence (Table 3).

Table 3. In vivo tumor growth inhibition of a few relevant Dau-GnRH-III conjugates.

Conjugates

Cytostatic
Effect

(IC50: µM)
on HT-29 cells

C26 a

s.c.
Balb/c

[%]

C26
orth.

Balb/c
[%]

HT-29 b

s.c.
SCID

[%]

HT-29
orth.

SCID
[%]

Refs.

[8Lys(Dau=Aoa)]-GnRH-III 14.2 ± 3.2 34.5 (v) 7.0 (w) 44.3 (v)
41.0 (w) n.d. [72,81,86]

[8Lys(Dau=Aoa-GFLG)]-GnRH-III
19.4 ± 3.1
27.8 ± 4.2 32.3 (v) n.d. 57.6 (v)

50.0 (w) n.d. [72,81,86]

[4Lys(Ac),8Lys(Dau=Aoa)]-GnRH-III 7.4 ± 2.6 n.d. 49.3 (w) n.d. 29.7 (w) [82,86]

[4Lys(Bu),8Lys(Dau=Aoa)]-GnRH-III
2.2 ± 0.6

15.9 ± 1.0 n.d. n.d. n.d. 39.4 (w)
80.7 (w) [73,82,83,87]

[2∆His, 3D-Tic, 4Lys(Bu),
8Lys(Dau=Aoa)]-GnRH-III

3.3 ± 0.9 n.d. n.d. n.d. 87.1 (w) [82,87]

Cells: a C26 mouse colon adenocarcinoma; b HT-29 human colon adenocarcinoma. The data cannot be compared
directly; only the results are presented in the same publications (see the reference numbers). The cellular uptake
of the conjugates increases from the top to the bottom, as listed in the table.

Starting from these promising results, Dau conjugates with further GnRH-III deriva-
tives using different short-chain fatty acids (on the side chains of Lys in position 4) were
developed [73]. The comparative in vitro experiments suggested that the most efficient one
based on the cytostatic effect, cellular uptake and stability is the butyric acid containing con-
jugate ([4Lys(Bu), 8Lys(Dau=Aoa)]-GnRH-III. Therefore, this compound was tested in vivo
and compared to the acetylated version and free Dau [82]. Their tumor growth inhibition
was investigated on orthotopically developed HT-29 human colon cancer-bearing immun-
odeficient mice. The treatment schedule was as follows: The first i.v. treatment was given
on day 5 after inoculation with a conjugate dose of 15 mg Dau content (26.6 µmol)/kg,
followed by four additional i.v. treatments twice a week. Afterwards, eight treatments at a
maintenance dose of 7.5 mg Dau content (13.3 µmol)/kg were administered i.p. twice a
week. Free Dau was injected i.v. once a week using 1 mg/kg dose for 7 weeks. The [4Lys(Ac),
8Lys(Dau=Aoa)]-GnRH-III conjugate did not show any significant tumor growth inhibition
effect (7.1% reduction in tumor weight) on this model, while [4Lys(Bu), 8Lys(Dau=Aoa)]-
GnRH-III had a significant effect, with 39.4% inhibition, which is higher than the activity
level of free Dau (29.7%). In addition, free Dau showed liver toxicity (11% relative liver
weight loss in comparison with the controls), while the conjugates significantly decreased
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the proliferation index and vascularization rate compared to free Dau and to the control.
The proliferation indexes on average were 86.3% for [4Lys(Ac), 8Lys(Dau=Aoa)]-GnRH-III,
84.5% for [4Lys(Bu), 8Lys(Dau=Aoa)]-GnRH-III and 98.6% for Dau, respectively, compared
to the controls, while the detected vascularization rates were 64.8%, 67% and 112.5%, re-
spectively. The conjugates more significantly decreased metastasis in pancreas and lymph
nodes compared to that of the control, but not to Dau. No positive effect was detected in
the lungs, livers or spleens.

