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Abstract: A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine
scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and
triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone
derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone
5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the
structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed
the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the
most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 µM, which were slightly
higher against the Panc-1 cell line (10.2 ± 2.6 µM). Four selected pyrrolidone derivatives showed
relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures,
and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 µM and showed a strong
effect on Panc-1 cell colony formation, especially at 2 µM. The compounds did not show an inhibitory
effect on cell line migration by the ‘wound-healing’ assay. Compound 3d most efficiently inhibited
the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering
these different activities in biological assays, the selected pyrrolidinone derivatives could be further
tested to better understand the structure–activity relationship and their mechanism of action.

Keywords: triple-negative breast cancer; pancreatic cancer; cell viability; cell migration; clonogenic
assay; tumor spheroid

1. Introduction

Despite the progress in treating various types of cancer, the cancer incidence is increas-
ing worldwide. One of the most aggressive types of cancer is pancreatic adenocarcinoma,
which leads to the highest mortality [1]. Unfortunately, it is often asymptomatic, and
patients are not treated until the later stages when the treatment is ineffective [2]. In this
regard, the US Congress considers pancreatic ductal adenocarcinoma ‘a resistant cancer’.
Therefore, the Pancreatic Cancer Research and Education Act was formulated to detect
cancer most effectively in its early stages and treat it [3]. Triple-negative breast cancer is
characterized by the absence of estrogen, progesterone, and HER-2 receptors and is consid-
ered the most aggressive and metastatic type of breast cancer [4]. Both of these cancer types
are known to often acquire multi-drug resistance; therefore, existing chemotherapeutic
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agents are used in combination with novel drugs to increase treatment effectiveness. In
addition, researchers are searching for new molecules that may help to overcome cancer
resistance [5,6].

2-Pyrrolidinone, structurally constructed from a five-membered lactam, is a constituent
of a large variety of natural and synthetic healing products. Natural 2-pyrrolidinone-
based Svalbamides A and B, which were isolated from a culture extract of Paenibacillus
sp. taken from the Svalbard archipelago in the Arctic Ocean, induced quinone reductase
activity in Hepa1c1c7 murine hepatoma cells, indicating their potential as chemopreventive
agents [7]. Alkaloids aegyptolidines A and B were isolated from the fungus Aspergillus
aegyptyacus and have cytotoxic activity [8], and Salinosporamide A is a marine-derived
proteasome inhibitor [9] (Figure 1). Furthermore, the 2-pyrrolidinone scaffold is considered
an essential group of pharmacophores, which, when incorporated into complex chemical
structures, give compounds a broad spectrum of pharmacological properties, such as anti-
inflammatory [10], antimicrobial [11], HIV-1 integrase inhibition [12], anticonvulsant [13],
and cardioprotective [14] properties, making them suitable for therapeutic purposes. The
simplicity and versatility of the 2-pyrrolidinone core make it an interesting starting material
for a wide range of pharmaceutical and medicinal applications. Therefore, the synthesis
and evaluation of the biological activity of compounds containing this structural scaffold
remain among the most attractive and rapidly developing fields of medicinal chemistry for
the design and discovery of efficient therapeutic preparations [15].
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tential inhibitors of nitric oxide and prostaglandin E2 production in the RAW 264.7 mac-
rophage cell line [16]. The presence of 4-dimethylaminophenyl moieties as ring-B in chal-
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Figure 1. Some 2-pyrrolidinones of natural origin.

Extensive research and many scientific publications have demonstrated that the 4-
dimethylaminophenyl fragment is versatile for drug discovery. The studies that have been
performed regarding this moiety showed that it can provide compound bioactivity or in-
crease it. Chalcones bearing a dimethylaminophenyl fragment have been reported as poten-
tial inhibitors of nitric oxide and prostaglandin E2 production in the RAW 264.7 macrophage
cell line [16]. The presence of 4-dimethylaminophenyl moieties as ring-B in chalcones exhib-
ited maximum activity in various antioxidant assays [17]. Moreover, such derivatives have
been proven to possess significant anti-inflammatory [18] and anticancer [19] properties,
the highest HDAC inhibitory capacity, and the strongest antiproliferative activity [20].

Based on the aforementioned findings and our previous experience in the synthesis
and anticancer evaluation of 2-pyrrolidinone derivatives [21–25] (Figure 2), we aimed to
synthesize a new series of compounds bearing the 1-(4-(dimethylamino)phenyl)pyrrolidin-
2-yl moiety and to explore their anticancer properties. This goal was achieved, and a focused
library of novel substituted 2-pyrrolidinone derivatives was obtained from acid hydrazide
by using standard synthesis methods adapted to the preparation of hydrazide derivatives.

The compound effect was tested both in 2D and 3D cell culture models. As the
primary and most widely used technique, the effect on cell viability was chosen in order
to establish the most active cytotoxic compounds. Then, their effect was evaluated using
a clonogenic assay, allowing us to assess their ability to reduce the formation of the most
aggressive remaining cancer cells after treatment, which could form new tumors after
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metastasis [26]. Moreover, to prevent metastasis formation, it is important to reduce
cells’ ability to migrate; thus, we applied the ‘wound-healing’ assay [27]. Finally, the
compound activity was established in 3D cell cultures—tumor spheroids, which have
become a popular model, were used as a bridge between common cell monolayers and
further experiments in vivo [28]. Overall, we aimed to evaluate the compound potential to
be developed as anticancer agents in selected pancreatic Panc-1 and triple-negative breast
cancer MDA-MB-231 cellular models.
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2. Results and Discussion
2.1. Chemistry

In this study p-(dimethylamino)aniline (1) was used as an initial compound for the syn-
thesis of target compounds 2–11 by the known procedures [23,24,29], which were adapted
to obtain the desired compounds. First, 1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-
carboxylic acid (2) was obtained. The resynthesized acid 2 [30] was applied in reactions with
various o-phenylenediamines by the most commonly used Phillip’s procedure [31], which
gave 2,5-disubstituted benzimidazoles 3a–d (Supplementary Materials, Figures S1–S8).
The reflux of 2 in toluene with excess hydrazine monohydrate afforded hydrazide 4
(Supplementary Materials, Figures S9 and S10), thus avoiding the additional esterifica-
tion reaction and shortening the synthesis of the target hydrazide (Scheme 1). To produce
anticipated hydrazones 5a–l and 6a–c, the prepared acid hydrazide 4 was condensed with
a corresponding aldehyde, including a series of substituted phenyl, 1-naphthyl, as well as
carbaldehydes, or reacted with the corresponding ketone, i.e., acetone, methylethylketone
(MEK), or 4′-aminoacetophenone, respectively.

The synthesis was performed by refluxing in a mixture of water/propan-2-ol (10:1) for
2 h using hydrochloric acid as a catalyst. The obtained hydrazones 5a–l were separated in
48–94% yields. As expected, the NMR spectra of these compounds revealed the presence of
conformers [23] caused by the restricted rotation around the amide C(O)–NH bond. The
presence of a mixture of Z/E isomers is notably reflected in the 1H NMR spectra where the
signals of the NH proton for each isomer give rise in the characteristic field of 11.17–11.97
ppm (Supplementary Materials, Figures S11–S34) of this spectrum, and the peaks of the
prevailing Z-rotamers are visible in the up-field part of the spectrum in comparison with
the E one [23]. The intensity ratio of the amide conformers was quantified from 1H NMR
spectra based on the integral values of the two separate peaks of rotamer.
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b R1 = 4-ClC6H4, c R1 = 4-BrC6H4, d R1 = 4-(H3C)2NC6H4, e R1 = 4-H3COC6H4, f R1 = 2,5-
di(H3CO)C6H3, g R1 = 2,4,6-tri(H3CO)C6H2, h R1 = 3,4,5-tri(H3CO)C6H2, i R1 = 4-O2NC6H4,
j R1 = 2-thienyl, k R1 = 5-nitro-2-thienyl, l R1 = 1-naphthyl; 6: a R2 = CH3, b R2 = C2H5, c R2

= 4-H2NC6H4. Reagents and conditions: a itaconic acid, water, ∆, 24 h; b the corresponding o-
phenylenediamine, 4M HCl, ∆, 24 h; 5% Na2CO3; c N2H4·H2O, toluene, ∆, 16 h; d hydrazide + water
+ HCl, corresponding aldehyde + propan-2-ol, ∆, 2 h; e the corresponding ketone, AcOH, ∆, 18 h
or 5 h.

At this stage of the work, we did not set the goal of separating the Z-isomer from
the E-form and studying the anticancer properties of each of them, so they were not
separated. This is planned to be completed in the next phases of the study. To expand the
variety of hydrazones and identify the remarkable anticancer activity of the hydrazones
obtained from the reactions with various ketones [32–34], hydrazide 4 was reacted with
some of them. The reactions with acetone (6a) and methylethylketone (6b) ended in 18 h.
For 4′-aminoacetophenone (6c), the reaction occurred in 1,4-dioxane for 5 h. The target
product N′-(1-(4-aminophenyl)ethylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-
3-carbohydrazide (6c) was isolated in 78% yield. The spectral data of compounds 6a–c fully
confirmed their structures (Supplementary Materials, Figures S35–S39).

