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Abstract: Uveal melanoma (UM) is the most common primary intraocular malignancy with a limited
five-year survival for metastatic patients. Limited therapeutic treatments are currently available for
metastatic disease, even if the genomics of this tumor has been deeply studied using next-generation
sequencing (NGS) and functional experiments. The profound knowledge of the molecular features
that characterize this tumor has not led to the development of efficacious therapies, and the survival
of metastatic patients has not changed for decades. Several bioinformatics methods have been applied
to mine NGS tumor data in order to unveil tumor biology and detect possible molecular targets for
new therapies. Each application can be single domain based while others are more focused on data
integration from multiple genomics domains (as gene expression and methylation data). Examples of
single domain approaches include differentially expressed gene (DEG) analysis on gene expression
data with statistical methods such as SAM (significance analysis of microarray) or gene prioritization
with complex algorithms such as deep learning. Data fusion or integration methods merge multiple
domains of information to define new clusters of patients or to detect relevant genes, according
to multiple NGS data. In this work, we compare different strategies to detect relevant genes for
metastatic disease prediction in the TCGA uveal melanoma (UVM) dataset. Detected targets are
validated with multi-gene score analysis on a larger UM microarray dataset.

Keywords: uveal melanoma; multi-domain data; data fusion

1. Introduction

In the last two decades, next-generation sequencing data have unveiled the genomics
behind cancer and genetic diseases at a high level of detail. A consistent amount of this
data has been made available in public databases related to projects such as The Cancer
Genome Atlas (TCGA), the Personal Genome Project or repositories such as the European
Genome-phenome Archive [1–3].

Public repositories of NGS data store processed or raw datasets, while in the first case
data are directly available for bioinformatic analysis, as an expression matrix with samples
in columns and genes in rows. In the other case, data should be preprocessed and prepared
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for further analysis. Several ad hoc public pipelines to obtain human readable files (as
expression matrices or variant call format) from raw data files as FASTQ files are now
available. They can be used by the researcher to detect genetic variants or genes related to
disease severity or progression [4,5].

Genomic data such as methylation, gene expression or copy number alteration (CNA)
matrices, from the same samples, can be analyzed individually or by integrating multiple
domains at the same time. Examples of the first kind of approach include the application
of deep learning methods to extract informative genes from gene expression profiles [6].
Among the approaches that process multiple domains at the same time, examples include
the analysis of the association between gene expression and the presence of CNA events [7],
or the integration of multiple domains by data fusion to cluster patients into groups with
different survival [8]. Data fusion (DF) methods were developed to merge different data
domains in an unsupervised way for feature selection and sample clustering [8–10]. DF
applications such as joined singular value decomposition (jSVD) integrate the information
from multiple domains to produce a single matrix; therefore, each sample is projected
in a k dimensional space that can be used to define new clusters with methods such as
k-means [8,9,11]. Other methods such as similarity network fusion (SNF) directly perform
sample clustering based on the integration on one network of single-sample correlation
matrices computed on each domain [12].

Uveal melanoma, a rare cancer of the eye that affects two to eight people a year per
million people, has been molecularly characterized in great detail. Genomic analyses have
shown that it is driven by a very limited number of driver events, and the analysis of gene
expression, chromosome copy number alterations and DNA methylation concordantly
reveals the existence of four major risk related subtypes that are clearly distinct from each
other and tightly linked to the development of metastases and disease-free and overall
survival after diagnosis [13]. UM has a very low mutational burden of 17–30 somatic
mutations that affect protein coding sequences and might have functional consequences.
Apparently, a single initiator mutation in one of four genes (GNAQ, GNA11, PCLB2 and
CYSLTR2) is sufficient to yield a tumor that, upon acquisition of an additional mutation in
the genes BAP1, a tumor suppressor gene, or SF3B1, a splice factor gene, and cytogenetic
alterations, will progress to metastasis [13–15]. The four molecular classes are characterized
by disomy of chromosome 3 without (class A) or with (class B) a hotspot SF3B1 mutation
or monosomy of chromosome 3 and BAP1 mutation without (class C) or with (class D)
amplification of chromosome 8q and an inflammatory infiltrate. Metastatic risk is low in
class A, intermediate in class B and high in classes C and D [16]. These molecular classes are
reflected by cytogenetic alterations and differential gene expression as well as differential
DNA methylation [16,17].