The further optimization of the GnRH-III sequence lead to the discovery of ([2∆His,
3D-Tic, 4Lys(Bu), 8Lys(Dau=Aoa)]-GnRH-III as the most promising conjugate [87]. Here, the
His-Trp dipeptide fragment was replaced by D-Tic (D-tetrahydroisoquinoline-3-carboxylic
acid), a non-native amino acid. The superior in vitro cytostatic data (below 1 µM) could be
explained by the enhanced cellular uptake of this conjugate (Figure 4).
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Figure 4. Time-dependent cellular uptake of GnRH-III conjugates ([4Lys(Bu), 8Lys(Dau=Aoa)]-
GnRH-III and [2∆His, 3D-Tic, 4Lys(Bu) 8Lys(Dau=Aoa)]-GnRH-III on MCF-7 breast cancer cells
(a). Co-localization of [4Lys(Bu), 8Lys(Dau=Aoa)]-GnRH-III (40 µM) with lysosomes (CytoPainter
Lysosomal Staining Kit) after 5 min incubation and nuclei were stained with Hoechst 33342 (blue) (b).
In the early stages of cellular uptake, Dau signal is co-localized with lysosomal staining. The pictures
were captured by Carl Zeiss Microscopy (Jena, Germany) using a Plan-Apochromat 40×/1.4 Oil DIC
M27 objective. Scale bars (white line) represent 10 µm.

The antitumor effects of the previous ([4Lys(Bu)], 8Lys(Dau=Aoa)-GnRH-III) and new
lead compounds ([2∆His, 3D-Tic, 4Lys(Bu), 8Lys(Dau=Aoa)]-GnRH-III) were compared on
SCID mice with orthotopically inoculated HT-29 colon cancer [82].

The animals were treated seven times (twice a week) with 17.72 µmol conjugates
(10 mg Dau content)/kg body weight s.c. on days 7, 10, 13, 16, 20, 23 and 27. Free Dau was
administered at a 1 mg/kg dose on days 7, 13 and 20. The experiment finished on day 30,
but the animals in the group treated with Dau had to be sacrificed on day 23. The tumor
weight was reduced by 80.8% and 87.1% by the conjugates, respectively, while the value
was 84.3% for Dau. However, these numbers cannot be directly compared because the
termination days were different during the experiment. The toxicities of the compounds
were evaluated as the rate of changes in the liver and body weights (99.2% and 89.0% for
the previous and the new conjugates, and 70.6% for Dau, respectively). All these data also
confirm that the conjugates can be used at significantly higher doses, providing a similar or
even enhanced antitumor activity and fewer toxic side effects compared to the free drug.