To achieve azole derivatives 7–10 (Scheme 2), acid hydrazide 4 was applied to reactions
with the appropriate agent. By our previously improved procedure [23], the treatment
of 4 with hexane-2,5-dione (2.5 eqv.) in propan-2-ol using glacial acetic acid as a catalyst
gave 2,5-dimethylpyrrole 7 in 64% yield. In the 13C NMR spectrum of compound 7, the
resonances of the carbons of the methyl groups and the CH–CH fragment of the 2,5-
dimethylpyrrole ring arose at 8.77 and 10.94 ppm, and 103.06 ppm, respectively. Peaks at
170.68 and 172.05 were assigned to the carbons of two carbonyl groups of the molecule.
The 1H NMR spectrum confirmed the existence of the 2,5-dimethylpyrrole moiety, showing
singlets at 1.94, 1.98, and 1.99 ppm and peaks at 5.48 and 5.64 ppm for the protons of the
aforementioned moieties (Supplementary Materials, Figures S40 and S41). The NH proton
signal was observed as a set of two singlets due to the presence of an amide moiety in this
structure and the restricted rotation around it.

As a compound having an amine group, hydrazide 4 was used in the aza-Michael
addition reaction, which involves the interaction between itaconic acid and primary amines
and subsequent cascade intramolecular cyclization to form a pyrrolidinone cycle [35].
Heating at the reflux of reactants in water for 24 h, yielded compound 8 with an additional
pyrrolidinone cycle in the structure. Although the molecule can exist as a mixture of E/Z
rotamers through the amide bond, the experimental NMR data demonstrated only one
isomer in the DMSO-d6 solution. The 1H NMR spectrum of 8 showed a 2-fold increase
in the number of pyrrolidinone protons, which confirms the formation of the second
pyrrolidinone cycle. The same is true for the carbon resonances of the pyrrolidinone ring:
the 13C NMR spectrum demonstrates six spectral lines at 31.27, 33.74, 34.12, 35.15, 49.65,
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and 50.73 ppm for the carbons of two pyrrolidinone cycles. In the 1H NMR spectrum, the
presence of an amide and OH groups was confirmed by the singlets at 10.34 and 12.77 ppm,
respectively. Four carbonyl groups of the target compound were confirmed by the carbon
resonances at 170.72, 170.90, 171.54, and 174.04 ppm in the 13C NMR spectrum of the
molecule (Supplementary Materials, Figures S42 and S43)
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Compound 9 was obtained by refluxing hydrazide 4 with isatin in methanol in the
presence of acetic acid as a catalyst [24]. The 1H NMR spectrum revealed additional peaks
in the aromatic field of the spectrum as well as a singlet at 10.82 ppm, which belong to
the proton of the NH group of the newly attached oxoindoline moiety. The 13C NMR
spectrum showed characteristic carbonyl resonances at 159.21, 164.53, and 170.81 ppm
(Supplementary Materials, Figures S44 and S45).

1,3,4-Oxadiazole derivative 10 was prepared by the slightly improved method [36] in
the reaction of acid hydrazide 4 with carbon disulfide in the presence of potassium hydrox-
ide in refluxing 2-propanol with subsequent heterocyclization by acidifying the resulting
aqueous dithiocarbazate solution with acetic acid to pH 6., In the 1H NMR spectrum, all
the protons were seen according to the expected chemical structure. The aromatic protons
appeared at 6.72 and 7.40 ppm as two doublets with J = 8.8 Hz, while the protons of the
pyrrolidinone ring exhibited multiplets in the ranges of 2.74–2.95 (CH2CO), 3.88–3.96 (CH),
and 3.96–4.16 (NCH2) ppm. An intense singlet integrated for six protons at 2.86 ppm was
assigned to 2CH3, and a broad singlet at 13.89 ppm showed the presence of NH in the
oxadiazole ring. The presence of the 1,3,4-oxadiazolethione cycle confirmed the charac-
teristic resonance line at 178 ppm in the 13C NMR spectrum of the compound, which was
attributed to the carbon of the C=S group (Supplementary Materials, Figures S46 and S47).

For 1,2,4-triazine derivative 11, the cyclocondensation of hydrazide 4 with an α-
dicarbonyl compound was used [37]. Thus, the treatment of 4 with an equimolar amount
of 1,2-diphenylethane-1,2-dione in glacial acetic acid in the presence of a large excess of
ammonium acetate afforded 1-(4-(dimethylamino)phenyl)-4-(5,6-diphenyl-1,2,4-triazin-
3-yl)pyrrolidin-2-one (11). The 1H NMR of this compound showed a large increase in
aromatic protons in the interval of 7.37–7.53 ppm, which was assigned to the protons of two
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additional phenyl rings. In the 13C NMR spectrum, the spectral lines observed at 155.91,
156.09, and 167.04 ppm are characteristic of the C-5, C-6, and C-3 atoms of the 1,2,4-triazine
cycle (Supplementary Materials, Figures S48 and S49).

It is noteworthy that due to the asymmetric carbon in the pyrrolidinone ring, the
molecules with this carbon are also asymmetric. The X-ray crystallographic analysis data of
5-oxo-1-(p-tolyl)pyrrolidine-3-carboxylic acid showed that its crystals are a racemic mixture
of R- and S-enantiomers in which the ratio of enantiomers is 1:1, and they form mixed
crystals [38]. The exchange of R,S-enantiomers in the crystal structure is chaotic, and such a
structure is accepted as disordered. It is likely that the synthesized compounds containing
the pyrrolidinone ring are also racemic mixtures of enantiomers in the crystalline state.
Thus, it can be stated that analogous compound 2 of our study and its derivatives have the
same composition.

All synthesized compounds were then applied for the evaluation of their
biological properties.

2.2. Pharmacology
2.2.1. Cytotoxicity

The tested compounds at a 100 µM concentration showed different activity on human
triple-negative breast cancer MDA-MB-231 and human pancreatic carcinoma Panc-1 cell
viability (Figure 3). This concentration was chosen based on compound solubility and our
experience. It has been shown that concentrations from 50 to 100 µM allow for distinguish-
ing the most active compounds [39] from a series, and thus, they are often used for primary
screening [40].
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against human triple-negative breast cancer MDA-MB-231 and human pancreatic carcinoma Panc-1
cell lines by MTT assay, n = 3.

In general, there was a correlation between the activities of compounds against both
cell lines. However, the obtained results were not surprising, as triple-negative and pancre-
atic cancer cells usually possess lower sensitivity compared with other types of cancer [41].

The structure–activity relationship study of the investigated compounds 2–11 showed
that the anticancer activity of benzimidazoles 3a–d increased upon introducing electron-
withdrawing groups such as 5-fluoro and, especially, 5-chloro. The replacement of hydrogen
with fluorine in compound 3b was successful in increasing the activity; however, the high
electronegativity of fluorine influenced a weaker effect than the less electronegative chlorine
in compound 3c, resulting in a significant decrease in cell viability. Surprisingly, the attached
electron-donating 5-methyl group (3d) greatly elevated cell suppression.
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Regarding hydrazide 4 and its hydrazone derivatives 5a–l, the incorporation of Ph,
4-ClPh, 4-BrPh, 3,4,5-tri(H3CO)Ph, and 4-O2NPh substituents decreased their activity, while
4-(H3C)2NC6H4, 4-H3COC6H4, and thien-2-yl had a slightly better anticancer effect than
hydrazide 4. The most efficient in this hydrazone series appeared to be compound 5l with a
bulky 1-naphthyl substitution. Next, in descending order of effect for both cancer cells were
hydrazones 5k, 5f, and 5g, with 5-nitro-2-thienyl, 2,5-di(H3CO)Ph, and 2,4,6-tri(H3CO)Ph
substituents in the structure. As seen from the assay data, the activity of hydrazones 6a–c
is very weak, but the attached larger fragment of 4-H2NPh slightly reduced the viability of
both cells. Among the azole derivatives 7–10 and azine 11, the best anticancer properties
against the pancreatic cell line Panc-1 were shown by 2,5-dimethylpyrrole derivative 7,
while 1,2,4-triazine derivative 11 had the strongest effect on human triple-negative breast
cancer cells MDA- MB-231.

Four compounds (3c, 3d, 5k, and 5l) were the most active against both cell lines.
Pyrrolidinone derivatives 3c and 3d, incorporating 5-chloro and 5-methylbenzimidazole
fragments, respectively, along with hydrazone 5k bearing a 5-nitrothien-2-yl substitution
and hydrazone 5l with a naphth-1-yl fragment in the structure, significantly decreased the
viability of triple-negative breast cancer and ductal pancreatic carcinoma cell lines.

Further studies determined their effective concentrations that reduce cell viability by
50% (EC50 values), as illustrated in Figure 4A.
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Figure 4. EC50 values of the most active compounds 3c, 3d, 5k, and 5l obtained by MTT assay (A)
against triple-negative breast cancer MDA-MB231, pancreatic cancer Panc-1 cell lines, and human
fibroblasts (HF) after 72 h of incubation. Dose–response curves for the most active compound 5k
after 72 h of incubation with MDA-MB-231, Panc-1, and HF cells (B). Data points are experimental
values (averages of three repeats), while the lines are the fit of the standard inhibition model with the
Hill coefficient of 2.5. n = 3.

The naphth-1-yl fragment-bearing compound 5l demonstrated a lack of selectivity
against cancer cell lines. Due to its relatively low impact on pancreatic and breast cancer
cell viability, it is not considered a very promising candidate for further development.
Nevertheless, we aimed to explore its effects on cell migration and activity in 3D cultures
for comparison purposes with the other selected compounds. Compounds 3c and 5k
exhibited the highest selectivity, particularly against the MDA-MB-231 cancer cell line (the
selectivity ratios were 0.2 and 0.4 against the MDA-MB-231 cell line and 0.4 and 0.6 against
the Panc-1 cell line, respectively), making them worthy of further development. Compound
3d was less active and relatively less selective (selectivity towards MDA-MB-231 was 0.5
and 0.8 toward Panc-1 cells). The EC50 value of the most active compound 5k against the
MDA-MB-231 cell line was 7.3 ± 0.4 µM, and it was slightly higher against the Panc-1 cell
line (10.2 ± 2.6 µM) (Figure 4B). Both compounds 3c and 3d reduced MDA-MB-231 cell
viability more efficiently than Panc-1 (by 2 times and 1.5 times, respectively).
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Pancreatic and triple-negative breast cancer types are characterized as relatively re-
sistant to chemotherapy [42,43]. In our previous studies, we also observed that these two
types of cancer cells are usually less responsive to treatment with chemical compounds [25].
Considering the relatively low activity of the tested oxopyrrolidine derivatives (EC50 values
ranging from 7.3 to even 65 µM), it is crucial to assess their potential selectivity against
cancer cells compared to fibroblasts to avoid possible toxicity in vivo.