Known molecular drivers and clearly distinct risk classes make UM especially suited
for the development of data fusion approaches since it is straightforward to test classifica-
tions as to whether they improve classification over known classification systems based on
single domains. However, it should be considered that genomics data are always character-
ized by some degree of noise from biological or technical factors (e.g., sample preparation,
quality, etc.) and size limitations that prohibit perfect classification, which could instead be
observed in an artificial training set [18].

Previously, we applied and adapted data fusion approaches to prognostic classification
of UM. We performed joined singular value decomposition (jSVD) known in chemometrics
as simultaneous component analysis, a simultaneous principal component analysis (PCA),
and we developed joined constrained matrix factorization (jCMF) based on a form of
coupled matrix factorization, also known as the k-table method, with a generalization of
this factorization by allowing different constraints on the factor matrices [8,9].

Here, we report on the analysis of the uveal melanoma dataset with algorithms based
on open-source code, i.e., R and Python implementations.

Information from multiple domains such as expression, methylation and copy number
alteration from TCGA patients affected by UM were merged using data fusion or integration
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methods and applied to distribute samples in different clusters to perform feature selection,
as we previously applied to the skin cutaneous melanoma TCGA dataset [9]. Different
methods of data integration based on genomic domains are compared to evaluate which
features (genes) are most relevant for UM subtypes and risk class detection and in which
domains their effect is detectable (CNA level, gene expression or methylation). Selected
methods will analyze genomic data that are relevant for UM subtyping in the high or low
risk classes: CNA-based methods, which prioritize genes with expression levels altered by
variation in copy number, data fusion or integration approaches will integrate expression
and methylation data for patient clustering and feature selection as well as to identify which
ones are transcriptionally predictive (i.e., genes with an association between methylation
and expression levels).

2. Results
2.1. Gene Prioritization Methods
2.1.1. Data Fusion

jSVD was used to integrate RNA-seq and methylation TCGA UVM data in order to
produce a matrix U, with each patient defined by a three-dimensional space (Figure 1a,b).
High- and low-risk classes are clearly separated in space (Figure 1a); the two clusters
defined by k-means on the U matrix classified two patients as high risk who did not
develop metastasis during follow-up in the blue cluster, which contains all low-risk samples
(Figure 1b). The number of k-means clusters (2) was defined by balancing low-connectivity
values while maximizing the silhouette score (Table 1).
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Figure 1. (a) Scatterplot of the 80 patients from the UVM TCGA dataset in the three-dimensional
(k = 3) U matrix produced using jSVD data integration of RNA-seq and methylation array data.
Points are colored according to the metastatic risk classes [16], from high (4) to low (1): 4 in red, 3 in
orange, 2 in blue, 1 in azure. Patients that developed metastasis are reported as circles. (b) Scatterplot
of the 80 patients from the UVM TCGA dataset in the three-dimensional (k = 3) U matrix produced
using jSVD data integration of RNA-seq and methylation array data. Points are colored according to
the two clusters defined by k-means on the jSVD U matrix.

Table 1. Performance measures used to define the optimal number of clusters (k). Connectivity is 0 if
one sample has no neighbors from different clusters, while silhouette score represents sample fit in
its cluster.

Number of k 2 3 4

Connectivity score 2.25 6.27 15.66
Silhouette score 0.45 0.51 0.52



Int. J. Mol. Sci. 2024, 25, 1796 4 of 16

At this point, we applied bootstrap analyses (significance analysis of microarrays,
SAM [19]) to detect differentially expressed genes among the two classes of UM samples as
defined by k-means. Samples of the two clusters are characterized by a set of differentially
expressed genes and methylated probes (Figure 2). The two high-risk samples (class 3) that
were clustered among the lower-risk cases by k-means show a methylation and expression
profile that is more similar to their neighbors than the ones of the other group (in red,
Figure 2). Generally, the classification as “high risk” of patients who did not develop
metastases can be misclassification but must not be so, since they might develop metastases
later on or have responded to therapy. The latter does not apply to UM for the absence of
adjuvant therapy.
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Figure 2. Heatmap of the differentially expressed genes and methylated probes of the 80 patients
from the UVM TCGA dataset, considering the two clusters detected on the jSVD U matrix. At the
top of the figure, each row represents different sample features, respectively: presence of metastasis,
CNA metastatic risk, RNA and methylation cluster class [16], loss of chromosome 3 (M3), gain of
chromosome 8q, mutations on BAP1 and SF3B1.