Int. J. Mol. Sci. 2024, 25, 1864 15 of 25

5. Development of Bombesin-Based Peptide–Drug Conjugates

Like GnRH and somatostatin, bombesin (BBN) is another example of peptide hor-
556 mone which receptors are overexpressed in cancerous tissues. This 14-mer peptide
(Glp-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2), first discovered in
the skin of the frog Bombina bombina, is associated with the gastrin-releasing peptide
(GRP) as a mammalian counterpart [88,89]. The bombesin receptor family comprises
neuromedin receptor B (NMB-R, or BB1), gastrin-releasing peptide receptor (GRP-R, or
BB2) and bombesin receptor subtype 3 (BRS-3, or BB3). Among them, GRP-R has been
the most investigated so far and has been proven to be upregulated in breast, prostate,
pancreas, small-cell lung cancers, among others, hence representing a suitable target for
drug delivery to tumors [90–92]. Many attempts have been made to modify and shorten
the sequence of bombesin to tailor its stability, activity (agonist or antagonist), affinity and
selectivity towards this receptor [92–98]. Several research groups have encouraged the
use of their optimized structures as putative drug delivery systems, but they were never
directly compared. Moreover, the previous examples of conjugates between GRP-R ligands
and anthracyclines display a labile ester bond that could cause the early release of the drug
in vivo [91,99]. Therefore, our group took the leap and produced conjugates based on the
most promising bombesin analogs as homing devices attached to Dau via an oxime bond
and two cathepsin B-cleavable linkers (LRRY or GFLG) [84]. Furthermore, a conjugate
bearing a novel developed bombesin analog ([6D-Phe, 11β-Ala, 13Sta, 14Nle]-BBN(7–14))
was synthesized. The use of oxime-linked Dau as a payload promoted the identification of
three conjugates with improved cytostatic activity and cellular uptake by human prostate
(PC-3) and breast cancer (MDA-MB-231 and MDA-MB-453) cell lines. The Dau=Aoa-Leu-
OH active metabolite was readily released in all the cases in less than 30 min in rat liver
lysosomal homogenate, but only L5 (Dau=Aoa-LRRY-[6D-Phe, 13Sta, 14Leu]-BBN(7–14),
where Sta is statine) and L6 Dau=Aoa-LRRY-[6D-Phe, 11β-Ala, 13Sta, 14Nle]-BBN(7–14)
demonstrated a satisfactory stability in the mouse plasma (Table 4). Therefore, only these
two conjugates were further investigated in vivo. As mentioned above, their chronic
toxicity was assessed in healthy mice by administering the conjugates doses of 5, 10 and
20 mg Dau content/kg body weight. The PDCs were not critically harmful at any dose,
although a relatively high mouse weight loss (10–15%) was induced at the highest dose. The
in vivo antitumor efficacy was studied in murine xenograft models bearing s.c.-inoculated
PC-3 human prostatic adenocarcinoma. The conjugates were administered intraperitoneally
every fifth day starting from day 9 after tumor inoculation, for a total of five treatments, at
a dose of 10 mg Dau-content/kg body weight, and their tumor growth inhibition values
were compared to those of the mice treated with the maximum tolerated dose of free Dau
(1 mg/kg) and 0.9% saline solution (control group). On the last day of the experiment
(day 33), L5 and L6 revealed reductions in the tumor size by 21.4% and 31.4% and tumor
weights by 16.6% and 33.1% compared to those of the control, respectively (Table 4). On
the other hand, the Dau-treated group had to be terminated on day 26 because of severe
toxicity, without showing a significant reduction in the tumor volume and weight. To better
understand the long-term effect of the newly developed compounds, the tumor doubling
time (DT) was calculated; both the PDCs significantly increased the DT compared to the
treatment with free Dau.

As a result, only two among the many bombesin analogs could be identified as the
most suitable for tumor targeting through direct in vitro comparison by using the oxime
linkage strategy, but it was also demonstrated that the Dau conjugates carrying them as
homing device could improve the selectivity and reduce the toxicity of the free drug in vivo.
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Table 4. In vitro and in vivo activity of bombesin analog–daunomycin conjugates on PC3 cells.

L1: Dau=Aoa-LRRY-
QWAVGHLNle-NH2

L5: Dau=Aoa-LRRY-
fQWAVGHStaL-NH2

L6: Dau=Aoa-LRRY-
fQWAVβAlaHStaNle-NH2

cytostatic effect (IC50) 4.38 ± 0.33 µM 2.22 ± 0.19 µM 18.04 ± 3.01 µM
cellular uptake (UC50) 22.92 µM 12.35 µM 16.09 µM

active metabolite release in
lysosomal homogenate 80% at 6 h 33% at 6 h 67% at 6 h

mouse plasma stability 50% intact at 3 h 84% intact at 24 h 73% intact at 24 h
tumor volume inhibition n.d. 21.4% 31.4%
tumor weight inhibition n.d. 16.6% 33.1%
tumor DT enhancement. n.d. 8.5% 11.5%

UC50 values related to the uptake of the conjugates in PC3 cancer cell lines after 1.5 h incubation. Each value
indicates the concentration (µM) that corresponds to the internalization of 50% of the conjugate inside the
living cells.