Despite this desirable characteristic, the range of selectivity ratios can vary based on
the compound, the type of cancer, and many other factors. However, there are divergent
opinions on this issue, as not only selectivity but also other characteristics determine the
overall suitability of a compound to become an effective anticancer drug. These factors
include pharmacokinetic properties, bioavailability, safety profile, side effects, advantages
over existing therapies, etc. [44]. These properties are studied in later developmental
stages, and at the beginning, the most potent candidates are usually selected based on their
potency, bearing in mind that nanotechnology could help to overcome their unfavorable
properties [45].

Thus, in our study, the most active four compounds were all selected for further
detailed studies in migration, clonogenic assay, and cancer cell 3D cultures.

2.2.2. Effect on Cell Colony Formation

Selected pyrrolidone derivatives showed relatively high activity on cell colony for-
mation by reducing their number and disturbing their growth (Figure 5). In general,
compound 5l did not affect Panc-1 and MDA-MB-231 cell colony formation at either tested
concentration (Figure 5A,C); only the MDA-MB-231 colonies were more compact compared
with the control (Figure 5B). Compound 5k was the most active in both cell cultures, and it
completely disturbed MDA-MB-231 cell colony growth at the 1 and 2 µM concentrations
and showed a strong colony formation disturbing effect in Panc-1 cells, especially at 2 µM
(Figure 5C). It is worth noting that compound 3d at 2 µM possessed different activity
against MDA-MB-231 and Panc-1 cell colony formation and growth: it completely prohib-
ited MDA-MB-231 cell colony formation, while the effect on Panc-1 cell colony formation
and growth was comparable to the 1 µM concentration.

These findings show that tested pyrrolidone derivatives have varying degrees of
activity on cell colony formation. Considering their selective effects based on different
concentrations and cell lines, it would be worthwhile to further investigate their dose–
response relationship and mechanism of action. The observed effects of compounds
contribute to a better understanding of their long-term effects (not seen in the 3-day MTT
assay) and also provide information on how well these compounds could prevent the
long-term survival and proliferation of cancer cells in the tumor microenvironment [46].
Interestingly, despite the fact that compound 3c after 72 h incubation was more cytotoxic
against MDA-MB-231 cells compared with compound 3d (Figure 4), after 7 days, it showed
similar or even slightly lower activity compared to compound 3d (Figure 5A,B). This
observation suggests that both compounds could have a different mechanism of action.
In addition, both of them possessed similar activity towards prohibiting the cell colony
formation and growth of both cell lines, despite their cytotoxicity differing by 1.5–2 times.

The compound effect on cell colony formation differs greatly and is dependent on
various factors (cell type, compound concentration, duration of incubation, pretreatment,
or constant incubation with tested compound and others) and can be challenging. Thus,
the comparison of the clonogenic assay results with other compounds from other experi-
ments should be performed very cautiously, paying much attention to the experimental
setup. For example, the anticancer drug gemcitabine, which is approved for monotherapy
or in combination for several types of cancers (breast cancer, non-small cell lung cancer,
pancreatic cancer, etc.), at 10 µM concentration reduced Panc-1 cell colony formation up
to approximately 40% but showed only a relatively small effect (<10%) at 1 µM concen-
tration [47]. However, this experiment lasted for two weeks, and the number of seeded
cells was 1000 in a 6-well plate (compared with 200 in a 12-well plate). Doxorubicin (an
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anthracycline class drug used for the treatment of triple-negative breast cancer) at 70 nM
concentration reduces MDA-MB-231 cell colony formation up to approximately 5% after
21 days of incubation [48]. However, even higher effects on cell colony growth could be
achieved by combining several compounds with different mechanisms of action [49]. We
hypothesize that our tested pyrrolidone derivatives, especially compound 5k, could be
further studied in combinations with anticancer agents.
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human triple-negative breast cancer MDA-MB-231 cell line and cell colony formation (C) and growth
(D) of the human pancreatic ductal carcinoma cell line, n = 3. Asterisks (*) indicate p < 0.05 compared
with the control (untreated cells).

2.2.3. Effect on Cell Migration

The compound effect on cell migration was established by ‘wound-healing’ assay in
both cell lines after 24, 48, and 72 h of incubation. MDA-MB-231 cells are characterized as
very invasive cell lines, and they migrate very fast. Thus, we established the compounds’
effect on migration up to 48 h.

The compounds did not show an inhibitory effect on MDA-MB-231 cell line migration
at either concentration. Compounds 3c and 3d were the most active in the Panc-1 cell line,
but only 3d at 2 µM had a statistically significant effect after 48 h of incubation (Figure 6).
Surprisingly, despite the fact that compound 5k was the most cytotoxic compound and the
most active one in the clonogenic assay, it did not show an effect on the migration of either
cell line.

In the ‘wound-healing’ assay, we used concentrations of compounds that did not show
cytotoxic effects at 72 h to avoid the misinterpretation of lower cell proliferation (and thus
a wider remaining ‘wound’) as an inhibitory effect on cell migration. These relatively low
concentrations of compounds could be too low to see the effect on migration. In this case,
other methods like single-cell migration could be more useful [50].
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Figure 6. Effect of compounds 3c, 3d, 5k, and 5l on human triple-negative MDA-MB-231 and human
pancreatic Panc-1 cell migration determined by ‘wound-healing’ assay. Photos of the ‘wound’ area
(marked in yellow) in the MDA-MB-231 (A) and Panc-1 (D) monolayer at the beginning and the end
of the experiment. The ‘wound’ area of MDA-MB-231 cells treated with 1 µM (B) and 2 µM (C) of the
tested compounds at the end of the experiment, n = 3. The ‘wound’ area of Panc-1 cells treated with
1 µM (E) and 2 µM (F) of the tested compounds at the end of the experiment, n = 3. The scale bar
indicates 100 µm. Asterisks (*) indicate p < 0.05 compared with the control (untreated cells).

2.2.4. Compound Effect in 3D Cultures

Three-dimensional cell models are shown to be more representative compared to
cell monolayers (the two-dimensional model) [51]. Thus, we made cancer cell spheroids
to conduct the experiments in more realistic conditions. For these studies, spheroids of
a diameter > 250 µm were used, which are known to have a hypoxic region inside [52].
Spheroids were made from cancer cells and fibroblasts at a ratio of 1:1 to better mimic the
tumor microenvironment, considering that a tumor has stroma, which is involved in tumor
development and metastasis.

The effect of 10 µM of the compounds in spheroids was evaluated over a period of
eight days (Figure 7).
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Figure 7. Effect of compounds 3c, 3d, 5k, and 5l on 3D cell cultures. (A) Human pancreatic carcinoma
Panc-1 spheroid size (brighter green color) and viability of cells in spheroids (lighter green color)
at the end of the experiment. (B) Human triple-negative breast cancer MDA-MB-231 spheroid size
(brighter blue color) and viability of cells in spheroids (lighter blue color) at the end of the experiment.
(C) Photos of Panc-1 tumor spheroids at the beginning (Day 0), in the middle (Day 4), and at the
end (Day 8) of the experiment (after incubation with 10 µM of the compounds). (D) Photos of
MDA-MB-231 tumor spheroids at the beginning (Day 0), in the middle (Day 4), and at the end (Day
8) of the experiment (after incubation with 10 µM of the compounds). Asterisks (*) indicate p < 0.05
compared with the control (untreated spheroids); crosses (×) indicate means; inner dashes indicate
medians; and whiskers indicate maximum and minimum values. Scale bars indicate 200 µm.

It is well known that evaluating the effect of a compound only by comparing the
spheroid size change is not entirely correct as it does not necessarily correlate with cell
viability inside the spheroids [53,54]. Thus, at the end of the experiment, spheroid cell
viability was established. The viability of spheroids treated with compounds 3c, 3d, and 5k
was up to appr. 45% lower compared with the control despite the differences in the sizes of
the spheroids not being very large. This difference could be explained by the differences in
spheroid morphology and also possible variable compound concentration gradients inside
due to hypoxia or different densities.

Overall, the tested pyrrolidone derivatives were more active in MDA-MB-231 3D
cultures than in Panc-1 (Figure 7). Compound 5k, which was the most cytotoxic compound,
did not show a statistically significant effect on Panc-1 spheroid growth and viability, and
its activity was similar to 3c and 3d. Compound 5l was the least active and reduced only
Panc-1 spheroid viability up to appr. 20% compared with the control. Compound 3d
most efficiently inhibited the growth of Panc-1 spheroids and also reduced cell viability in
MDA-MB-231 spheroids. These findings suggest that the selected pyrrolidone derivatives
could act by different mechanisms, and we hypothesize that some of them (especially
compound 3d) could act on targets expressed in hypoxia, which was at the core of the
formed spheroid. Of course, this hypothesis has to be proven by more detailed studies.

In summary, pyrrolidone derivatives 3c, 3d, and 5k have been identified as the most
promising compounds in this series. They are relatively selective against the MDA-MB-231
cell line. In the case of triple-negative breast cancer, 3d and 5k were shown to reduce cell
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colony formation and also reduce spheroid growth and viability. In the pancreatic cell line,
3d showed the highest activity in 3D cell culture; however, 5k was the most cytotoxic and
exhibited the highest effect on cell colony formation and growth.