6. Improved Antitumor Activity of Selected Homing Peptide from Phage Display
Library by Sequence Optimization

Many potential homing peptides for selective drug targeting are selected from phage
display libraries. However, their selectivity and receptor-recognizing capability highly
depend on the applied phage display technique (in vitro, in vivo or ex vivo) and the number
of selection cycles [16,100,101]. A larger number of selection cycles can lead to more potent
homing peptides. Nevertheless, we believe that the optimization of the selected homing
peptides might lead more potent carriers for targeted therapy.

6.1. Phage Display-Based Homing Peptide Linked to Daunomycin via Oxime Bond for Selective
Drug Targeting of HT-29 Colon Cancer

In our group, we synthesized conjugates based on a heptapeptide (VHLGYAT) selected
by Zhang et al. and tested them on HT-29 human colon adenocarcinoma [102]. Since
sequence modification may result in different oxime-linked Dau-amino acid fragments, a
cathepsin B- labile spacer was incorporated to the N-terminal of the homing peptide [18].
From the parent compound (Dau=Aoa-LRRY-VHLGYAT-NH2), the potential positions
that can be substituted were selected using Ala-scan. The replacement of Gly with Ala
resulted in a conjugate with higher-level cytostatic effect, thanks to the enhanced cellular
uptake of the modified compound. In the second optimization step, different amino acids
were incorporated in this position. The in vitro experiments indicated that apolar amino
acids with bulky side chains (Leu, Phe and Phe(pCl) provide conjugates with significantly
higher activity levels. For further studies, Dau=Aoa-LRRY-VHLFYAT-NH2 was selected
and compared with the parent conjugate. The in vitro cytostasis studies showed a 2–5 times
higher activity level on the different cancer cell lines, e.g., up to 2.6 times higher on HT-
29. Orthotopically developed HT-29 tumor-bearing SCID mice were used for the in vivo
experiments. One group of mice was treated with free Dau (1 mg/kg body weight) on days
13 and 20 after tumor transplantation. The groups that received the conjugates were treated
with a dose of 10 mg/kg Dau content (36.6 and 38.3 mg/kg of each conjugate, respectively)
on days 13, 16, 20, 23 and 27 after tumor transplantation using i.p. administration. The
experiments were terminated on day 30, but the animals treated with free Dau were
sacrificed on day 23 because of significant weight loss. The parent compound and the
Phe-containing conjugate reduced the tumor weight by 65% and 89% compared to that
of the control group, respectively (Figure 5a). The free drug inhibited tumor growth by
84% compared to that of the control, but it has to be pointed out that their end points were
shifted by one week. The toxicity of the free drug was also indicated by the significant
decrease in the liver weight (28% lower than the controls), while it was inferior to 10% in
case of the conjugates (Figure 5b). The proliferation index was significantly decreased (42%
for the control) by the conjugate with an optimized structure (Figure 5c).
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*, ** and *** mean significant at p < 0.05, p < 0.01 and p < 0.001, respectively. Adapted with permission
from ref. [18]. 2019, Elsevier.

By the aid of this new homing peptide, characterized by a higher affinity than the
parent compound, we could identify the most probable target receptor using affinity
chromatography, HPLC-MS and a protein database: heat shock protein 70 (Hsp70). The
Hsp70-positive tumor phenotype is associated with the aggressiveness and therapy resis-
tance of cancer, and membrane-bound Hsp70 plays a pivotal role in eliciting an antitumor
immune response [18,103,104].

6.2. Phage Display-Based Homing Peptide Linked to Daunomycin via Oxime Bond for Selective
Drug Targeting of PANC-1 Pancreatic Cancer

Several homing peptides that recognize pancreatic cancer cells and are used for
drug targeting directly or as a part of nanoparticles have been described in the litera-
ture [105–108]. One of them is the CKAAKNK oligopeptide, which has been selected by
phage display and can specifically bind to the tumor vessels in RIP-Tag2 transgenic mice, a
prototypical mouse model of multistage pancreatic islet cell carcinoma [109].