3. Materials and Methods
3.1. Chemistry

Reagents and solvents were obtained from Sigma–Aldrich (St. Louis, MO, USA)
and used without further purification. The reaction course and purity of the synthesized
compounds were monitored by TLC using aluminum plates precoated with silica gel
with F254 nm (Merck KGaA, Darmstadt, Germany). Melting points were determined
with a B-540 melting point analyzer (Büchi Corporation, New Castle, DE, USA) and
were uncorrected. NMR spectra were recorded on a Brucker Avance III (400, 101 MHz)
spectrometer (Bruker BioSpin AG, Fällanden, Switzerland). Chemical shifts were reported
in (δ) ppm relative to tetramethylsilane (TMS) with the residual solvent as internal reference
(DMSO-d6, δ = 2.50 ppm for 1H and δ = 39.52 ppm for 13C). Data were reported as follows:
chemical shift, multiplicity, coupling constant (Hz), integration, and assignment. IR spectra
(ν, cm−1) were recorded on a Perkin–Elmer Spectrum BX FT–IR spectrometer (Perkin–
Elmer Inc., Waltham, MA, USA) using KBr pellets. Elemental analyses (C, H, N) were
conducted using an Elemental Analyzer CE-440 (Exeter Analytical, Inc., Chelmsford, MA,
USA); their results were found to be in good agreement (±0.3%) with the calculated values.

1-(4-(Dimethylamino)phenyl)-5-oxopyrrolidine-3-carboxylic acid (2) was resynthe-
sized [30], and the obtained data of the compound was in good agreement with the
original one.

General procedure for the preparation of benzimidazoles 3a–d
A mixture of compound 2 (0.7 g, 2.8 mmol) and corresponding o-phenylenediamine

(0.6 g, 5.6 mmol) was refluxed in aqueous 18.5% HCl (6 mL) for 24 h and then cooled and
neutralized with aqueous 5% sodium carbonate solution. The mixture was boiled and
cooled, and then the water layer was decanted, and the residue was washed twice with
boiling water. After cooling, the formed precipitate was filtered off and washed with water
to give the title compounds 3a–d.

4-(1H-benzo[d]imidazol-2-yl)-1-(4-(dimethylamino)phenyl)pyrrolidin-2-one (3a)
Brown solid, yield 0.54 g, 60%, m. p. 220–221 ◦C (from propan-2-ol:water, 1:1).
IR (KBr): ν 3422 (NH); 1694 (C=O); 1520 (C=N); 1164; 1112 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.86 (s, 6H, 2CH3), 2.91–2.99 (m, 2H, CH2CO), 3.91–

4.05 (m, 1H, CH), 4.10–4.24 (m, 2H, NCH2), 6.73 (d, J = 8.6 Hz, 2H, HAr), 7.11–7.19 (m, 2H,
HAr), 7.46 (d, J = 8.6 Hz, 3H, HAr), 7.58 (d, J = 7.5 Hz, 1H, HAr), 12.47 (s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 30.81, 37.31 (CH2CO, CH), 40.34 (2CH3), 52.57
(NCH2), 111.05, 112.39, 118.48, 121.15, 121.23, 121.95, 128.96, 134.57, 142.83, 147.60, 155.16
(CAr), 171.05 (C=O) ppm.

Calcd. for C19H20N4O, %: C 71.23; H 6.29; N 17.49; found, %: C 71.19; H 6.25; N 17.46.
1-(4-(Dimethylamino)phenyl)-4-(5-fluoro-1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one (3b)
Brown solid, yield 0.39 g, 41%, m. p. 108–109 ◦C (from propan-2-ol:water 1:1).
IR (KBr): ν 3398 (NH); 1671 (C=O); 1521 (C=N); 1136; 1111 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.86 (s, 6H, 2CH3), 2.90–3.05 (m, 2H, CH2CO), 3.89–

4.04 (m, 1H, CH), 4.06–4.25 (m, 2H, NCH2), 6.73 (d, J = 8.6 Hz, 2H, HAr), 6.95–7.05 (m, 1H,
HAr), 7.28–7.56 (m, 2H, HAr + 7.45 (d, J = 8.6 Hz, 2H, HAr), 12.60 (s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 30.83, 37.23 (CH2CO, CH), 40.35 (2CH3), 52.49
(NCH2), 112.39, 121.24, 128.93, 147.62 (CAr), 170.99 (C=O) ppm.

Calcd. for C19H19FN4O, %: C 67.44; H 5.66; N 16.56; found, %: C 67.39; H 5.69; N 16.52.
1-(4-(Dimethylamino)phenyl)-4-(5-chloro-1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one (3c)
Dark green solid, yield 0.93 g, 94%, m. p. 90–91 ◦C (from propan-2-ol:water, 1:1).
IR (KBr): ν 3371 (NH); 1671 (C=O); 1520 (C=N); 1168; 1128 (C-N) cm–1.
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1H NMR (400 MHz, DMSO–d6) δ 2.86 (s, 6H, 2CH3), 2.91–3.01 (m, 2H, CH2CO), 3.91–
4.05 (m, 1H, CH), 4.08-4.28 (m, 2H, NCH2), 6.72 (d, J = 8.6 Hz, 2H, HAr), 7.15–7.20 (m, 1H,
HAr), 7.44 (d, J = 8.6 Hz, 2H, HAr), 7.48–7.62 (m, 2H, HAr), 12.69 (s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 30.80, 37.20 (CH2CO, CH), 40.34 (2CH3), 52.45
(NCH2), 112.38, 121.25, 128.90, 147.62 (CAr), 170.95 (C=O) ppm.

Calcd. for C19H19ClN4O, %: C 64.31; H 5.40; N 15.79; found, %: C 64.38; H 5.45;
N 15.82.

1-(4-(Dimethylamino)phenyl)-4-(5-methyl-1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one (3d)
Brown solid, yield 0.56 g, 60%, m. p. 118–119 ◦C (from propan-2-ol/water 1:1).
IR (KBr): ν 3351 (NH); 1674 (C=O); 1520 (C=N); 1167; 1115 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.38, 2.40 (2s, 3H, CH3), 2.86 (s, 6H, 2CH3), 2.89–2.99

(m, 2H, CH2CO), 3.90–3.99 (m, 1H, CH), 4.09–4.22 (m, 2H, NCH2), 6.73 (d, J = 8.6 Hz, 2H,
HAr), 6.93–7.00 (m, 1H, HAr), 7.20–7.42 (m, 2H, HAr), 7.45 (d, J = 8.6 Hz, 2H, HAr), 12.28,
12.31 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 21.29 (CH3), 30.81, 37.32 (CH2CO, CH), 40.35 (2CH3),
52.59 (NCH2), 112.39, 121.22, 128.97, 147.59 (CAr), 171.07 (C=O) ppm.

Calcd. for C20H22N4O, %: C 71.83; H 6.63; N 16.75; found, %: C 71.79; H 6.65; N 16.75.
1-(4-(Dimethylamino)phenyl)-5-oxopyrrolidine-3-carbohydrazide (4)
A mixture of compound 2 (2.48 g, 0.01 mol), hydrazine monohydrate (1.5 g, 0.03 mol),

and toluene (50 mL) was refluxed for 16 h and then cooled. The obtained crystalline solid
was filtered off and washed with propan-2-ol to give the title compound 4.

Light violet solid, yield 1.52 g, 58%, m. p. 225–226 ◦C (from propan-2-ol).
IR (KBr): ν 3398-3229 (NH+ NH2); 1671; 1657 (C=O); 1226; 1198 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.55–2.68 (m, 2H, CH2CO), 2.86 (s, 6H, 2CH3), 3.15

(p, J = 8.2 Hz, 1H, CH), 3.74–3.91 (m, 2H, NCH2), 4.27 (br. s, 2H, NH2), 6.71 (d, J = 8.7 Hz,
2H, HAr), 7.40 (d, J = 8.7 Hz, 2H, HAr), 9.36 (s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 34.16, 35.48, 40.35, 51.07 (CH, CH2CO, N(CH3)2,
NCH2), 112.39, 121.17, 128.89, 147.59 (CAr), 171.10, 171.62 (2C=O) ppm.

Calcd. for C13H18N4O2, %: C 59.53; H 6.92; N 21.36; found, %: C 59.55; H 6.89; N 21.32.
General procedure for the preparation of hydrazones 5a–l
To a solution of hydrazide 4 (0.52 g 2 mmol) in water (50 mL) with the addition

of concentrated hydrochloric acid (5 drops), the solution of the corresponding aromatic
aldehyde (2.7 mmol) in propan-2-ol (5 mL) was added, and the mixture was heated at reflux
for 2 h. After completion of the reaction, the mixture was cooled, and the formed precipitate
was filtered off and washed with water to give the corresponding compounds 5a–l.

N′-benzylidene-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-carbohydrazide (5a)
White solid, yield 0.34 g, 48%, m. p. 228–229 ◦C (from 1,4-dioxane).
IR (KBr): ν 3251 (NH); 1643; 1611 (C=O); 1510 (C=N); 1178; 1100 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.68–2.79 (m, 2H, CH2CO), 2.86 (s,

6H, 2CH3), 3.65–4.35 (m, 3H, NCH2+CH), 6.72 (dd, J = 9.4, 3.7 Hz, 2H, HAr), 7.38–7.46
(m, 5H, HAr), 7.70 (dd, J = 7.1, 2.1 Hz, 2H, HAr), 8.04, 8.22 (2s, 1H, N=CH), 11.56, 11.62
(2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.94, 34.68, 34.93, 35.41 (CH2CO, CH), 40.34 (2CH3),
20.47, 50.89 (NCH2), 112.39, 121.22, 121.28, 126.87, 127.09, 128.86, 128.92, 129.90, 130.11,
134.15, 143.58, 146.98, 147.61, 168,81, 170.90, 171.09, 173.71 (CAr, 2C=O) ppm.