We assessed a modified version of this peptide as a homing device, where Cys was
replaced by Ser because the thiol group is not necessary to introduce an oxime linkage.
Among the prepared conjugates, Dau=Aoa-GFLG-K(Dau=Aoa)SKAAKN-OH (Figure 6)
showed the highest cellular uptake and cytotoxic activity levels in vitro on the PANC-1
cells [110]. Using this conjugate at 10 µM concentration, the cell viability of the PANC-
1 cells was 0.1% after a 72 h treatment. In contrast, the cell viability of normal human
dermal fibroblast (NHDF), a model of healthy cells, was roughly 75%, showing a significant
selectivity for tumor cells (Figure 7). From this conjugate, three drug containing metabolites
were released (Dau=Aoa-Gly-OH, Dau=Aoa-Gly-Phe-OH and H-Lys(Dau=Aoa)-OH) in
the lysosomal homogenate within 72 h (Figure 6).

The in vivo tumor growth inhibitory effect of the conjugate and free Dau was inves-
tigated on s.c.-developed PANC-1 tumor-bearing SCID female mice. The free drug was
applied once a week at a maximum tolerated dose of 1 mg/kg body weight (three treat-
ments), while the conjugate was administered, on average, three times per a week either
at a 2 mg/kg or 10 mg/kg dose, calculated as per the Dau content (eighteen treatments
altogether). The first treatment was given on day 10 after tumor inoculation. After the third
treatment with free Dau, the animals lost 20% of their weight; therefore, the mice in this
group were sacrificed on day 28. The toxic effect of the free drug was detected also by the
significant decrease in liver weight (29.1%). During this time, no significant inhibition of
tumor growth was detected in any group. The experiment with the control group and the
groups treated with the conjugate was terminated on day 74. During this time, the tumor
growth inhibition by tumor volume was 14% in the case of 2 mg/kg (Dau content) dose
and 32.2% when the 10 mg/kg (Dau content) dose was applied. It is worth mentioning
that the highest inhibition rate was observed on day 67 (after 16 treatments), when the
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tumor was reduced by 43% compared to that of the control. This might be explained by the
development of tumor resistance after a while. No toxic side effects could be observed in
the mice treated with the conjugate. The tumor growth inhibition was also evaluated by
measuring the difference in tumor weight, which showed reductions of 27.3% and 30.4%
when using 2 mg/kg and 10 mg/kg doses, respectively. In summary, the data indicated
that the conjugate developed for pancreatic cancer targeting inhibited the tumor growth
of s.c. human pancreatic cancer (PANC-1)-bearing mice significantly without causing any
toxic side effects.
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Figure 7. Comparison of the time dependent effect of Dau=Aoa-GFLG-K(Dau=Aoa)SKAAKN-OH
(10–5 M) on PANC-1 (human pancreas adenocarcinoma) and NHDF (normal human dermal fibroblast)
cell viability. The red line represents the viability (100%) of the control group (cells treated with
culture medium). Data shown are mean of 3 parallels ± SD. The significance levels are the following:
*: p < 0.05; **: p < 0.01; ***: p < 0.005.