Calcd. for C20H22N4O2, %: C 68.55; H 6.33; N 15.99; found, %: C 68.59; H 6.35; N 15.96.
N′-(4-chlorobenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-carbohydrazide (5b)
White solid, yield 0.37 g, 48%, m. p. 230–231 ◦C (from 1,4-dioxane).
IR (KBr): ν 3274 (NH); 1655; 1627 (C=O); 1527 (C=N); 1175; 1113 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.59–2.75 (m, 2H, CH2CO), 2.86 (s, 6H,

2CH3), 3.28–3.34 (M, 0.35H, CH), 3.92–4.09 (m, 2.65H, NCH2+CH), 6.72 (dd, J = 9.4, 3.7
Hz, 2H, HAr), 7.37–7.55 (m, 4H, HAr), 7.73 (dd, J = 7.1, 2.1 Hz, 2H, HAr), 8.01, 8.21 (2s, 1H,
N=CH), 11.62 11.68 (2s, 1H, NH) ppm.
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13C NMR (101 MHz, DMSO–d6) δ 32.90, 34.67, 34.92, 35.29 (CH2CO, CH), 40.34 (2CH3),
50.41, 50.85 (NCH2), 112.38, 121.21, 121.27, 128.54, 128.72, 128.92, 133.10, 134.30, 142.30,
145.65, 147.61, 168.90, 170.86, 171.04, 173.77 (CAr, 2C=O) ppm.

Calcd. for C20H21ClN4O2, %: C 62.42; H 5.50; N 14.56; found, %: C 62.47; H 5.47;
N 14.57.

N′-(4-bromobenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-carbohydrazide (5c)
White solid, yield 0.81 g, 94%, m. p. 275–276 ◦C (from 1,4-dioxane).
IR (KBr) ν 3274 (NH); 1710; 1656 (C=O); 1527 (C=N); 1175; 1143 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.62–2.77 (m, 2H, CH2CO), 2.86 (s, 6H,

2CH3), 3.28–3.31 (m, 0.4H, CH), 3.81–4.14 (m, 2.6H, NCH2+CH), 6.71 (d, J = 8.8 Hz, 2H,
HAr), 7.43 (d, J = 8.7 Hz, 2H, HAr), 7.42–7.82 (m, 4H, HAr), 8.00, 8.19 (2s, 1H, N=CH), 11.62,
11.69 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 34.66, 34.92, 35.38 (CH2CO, CH), 40.34 (2CH3),
50.41, 50.84 (NCH2), 112.38, 121.21, 121.26, 123.07, 123.33, 128.76, 128.94, 131.82, 133.44,
142.40, 145.73, 147.60, 168.90, 170.86, 171.03, 173.77 (CAr, 2C=O) ppm.

Calcd. for C20H21BrN4O2, %: C 55.95; H 4.93; N 13.05; found, %: C 55.99; H 4.94;
N 13.08.

N′-((4-dimethylamino)benzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-
carbohydrazide (5d)

White solid, yield 0.46 g, 58%, m. p. 241–242 ◦C (from 1,4-dioxane).
IR (KBr) ν 3202 (NH); 1659; 1644 (C=O); 1518 (C=N); 1181; 1168, 1146 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.66–2.75 (m, 2H, CH2CO), 2.94 (s, 6H,

2CH3), 3.03, 3.04 (2s, 6H, 2CH3), 3.32–3.38 (m, 0.35H, CH), 3.92–4.16 (m, 2.65H, NCH2+CH),
6.75–6.87 (m, 4H, HAr), 7.51 (d, J = 8.9 Hz, 2H, HAr), 7.54–7.64 (m, 2H, HAr), 7.97, 8.14 (2s,
1H, N=CH), 11.34, 11.39 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.95, 34.66, 34.87, 35.49 (CH2CO, CH), 40.34 (2CH3),
50.57, 51.01 (NCH2), 111.78, 111.83, 112.39, 121.19, 121.26, 128.10, 128.41, 128.87, 128.96,
144.34, 147.59, 147.75, 151.36, 151.52, 168.14, 170.98, 171.18, 173.05 (CAr, 2C=O) ppm.

Calcd. for C22H27N5O2, %: C 67.15; H 6.92; N 17.80; found, %: C 67.19; H 6.95; N 17.78.
N′-(4-methoxybenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-

carbohydrazide (5e)
White solid, yield 0.37 g, 48%, m. p. 187–188 ◦C (from 1,4-dioxane).
IR (KBr) ν 3251 (NH); 1653; 1622 (C=O); 1512 (C=N); 1115; 1110 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.65–2.78 (m, 2H, CH2CO), 2.86 (s, 6H,

2CH3), 3.26–3.32 (m, 0.35H, CH), 3.79, 3.80 (2s, 3H, OCH3), 3.80–4.16 (m, 2.65H, NCH2+CH),
6.72 (dd, J = 9.3, 2.8 Hz, 2H, HAr), 7.00 (t, J = 8.0 Hz, 2H, HAr), 7.43 (d, J = 9.0 Hz, 2H, HAr),
7.64 (d, J = 6.6 Hz, 2H, HAr), 7.97, 8.15 (2s, 1H, N=CH), 11.43, 11.48 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.92, 34.67, 34.89, 35.45 (CH2CO, CH), 40.34 (2CH3),
50.50, 50.93 (NCH2), 55.29 (OCH3), 112.39, 114.33, 121.20, 121.27, 126.68, 126.75, 128.44,
128.69, 128.85, 128.94, 143.44, 146.85, 147.60, 160.66, 160.85 168.53, 170.93, 171.12, 173.43
(CAr, 2C=O) ppm

Calcd. for C21H24N4O3, %: C 66.30; H 6.36; N 14.73; found, %: C 66.25; H 6.39; N 14.69.
N′-(2,5-dimethoxybenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-

carbohydrazide (5f)
White solid, yield 0.52 g, 64%, m. p. 165–166 ◦C (from 1,4-dioxane).
IR (KBr) ν 3242 (NH); 1678; 1659 (C=O); 1523 (C=N); 1111; 1078 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 60/40): 2.65–2.78 (m, 2H, CH2CO), 2.86, 2.87

(2s, 6H, 2CH3), 3.17–3.32 (m, 0.4H, CH), 3.72, 3.73, 3.79, 3.80 (4s, 3H, 2OCH3), 3.84–4.11 (m,
2.6H, NCH2+CH), 6.59–6.80 (m, 2H, HAr), 6.91–7.10 (m, 2H, HAr), 7.28–7.37 (m, 1H, HAr),
7.43 (d, J = 8.8 Hz, 2H, HAr), 8.33, 8.53 (2s, 1H, N=CH), 11.52, 11.63 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.90, 34.71, 34.97, 35.37 (CH2CO, CH), 40.33
(2CH3), 50.53, 50.86 (NCH2), 55.42, 56.19, 56.26 (2OCH3), 109.08, 109.73, 112.38, 113.25,
113.43, 116.83, 117.68, 121.23, 122.63, 122.81, 128.83, 128.94, 139.00, 142.29, 147.58, 152.10,
152.25, 153.24, 168.59, 170.89, 171.12, 173.68 (CAr, 2C=O) ppm.
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Calcd. for C22H26N4O4, %: C 64.37; H 6.38; N 13.65; found, %: C 64.32; H 6.36; N 13.62.
N′-(2,4,6-trimethoxybenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-

carbohydrazide (5g)
White solid, yield 0.51 g, 57.5%, m. p. 174–175 ◦C (from 1,4-dioxane).
IR (KBr) ν 2962 (NH), 1667; 1647 (C=O); 1519 (C=N); 1136; 1118 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 75/25): 2.65–2.76 (m, 2H, CH2CO), 2.86 (s, 6H,

2CH3), 3.23–3.31 (m, 0.25H, CH), 3.78, 3.82 (2s, 6H, OCH3), 3.85–4.14 (m, 2.75H, NCH2+CH),
4.01–4.17 (m, 1H, CH), 6.27 (s, 2H, HAr), 6.72 (d, J = 9.0 Hz, 2H, HAr), 7.38–7.46 (m, 2H,
HAr), 8.19, 8.34 (2s, 1H, N=CH), 11.17, 11.25 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 34.38, 34.91, 35.40, 35.91 (CH2CO, CH), 40.78 (2CH3),
51.01, 51.44 50.95 (NCH2), 55.88, 56.41 (3OCH3), 91.58, 104.19, 104.32, 112.83, 121.63, 121.74,
129.36, 129.45, 139.24, 143.20, 148.03, 160.28, 160.35, 162.53, 162.74, 168.38, 171.48, 171.83,
173.42 (CAr, 2C=O) ppm.

Calcd. for C23H28N4O5, %: C 62.71; H 6.41; N 12.72; found, %: C 62.76; H 6.38; N 12.69.
N′-(3,4,5-trimethoxybenzylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-

carbohydrazide (5h)
White solid, yield 0.78 g, 89%, m. p. 160–161 ◦C (from 1,4-dioxane).
IR (KBr) ν 3280 (NH), 1673; 1663 (C=O); 1521 (C=N); 1182; 1129 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 60/40): 2.66–2.81 (m, 2H, CH2CO), 2.86, 2.87

(2s, 6H, 2CH3), 3.69, 3.70 (2s, 3H, OCH3), 3.80, 3.82 (2s, 6H, 2OCH3), 3.84–4.16 (m, 3H,
NCH2+CH), 6.67–6.77 (m, 2H, HAr), 7.00 (s, 2H, HAr), 7.39–7.48 (m, 2H, HAr), 7.94, 8.14 (2s,
1H, N=CH), 11.58, 11.60 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.86, 34.72, 34.90, 35.46 (CH2CO, CH), 40.33 (2CH3),
50.57, 50.95 (NCH2), 55.94, 60.11 (3OCH3), 104.10, 104.29, 112.37, 121.23, 128.82, 128.91,
129.66, 139.03, 139.20, 143.37, 146.94, 147.58, 147.61, 153.18, 168.78, 170.89, 171.12, 173.76
(CAr, 2C=O) ppm.