Int. J. Mol. Sci. 2024, 25, 1864 19 of 25

7. Other Examples of Oxime-Based Conjugates for Targeted Tumor Therapy

The beneficial properties of the oxime linkage have recently been leveraged for tu-
mor therapy in a variety of other conjugates, which display other peptides [4,111,112],
antibodies [113–120], polysaccharides [121] or 19-nortestosterone [122] as carriers. We
would like to draw attention to two particular products that have reached clinical trials:
ASP1235 (previously AGS62P1; Phase I—NCT02864290) by Astellas Pharma [14,115] and
ARX788 by Ambrx (Phase II trials ongoing) [116–120]. Both are ADCs consisting of a
proprietary microtubule-targeting agent as a cytotoxic payload attached to an IgG-like
antibody. The former targets FLT3 (FMS like tyrosine kinase-3) to treat acute myelogenous
leukemia (AML), while the latter targets HER-2 (human epidermal growth factor recep-
tor 2)-expressing cancers, such as breast and gastric neoplasms. Both these monoclonal
antibodies are engineered to express a residue of p-acetyl-phenylalanine (pAF) in two
specific positions on the heavy chains to allow for the conjugation of the toxin via an oxime
bond with defined stoichiometries (drug–antibody ratio (DAR) = 2). This oxime-based
site-specific conjugation technology offers a platform to produce highly stable products
in circulation [114,116], improving the efficacy and controlling the off-target toxicities
frequently observed in the first generation of heterogeneous ADCs [123]. The cytotoxic
drug is only released as an active metabolite consisting of pAF attached to the payload
through the intact oxime bond after internalization in the cancerous cells and the conse-
quent endosomal and lysosomal proteolysis of the ADC [114,116]. This metabolite has
been reported to be well tolerated in rats and cynomolgus monkeys [114]. As a result,
ASP1235 and ARX788 demonstrated promising preclinical safety and efficacy profiles that
led to further clinical development. ASP1235 was evaluated as a monotherapy in a Phase I
clinical trial (NCT02864290) and as a combination together with venetoclax and azacitidine
to treat AML. It displayed significantly greater tumor regression compared to both the
ADC alone and the combination of venetoclax and azacitidine, as well as a safer profile
(doses 3 mg/kg, 3 mg/kg and 100 mg/kg, respectively) [115]. ARX788 demonstrated
superior efficacy compared to that of the FDA-and EMA-approved trastuzumab emtansine
(T-DM1) in mice bearing HER-2 positive HCC1954 breast and NCI-N87 gastric cancer
xenografts [116] and in HER-2-positive or low-expression-level HER-2 breast and gastric
tumor cell- and patient-derived xenograft models [117,118]. The improved tumor growth
inhibition and safety profile can be ascribed to the in vivo stability of the oxime bond that
limits the premature and non-specific release of payload, enriching its concentrations at
the tumor site. In a Phase I clinical study, ARX788 was administered to 69 metastatic
breast cancer patients receiving anti-HER-2 therapies at doses of 0.33, 0.66, 0.88, 1.1, 1.3 or
1.5 mg/kg every 3 weeks, or 0.88, 1.1 or 1.3 mg/kg every 4 weeks [119]. No dose-limiting
toxicities or drug-related deaths occurred, while the administration of 1.5 mg/kg ADC
every 3 weeks resulted in an objective response rate of 65.5%, a disease control rate of 100%
and a median progression free survival (PFS) of 17 months. Moreover, grade ≥ 3 adverse
events (AEs) occurred with a frequency as low as 11.6%, of which only 1.4% were hemato-
logical toxicities that are commonly observed in other ADCs [123]. Another Phase I study
involved 30 participants with either gastric adenocarcinoma or gastroesophageal junction
adenocarcinoma [120]. They were divided into three groups, receiving ARX788 at doses
of either 1.3 mg/kg, 1.5 mg/kg or 1.7 mg/kg every 3 weeks to evaluate the safety and
tolerability as a primary endpoint and the preliminary efficacy as a secondary endpoint.
The conjugate was well tolerated, with only four patients incurring grade 3 AEs, no grade
4 or 5 events occurred. To note, grade ≥ 3 neutropenia was never observed. Furthermore,
the antitumor activity of ARX788 was promising, with an ORR of 37.9%, an overall survival
of 4.1 months and a median PFS of 10.7 months. These encouraging preclinical and clinical
data regarding the safety and efficacy of ARX788 are consistent with the advantageous
presence of the oxime linkage in tumor-targeting conjugates. Its enhanced stability is the
basis of the reduced off-target toxicities and the improved distribution of the cytotoxic
payload at the tumor site. This is also likely the reason why the great incidence of grade ≥ 3
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neutropenia observed with many ADCs, such as trastuzumab deruxtecan, is significantly
reduced with ARX788.

All these data also indicated that the oxime-linked PDCs or ADCs have potential
perspectives as potential chemotherapeutics in personalized targeted tumor therapy.

8. Conclusions

The development of peptide–drug conjugates for targeted tumor therapy is an impor-
tant research topic. Among the parts of the conjugates, the role of the homing peptide is of
great significance in providing the desired activity. Personalized targeted tumor therapy
might require a huge number of homing devices because the receptor profiles of tumor
cells might be significantly different. In addition, the number of receptors on tumor cells is
limited; therefore, a combination of conjugates might be necessary to reach an appropriate
concentration of the drug in the tumor cells. In our research, we described a simple method
to develop peptide–drug conjugates that can be compared easily. The production of these
conjugates is straightforward, with high yields, affording the appropriate amounts of
compounds also for in vivo assays. The autofluorescence of anthracyclines offers a useful
tool to detect the cellular uptake of the conjugates by tumor cells and the localization of
drug metabolites in the cells. The same conjugates can be applied for in vitro and in vivo
experiments, like cytostatic and cytotoxic effects, cellular uptake, acute and chronic toxicity
studies and tumor growth inhibition. In this review, we have also reported that peptide–
anthracycline conjugates are not only ideal for the selection of suitable homing peptides,
but can also provide a significant in vivo antitumor effect that demonstrates their potential
as future drugs. Furthermore, the hereby selected homing peptides can be used for the
development of drug candidates in combination with other types of payloads.
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a Daunorubicin—GnRH-III Bioconjugate Modified by Apoptosis Inducing Agent Butyric Acid on Colorectal Carcinoma Bearing
Mice. Investig. New Drugs 2016, 34, 416–423. [CrossRef]

https://doi.org/10.1039/C8CS00676H
https://www.ncbi.nlm.nih.gov/pubmed/31294429
https://doi.org/10.1002/cmdc.202200279
https://www.ncbi.nlm.nih.gov/pubmed/35620983
https://doi.org/10.1016/j.bioorg.2013.06.007
https://www.ncbi.nlm.nih.gov/pubmed/23886697
https://doi.org/10.1039/D0RA04155F
https://www.ncbi.nlm.nih.gov/pubmed/35516223
https://doi.org/10.1021/acsomega.1c05815
https://doi.org/10.1016/j.colsurfb.2022.112981
https://doi.org/10.1021/ja00080a004
https://doi.org/10.1016/j.tetlet.2006.07.092
https://doi.org/10.1016/j.bmcl.2007.06.090
https://doi.org/10.1021/jo701628k
https://doi.org/10.1073/pnas.83.6.1896
https://www.ncbi.nlm.nih.gov/pubmed/2869490
https://doi.org/10.1002/psc.1294
https://www.ncbi.nlm.nih.gov/pubmed/20812368
https://doi.org/10.1371/journal.pone.0178632
https://www.ncbi.nlm.nih.gov/pubmed/28575020
https://doi.org/10.1016/S0960-894X(01)00223-2
https://www.ncbi.nlm.nih.gov/pubmed/11392551
https://doi.org/10.1002/prca.201300105
https://www.ncbi.nlm.nih.gov/pubmed/24677670
https://doi.org/10.1007/s00726-010-0766-1
https://www.ncbi.nlm.nih.gov/pubmed/20953647
https://doi.org/10.1002/bip.22629
https://doi.org/10.3762/bjoc.14.136
https://www.ncbi.nlm.nih.gov/pubmed/30013686
https://doi.org/10.1124/jpet.107.131318
https://www.ncbi.nlm.nih.gov/pubmed/18156463
https://doi.org/10.1038/bjp.2008.260
https://www.ncbi.nlm.nih.gov/pubmed/18574456
https://doi.org/10.3390/ijms24043106
https://www.ncbi.nlm.nih.gov/pubmed/36834514
https://doi.org/10.1210/endo.132.3.8440174
https://doi.org/10.1111/j.1399-3011.1998.tb00662.x
https://doi.org/10.1097/CAD.0b013e32834bb6b4
https://www.ncbi.nlm.nih.gov/pubmed/21915040
https://doi.org/10.1007/s10637-016-0354-7


Int. J. Mol. Sci. 2024, 25, 1864 24 of 25
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