Calcd. for C23H28N4O5, %: C 62.71; H 6.41; N 12.72; found, %: C 62.77; H 6.39; N 12.74.
1-(4-(Dimethylamino)phenyl)-N′-(4-nitrobenzylidene)-5-oxopyrrolidine-3-

carbohydrazide (5i)
White solid, yield 0.50 g, 63%, m. p. 276–277 ◦C (from 1,4-dioxane).
IR (KBr) ν 3267 (NH), 1672; 1645 (C=O); 1528 (C=N); 1171; 1149 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.62–2.82 (m, 2H, CH2CO), 2.86, 2.87

(2s, 6H, 2CH3), 3.34–3.41 (m, 0.35H, CH), 3.83–4.18 (m, 2.65H, NCH2+CH), 6.72 (d, J = 8.9
Hz, 2H, HAr), 7.43 (d, J = 8.9 Hz, 2H, HAr), 7.91–8.02 (m, 2H, HAr), 8.13 (s, 0.65H, N=CH),
8.15–8.42 (m, 2H, HAr+0.35H, N=CH), 11.85, 11.92 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.92, 34.65, 34.98, 35.34 (CH2CO, CH), 40.33 (2CH3),
50.33, 50.77 (NCH2), 55.94, 60.11 (3OCH3), 112.38, 121.23, 121.29, 124.04, 127.87, 128.02,
128.80, 128.87, 140.44, 140.50, 141.28, 144.52, 147.62, 147.71, 147.88, 169.29, 170.80, 170.97,
174.11 (CAr, 2C=O) ppm.

Calcd. for C20H21N5O4, %: C 60.75; H 5.35; N 17.71; found, %: C 60.79; H 5.32; N 17.72.
1-(4-(Dimethylamino)phenyl)-5-oxo-N′-(thiophen-2-ylmethylene)pyrrolidine-3-

carbohydrazide (5j)
Yellowish solid, yield 0.26 g, 36%, m. p. 174–175 ◦C (from 1,4-dioxane).
IR (KBr) ν 3279 (NH), 1660; 1597 (C=O); 1520 (C=N); 1177; 1111 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 60/40): 2.64–2.76 (m, 2H, CH2CO), 2.86 (s, 6H,

2CH3), 3.26–3.32 (m, 0.5H, CH), 3.87–4.05 (m, 2.5H, NCH2+CH), 6.72 (d, J = 8.4 Hz, 2H,
HAr), 7.08–7.15 (m, 2H, HAr), 7.38–7.47 (m, 3H, HAr), 7.64 (dd, J = 14.1, 5.1 Hz, 1H, HAr),
8.20, 8.43 (2s, 1H, N=CH), 11.54, 11.57 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 33.12, 34.56, 34.91, 35.40 (CH2CO, CH), 40.34 (2CH3),
50.43, 50.88 (NCH2), 112.40, 121.22, 121,27, 127.96, 128.30, 128.42, 128.75, 128.91, 129.29,
129.35, 129.44, 131,47, 134.28, 138.41, 138.54, 138.98, 142.14, 155.83, 168.64, 170.87, 171.01
(CAr, 2C=O) ppm.

Calcd. for C18H20N4O2S, %: C 60.65; H 5.66; N 15.72; found, %: C 60.62; H 5.64;
N 15.74.
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1-(4-(Dimethylamino)phenyl)-N′-((5-nitrothiophen-2-yl)methylene)-5-oxopyrrolidine-
3-carbohydrazide (5k)

Brown solid, yield 0.61 g, 76%, m. p. 266–267 ◦C (from 1,4-dioxane).
IR (KBr) ν 3214 (NH), 1681; 1646 (C=O); 1528 (C=N); 1173; 1111 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.64–2.82 (m, 2H, CH2CO), 2.86 (s, 6H, 2CH3), 3.34–

3.38 (m, 0.4H, CH), 3.87–4.05 (m, 2.6H, NCH2+CH), 6.72 (d, J = 8.4 Hz, 2H, HAr), 7.42 (d, J
= 8.4 Hz, 2H, HAr), 7.53, 7.56 (2d, J = 4.3 Hz, 1H, HAr), 8.06–8.14 (m, 1H, HAr), 8.20, 8.48 (2s,
1H, N=CH), 11.97 (s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 32.96, 34.61, 35.01, 35.27 (CH, CH2CO), 40.33 (2CH3),
50.31, 50.70 (NCH2), 112.38, 121.30, 128.84, 129.20, 129.76, 130.64, 136.84, 140.54, 146.60,
147.64, 150.54, 150.86, 169.34, 170.74, 170.89, 173.96 (CAr, 2C=O) ppm.

Calcd. for C18H19N5O4S, %: C 53.86; H 4.77; N 17.45; found, %: C 53.82; H 4.73;
N 17.43.

1-(4-(Dimethylamino)phenyl)-N′-(naphthalen-1-ylmethylene)-5-oxopyrrolidine-3-
carbohydrazide (5l)

Yellowish solid, yield 0.40 g, 50%, m. p. 180–181 ◦C (from 1,4-dioxane).
IR (KBr) ν 3203 (NH), 1674; 1660 (C=O); 1521 (C=N); 1166; 1115 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 60/40): 2.72–2.84 (m, 2H, CH2CO), 2.85, 2.87

(2s, 6H, 2CH3), 3.36–3.42 (m, 0.4H, CH), 3.93–4.16 (m, 2.6H, NCH2+CH), 6.73 (t, J = 8.5 Hz,
2H, HAr), 7.45 (dd, J = 9.1, 4.1 Hz, 1H, HAr), 7.57–7.68 (m, 3H, HAr), 7.88–8.04 (m, 3H, HAr),
8.57 (d, J = 8.5 Hz, 0.6H, HAr), 8.75, 8.83 (2s, 1H, N=CH), 8.87 (d, J = 8.5 Hz, 0.4H, HAr),
11.61, 11.74 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 33.01,34.72, 35.00, 36.45 (CH2CO, CH), 40.33 (2CH3),
50.48, 50.92 (NCH2), 123.40, 128.33, 125.63, 126.28, 126.31, 126.87, 127.35, 127.37, 128.21,
128.88, 128.91, 129.34, 129.37, 130.12, 130.35, 130.63, 133.49, 133.54 143.18, 147.05, 147.59,
168.82, 170.91, 171.08, 173.65 (CAr, 2C=O) ppm.

Calcd. for C24H24N4O2, %: C 71.98; H 6.04; N 13.99; found, %: C 71.91; H 6.07; N 13.96.
General method of the preparation of hydrazones 6a,b
A mixture of hydrazide 4 (0.52 g 2 mmol), acetone or methylethylketone (10 mL), and

5 drops of acetic acid was heated at reflux for 18 h and then cooled, half of the volatile
fraction was evaporated under reduced pressure, and the formed crystalline solid was
filtered off and washed with acetone to give the title compound 6a or 6b.

1-(4-(Dimethylamino)phenyl)-5-oxo-N′-(propan-2-ylidene)pyrrolidine-3-carbohydrazide (6a)
White solid, yield 0.45 g, 74%, m. p. 206–208 ◦C (from acetone).
IR (KBr): ν 3300 (NH), 1671; 1651 (C=O); 1522 (C=N); 1128; 1116 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 55/45): 1.86, 1.88, 1.93 (3s, 6H, 2CH3), 2.59–

2.71 (m, 2H, CH2CO), 2.87 (s, 6H, 2CH3), 3.37–3.44 (m, 0.6H, CH), 3.77–4.00 (m, 2.4H,
NCH2+CH), 6.75 (d, J = 8.5 Hz, 2H, HAr), 7.43 (dd, J = 9.1, 3.9 Hz, 2H, HAr), 10.21, 10.29 (2s,
1H, NH) ppm.

Calcd. for C16H22N4O2, %: C 63.55; H 7.33; N 18.53; found, %: C 63.52; H 7.35; N 18.51.
N′-(butan-2-ylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-carbohydrazide (6b)
White solid, yield 0.20 g, 32%, m. p. 124–125 ◦C (from acetone).
IR (KBr): ν 3315 (NH), 1691; 1672 (C=O); 1522 (C=N); 1125; 1112 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (mixture of Z, E, s-Z, and s-E isomers): 0.98, 1.03 (2t,

J = 7.3 Hz, 3H, CH3), 1.85, 1.87, 1.91 (3s, 6H, 2CH3), 2.20–2.34 (m, 2H, CH2), 2.58–2.72 (m,
2H, CH2CO), 2.86 (s, 6H, 2CH3), 3.37–3.45 (m, 0.4H, CH), 3.78–4.01 (m, 2.6H, NCH2+CH),
6.72 (d, J = 8.5 Hz, 2H, HAr), 7.42 (dd, J = 9.0, 4.3 Hz, 2H, HAr), 10.17, 10.24, 10.32, 10.39 (4s,
1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 10.36, 10.79, 16.06, 16.10, 22.17, 22.58, 22.98, 31.44,
31.54, 33.26, 34.48, 34.68, 35.60 (CH3CH2, CH3, CH2CO, CH), 40.34 (2CH3), 50.51, 51.22
(NCH2), 112.39, 121.17, 121.21, 128.95, 147.58, 154.44, 159.64 (CAr), 168.77, 171.09, 171.20,
173.86 (2C=O) ppm.

Calcd. for C17H24N4O2, %: C 64.53; H 7.65; N 17.71; found, %: C 64.56; H 7.62; N 17.72.
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N′-(1-(4-aminophenyl)ethylidene)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-
carbohydrazide (6c)

A mixture of hydrazide 4 (0.35 g, 1.3 mmol), 4′-aminoacetophenone (0.36 g, 2.7 mmol),
and acetic acid (3 mL) in 1,4-dioxane (55 mL) was heated at reflux for 5 h, and then half of
the dioxane was evaporated under reduced pressure, the residue was diluted with propan-
2-ol (8 mL), and the mixture was left in the refrigerator overnight. The formed solid was
filtered off and washed with 1,4-dioxane and diethyl ether to give the title compound 6c.

White solid, yield 0.38 g, 78%, m. p. 146–147 ◦C (from propan-2-ol).
IR (KBr): ν 3339 (NH), 1671; 1632 (C=O); 1520 (C=N); 1183; 1118 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ (Z/E 65/35): 2.16, 2.18 (2s, 3H, CH3), 2.66–2.79 (m,

2H, CH2CO), 2.86 (s, 6H, 2CH3), 3.83–4.13 (m, 3H, NCH2+CH), 5.43, 5.46 (2s, 2H, NH2),
6.56 (d, J = 8.2 Hz, 2H, HAr), 6.67–6.77 (m, 2H, HAr), 7.43 (d, J = 9.2 Hz, 2H, HAr), 7.51 (d, J
= 8.2 Hz, 2H, HAr), 10.34, 10.47 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 13.24, 13.81 (CH3), 30.70, 33.19, 34.65, 35.69 (CH2CO,
CH), 40.34 (2CH3), 50.65, 51.31 (NCH2), 112.39, 113.12, 113.26, 121.19, 125.06, 125.23, 127.23,
127.59, 128.987, 130.56, 147.56, 147.58, 128.93, 150.01, 150.25, 153.60, 168.80 (CAr), 171.13,
171,24, 174.01 (2C=O) ppm.

Calcd. for C21H25N5O2, %: C 66.47; H 6.64; N 18.46; found, %: C 66.44; H 6.66; N 18.43.
N-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(4-(dimethylamino)phenyl)-5-oxopyrrolidine-3-

carboxamide (7)
A mixture of hydrazide 4 (0.52 g, 2 mmol), hexane-2,5-dione (0.57 mL, 5 mmol) propan-

2-ol (50 mL), and glacial acetic acid (5 drops) was refluxed for 18 h and then cooled. The
formed precipitate was filtered off and washed with propan-2-ol, diethyl ether to give the
title compound 7.

White solid, yield 0.44 g, 64%, m. p. 163–164 ◦C (from propan-2-ol).
IR (KBr) ν 3231 (NH), 1688; 1658 (C=O); 1520 (C=N); 1221; 1198; 1136; 1112 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 1.94, 1.98, 1.99 (3s, 6H, 2CH3), 2.64–2.69 (m, 1H,

CH2CO), 2.77–2.82 (m, 1H, CH2CO), 2.87 (s, 6H, 2CH3), 3.39–3.46 (m, 1H, CH), 3.85–3.92
(m, 1H, NCH2), 4.01–4.09 (m, 1H, NCH2), 5.48, 5.64 (2s, 2H, 2CHPyrr), 6.73 (d, J = 8.8 Hz,
2H, HAr), 7.42 (d, J = 9.1 Hz, 2H, HAr), 10.78, 10.88 (2s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 8.77, 10.94 (2CH3), 34.13, 35.35, 40.32, 50.84 (CH,
CH2CO, N(CH3)2, NCH2), 103.06 (CPyrr), 112.38, 121.37, 128.71, 147.68 CAr, CPyrr), 170.68,
172.05 (2C=O) ppm.

Calcd. for C19H24N4O2, %: C 67.04; H 7.11; N 16.46; found, %: C 67.08; H 7.13; N 16.48.
1-(1-(4-(Dimethylamino)phenyl)-5-oxopyrrolidine-3-carboxamido)-5-oxopyrrolidine-3-

carboxylic acid (8)
A mixture of hydrazide 4 (0.49 g, 1.9 mmol), itaconic acid (0.38 g, 2.9 mmol), and water

(10 mL) was heated at reflux for 24 h and then cooled down, and a part of the water was
evaporated under reduced pressure. The resin residue was dissolved in acetone, and the
solution was diluted with hexane to isolate a crystalline product 8.

Light brown solid, yield 0.15 g, 21%, m. p. 186–187 ◦C (from propan-2-ol).
IR (KBr) ν 3277 (NH), 1729; 1670 (C=O); 1520 (C=N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.51–2.61 (m, 3H, CH2CO), 2.68–2.77 (m, 1H,

CH2CO), 2.86 (s, 6H, 2CH3), 3.24–3.33 (m, 2H, 2CH), 3.57–3.63 (m, 1H, NCH2), 3.66–3.72
(m, 1H, NCH2), 3.77–3.83 (m, 1H, NCH2), 3.91–4.02 (m, 1H, NCH2), 6.72 (d, J = 8.6 Hz, 2H,
HAr), 7.40 (d, J = 8.6 Hz, 2H, HAr), 10.34 (s, 1H, NH), 12.77 (br. s, 1H, OH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 31.27, 33.74, 34.12, 35.15 (CH, CH2CO), 40.35
(N(CH3)2), 49.65, 50.73 (NCH2), 112.39, 121.31, 128.74, 147.67 (CAr), 170.72, 170.90, 171.54,
174.04 (4C=O) ppm.

Calcd. for C18H22N4O5, %: C 57.75; H 5.92; N 14.96; found, %: C 57.78; H 5.93; N 14.99.
1-(4-(Dimethylamino)phenyl)-5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-

carbohydrazide (9)
To a mixture of hydrazide 4 (0.29 g, 1.1 mmol), isatin (0.25 g, 1.7 mmol), and methanol

(80 mL), glacial acetic acid (3 drops) was added, and the mixture was refluxed for 4 h.
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After completion of the reaction, the formed crystalline solid was filtered off, washed with
methanol, dried to give the title compound 9.

Yellow solid, yield 0.18 g, 42%, m. p. 208–209 ◦C (from propan-2-ol:DMF, 10:1).
IR (KBr) ν 3386; 3238 (NH), 1732; 1716; 1695 (C=O); 1520 (C-N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.72–2.83 (m, 2H, CH2CO), 2.87 (s, 6H, 2CH3), 3.74–

4.19 (m, 3H, NCH2+CH), 6.72 (d, J = 8.6 Hz, 2H, HAr), 6.90 (d, J = 7.8 Hz, 1H, HAr), 7.05 (br.
s, 1H, HAr), 7.32–7.41 (m, 1H, HAr), 7.42 (d, J = 8.6 Hz, 2H, HAr), 10.82 (s, 1H, NHIsat), 11.35
(s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 33.54, 35.54 (CH, CH2CO), 40.34 (N(CH3)2), 50.58
(NCH2), 110.62, 112.38, 115.20, 121.36, 121,68, 126.17, 128.78, 132.58, 136.48, 143.85, 147.66
(CAr), 159.28, 164.58, 170.81 (C=O) ppm.

Calcd. for C21H21N5O3, %: C 64.44; H 5.41; N 17.89; found, %: C 64.41; H 5.42; N 17.87.
1-(4-(Dimethylamino)phenyl)-4-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyrrolidin-

2-one (10)
To a solution of potassium hydroxide (0.34 g, 6.05 mmol) in methanol, carbon disulfide

(0.42 g, 5.5 mmol) was added dropwise, and the mixture was stirred for 15 min at room
temperature. Then, the solution of acid hydrazide 4 (0.29 g, 1.1 mmol) in methanol was
added, and the mixture was heated at reflux for 7 h. After completion of the reaction, the
volatile fraction was evaporated under reduced pressure, and the residue was diluted with
water and acidified with acetic acid to pH 6 to give the title compound 10.

White solid, yield 0.19 g, 56%, m. p. 206–207 ◦C (from methanol).
IR (KBr) ν 3420 (NH), 1655 (C=O); 1522 (C=N); 1230 (C=S) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.74–2.81 (m, 1H, CH2CO), 2.86 (s, 6H, 2CH3), 2.89–

2.95 (m, 1H, CH2CO), 3.88–3.96 (m, 1H, CH), 3.96–4.16 (m, 2H, NCH2), 6.72 (d, J = 8.8 Hz,
2H, HAr), 7.40 (d, J = 8.8 Hz, 2H, HAr), 13.89 (br. s, 1H, NH) ppm.

13C NMR (101 MHz, DMSO–d6) δ 27.98, 34.92 (CH, CH2CO), 40.33 (N(CH3)2), 50.31
(NCH2), 112.35, 121.50, 128.45, 147.78, 164.06 (CAr), 170.05 (C=O), 178.0 (C=S) ppm.

Calcd. for C14H16N4O2S, %: C 55.25; H 5.30; N 18.41; found, %: C 55.22; H 5.31;
N 18.39.

1-(4-(Dimethylamino)phenyl)-4-(5,6-diphenyl-1,2,4-triazin-3-yl)pyrrolidin-2-one (11)
A mixture of hydrazide 4 (0.5 g, 1.9 mmol), benzyl (0.4 g, 1.9 mmol), ammonium

acetate (1.46 g, 19 mmol), and glacial acetic acid (8 mL) was heated at reflux for 24 h and
then cooled down, diluted with water, and left in the refrigerator overnight. Afterward, the
aqueous solution was decanted, and then the resin residue was washed 3-fold with water,
poured with water, and acidified with HCl to pH 1. The mixture was refluxed for 5 min,
cooled, and neutralized with sodium acetate. The crystalline solid was filtered off, washed
with water, and dried to give the title compound 11.

Yellowish solid, yield 0.21 g, 43%, m. p. 64–65 ◦C (from propan-2-ol).
IR (KBr) ν 1691 (C=O); 1520 (C=N) cm–1.
1H NMR (400 MHz, DMSO–d6) δ 2.86 (s, 6H, 2CH3), 3.05–3.14 (m, 2H, CH2CO),

4.19–4.36 (m, 3H, NCH2+CH), 6.73 (d, J = 8.6 Hz, 2H, HAr), 7.37–7.53 (m, 12H, HAr) ppm.
13C NMR (101 MHz, DMSO–d6) δ 37.00, 37.14 (CH, CH2CO), 40.35 (N(CH3)2), 52.60

(NCH2), 112.39, 121.34, 127.52, 128.40, 128.51, 128.64, 128.70, 128.87, 128.92, 128.97, 129.14,
129.46, 129.78, 129.92, 130.03, 130.18, 130.65, 135.36, 135.44, 147.63, 155.91, 156.09, 167.03,
171.16 (CAr, C=O) ppm.

Calcd. for C27H25N5O, %: C 74.46; H 5.79; N 16.08; found, %: C 74.50; H 5.77; N 16.05.

3.2. Pharmacology
3.2.1. Cell Culturing

The human triple-negative breast cancer MDA-MB-231 cell line and human pancreatic
carcinoma cell line Panc-1 were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Human foreskin fibroblasts (HF) CRL-4001 were originally obtained
from ATCC and kindly provided by Prof. Helder Santos (University of Helsinki, Helsinki,
Finland). The cells were grown in Dulbecco’s Modified Eagle’s medium supplemented



Int. J. Mol. Sci. 2024, 25, 1834 19 of 23

with GlutaMAX (Gibco, Carlsbad, CA, USA) and 10,000 U/mL penicillin, 10 mg/mL
streptomycin (Gibco), and 10% fetal bovine serum (Gibco) (further referred as to cell culture
medium). Cells were cultured in a humidified atmosphere with 5% CO2 at 37 ◦C.

3.2.2. Cell Viability Assay

The effect of compounds on cell viability was tested by MTT assay, as described
elsewhere [53]. Briefly, MDA-MB-231 and Panc-1 cells were plated into 96-well F-bottom
plates (Corning, Corning, NY, USA) in triplicates at a concentration of 4 × 103 cells/well
in 100 µL of cell culture medium. After 24 h of incubation, 100 µL of 200 µM compound
solution in a cell culture medium was added, thus making the final concentration of 100 µM.
The medium without compounds with only 0.5% DMSO was used as a negative control, and
the wells without cells were used as a positive control. After 72 h of incubation, the medium
was removed, fresh cell culture medium containing 0.5 mg/mL of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-Aldrich Co., St. Louis, MO, USA) was
added, and the plates were incubated for 4 h in a humidified atmosphere with 5% CO2 at
37 ◦C. Then, the medium was aspirated, and the formed formazan crystals were dissolved
in 100 µL of dimethylsulfoxide (DMSO; Sigma-Aldrich Co., St. Louis, MO, USA). The
absorbance was measured at 570 and 630 nm using a multi-detection microplate reader.
The effect on cell viability was calculated using the formula:

Relative cell viability (%) =
A − A0

ANC − A0

where
A—mean absorbance of the tested compound;
A0—mean absorbance of the blank (no cells, positive control);
ANC—mean of absorbance of negative control (only cells, no treatment).
To establish the half-maximum effective concentrations (EC50) that indicated the

concentrations of compounds at which the cell viability is reduced by 50%, the same
MTT assay was used. Serial dilutions of the most active compounds from 100 µM to
3.125 µM (100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM, and 3.125 µM) were made in a cell
culture medium and added to the cells in triplicates. EC50 values were calculated using the
Hill equation.

3.2.3. Clonogenic Assay

The compound effect on cell colony formation and growth was evaluated by the
clonogenic assay as described elsewhere [55]. Briefly, the human triple-negative breast
cancer MDA-MB-231 and pancreatic carcinoma Panc-1 cells were seeded into 12-well plates
in triplicates at a density of 2 × 102 cells/well and incubated overnight in a humidified
atmosphere containing 5% CO2 at 37 ◦C. Then, compounds 3c, 3d, 5k, and 5l were added
to a final concentration of 1 µM and 2 µM. The medium containing 0.5% DMSO served as a
negative control. Then, the plates were incubated in a humidified atmosphere with 5% CO2
at 37 ◦C for the next 7 days. After incubation, the media from the cells were removed and
the cells were washed with PBS. Then, the cells were fixed in a 4% formaldehyde solution
(Thermo Scientific, Waltham, MA, USA), washed with PBS twice, and stained with 0.1%
Crystal Violet (Sigma-Aldrich Co.) solution for 20 min. After the stain was removed, the
stained colonies were carefully washed three times with sterile water and dried overnight.
Then, the colonies were imaged with the SYNGENE G:BOX gel doc system, using Gen Sys
software version 1.5.5.0, followed by quantification with Gene tools software version 4.3.8.

3.2.4. Wound Healing Assay

The cells’ ability to migrate was evaluated using a ‘wound-healing’ assay, as described
elsewhere [53]. Briefly, MDA-MB-231 and Panc-1 cells were seeded in 24-well plates at a
density of 5 × 104 cells/well and incubated for 48 h in a cell culture medium in a humidified
atmosphere with 5% CO2 at 37 ◦C until they reached appr. 90% of confluency. Then, a
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scratch was made in the center of each well using a 100 µL pipette tip. The medium was
removed and washed carefully with PBS. Then, 500 µL of fresh medium containing 1 µM
or 2 µM of tested compounds 3c, 3d, 5k, and 5l was added. The cell culture medium
containing 0.1% DMSO was used as a negative control. The plates were incubated in a
humidified atmosphere containing 5% CO2 at 37 ◦C for up to 72 h.

Photos of ‘wounds’ were taken at intervals of 0 h, 24 h, 48 h, and 72 h under phase
contrast microscopy at a 4× magnification. The ‘wound’ area was analyzed using the
ImageJ program, version 1.53o (National Institute of Health, Bethesda, MD, USA).

3.2.5. Testing in 3D Cultures

Cell spheroids were formed using magnetic 3D Bioprinting methods, as described
elsewhere [53]. Briefly, the human triple-negative breast cancer MDA-MB-231 cells, the
human pancreatic Panc-1 cells, and human fibroblasts were grown in a 6-well plate until
they reached 70% of confluence. Then, 25 µL of Nanoshuttle (n3D Biosciences, Inc., Allen-
town, PA, USA) was added to the cells, and the incubation was continued for 8 h more.
Then, the cells were trypsinized and cell suspensions were prepared. Cells were seeded
into an ultra-low attachment 96-well plate (Corning) at a volume of 100 µL containing (1.5
× 103 cancer cells and 1.5 × 103 human fibroblasts/well). The plate was put on the special
magnetic drive (n3D Biosciences, Inc., Allentown, PA, USA) and kept in the incubator for
48 h while the spheroids were formed. Then, the medium was replaced with fresh medium
containing 10 µM of tested compounds.

The photos of spheroids were taken at the beginning of the experiment (Day 0) and
every two days using an Olympus IX73 inverted microscope (OLYMPUS Corporation,
Tokyo, Japan). The size of spheroids was evaluated using ImageJ (National Institute of
Health, Bethesda, MD, USA) and Microsoft Office Excel software, v. 2303 (Redmond,
Washington, DC, USA).

At the end of the experiment (on Day 8), 10 µL of WST-1 reagent (Sigma-Aldrich Co,
St. Louis, MO, USA) was added to each well. After 12 h of incubation, 70 µL of solution
from each well was transferred to the new 96-well plate, and the absorbance was measured
at 460 and 530 nm using a multi-detection microplate reader. Spheroid cell viability was
calculated using a formula provided in Section 3.2.2.

3.3. Statistical Analysis

All biological experiments were repeated three times, and the means and standard
deviations were calculated. The data were processed using Microsoft Office Excel 2016
software (Microsoft Corporation, Redmond, WA, USA). Statistical analysis was performed
using a Student’s t-test. For the comparison of three or more groups, one-way ANOVA was
used. The level of significance was set as p < 0.05.

4. Conclusions

In summary, a series of 4-((dimethylamino)phenyl)pyrrolidin-2-ones bearing hy-
drazide, hydrazone, and heterocyclic moieties were synthesized and tested for the an-
titumor activity against triple-negative breast cancer and pancreatic cancer cell lines for
their effect on cell viability, colony formation, cell migration, and activity in cell spheroids.

Pyrrolidinone derivatives 3c and 3d, with the incorporated 5-chloro and 5-methylbenzimidazole
fragments, hydrazone 5k bearing a 5-nitrothien-2-yl substitution, and hydrazone 5l with a
naphth-1-yl fragment in the structure significantly decreased the viability of triple-negative
breast cancer and ductal pancreatic carcinoma cell lines. In our study, the triple-negative
breast cancer cell line MDA-MB-231 was more sensitive to treatment with the synthesized
compounds, among which compounds 3d and 5k were the most active. In the pancreatic
cell line, 3d showed the highest activity in 3D cell culture; however, 5k was the most
cytotoxic and exhibited the highest effect on cell colony formation and growth. Four
compounds (3c, 3d, 5k, and 5l) were the most active against both cell lines.
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Considering the different activities in the biological assays, the selected pyrrolidinone
derivatives could be further tested to better understand the structure–activity relationship
and their mechanism of action.
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