We tested the differentially expressed genes on a dataset of 253 UVM patients [17],
using a multi-gene score (MGS); this produced two groups with a significant difference
in terms of survival (Figure 3). Differentially methylated probes were tested only on the
TCGA dataset; only one probe passed the multivariate testing (cg05522415, Figure S1).

2.1.2. CNA Analysis Methods

The IGC R package (v 1.22) [7] was used to detect genes with expression values
associated with CNA gain or loss. Considering a false discovery rate (FDR) below 0.05,
2036 genes were detected: 502 associated with CNA gain, the remaining 1534 with loss
events. The CNAPE R package (https://github.com/WangLabHKUST/CNAPE, accessed
on 24 January 2024) detects relevant features for CNA detection from RNA-seq data [20];

https://github.com/WangLabHKUST/CNAPE
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we used this package to develop a model able to distinguish between monosomic and
disomic samples in chromosome 3, using TCGA UM data. A total of 299 genes were used to
make the prediction and were considered for further analysis. These genes can distinguish
disomic (low risk) from monosomic (high risk) patients.
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2.1.3. Methylation Analysis Methods

The MethylMix R package (v 2.32) [21] was used to detect genes with methylation
levels associated with expression. This method uses a control group of samples to remove
genes that are not differentially methylated compared to cancer samples and detect which
ones are transcriptionally predictive (e.g., genes for which there is a significant inverse
relationship of expression and methylation) [21]. Patients classified in class 2 by data fusion
were considered as controls and those in class 1 were treated as tumor samples. Methylmix
detected 90 genes as transcriptionally predictive.

2.2. Integration of Results

Several genes were detected using each method (Figure 4). In particular, data fusion
selected 28 features that were also detected with CNAPE and IGC. CNAPE and IGC shared
more genes compared to data fusion; this was expected since both methods are expected
to detect genes with expression levels associated to CNAs, while data fusion analysis is
based on RNAseq and methylation data. Among the seventeen DF selected genes that have
passed survival analysis, two were detected using all methods (ROBO1, ROPN1, Table 2),
while nine were shared with at least one R package based on CNA data analysis (IGC or
CNAPE), and one by MethylMix.

ROBO1, ROPN1, BCHE, and CHL1 present lower gene expression in patients with
a CNA loss at their locus (Figure 5): while ROBO1 and CHL1 gene expression reduced
the score of the MGS signature, the opposite effect is produced by ROPN1 and BCHE
(overexpressed in some samples with bad prognosis, as shown in Figures S1 and S2).
ROBO1 and CHL1 map on chromosome 3p; the other two are located on 3q. CHL1
was found to be one of the most downregulated genes in UM that metastasized to the
liver compared to non- metastatic tumors [22]. ROPN1 has previously been described as
related to good prognosis when overexpressed in the UM TCGA dataset [23]; however,
in the Piaggio et al. dataset [17], several metastatic patients have high expression levels
of this gene (Figures S2 and S3). Among the genes selected by CNAPE and DF, we can
find several genes related to worse prognosis. CADM1 and other genes involved in the
production of cell adhesion molecules were found to be overexpressed in UM cells with
BAP1 inactivation: experimental evidence supports a role of this gene in the metastasization
process [24]. ITPR2 was previously described as mutated in the TCGA dataset; it is involved
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in G-protein-related pathways [15] and has been selected as part of a signature for tumor
immune infiltration [25]. ISM1 was selected as a negative prognosis factor in a previously
published 21-gene signature related to the UM tumor microenvironment, while MTUS1 and
IL12RB2 were considered as indicators of favorable prognosis [26]. PDE4B was previously
found as a protective factor in a prognostic signature based on inflammatory-related genes
in UM [27]. ACSF2 was found to be among ferroptosis regulators in a signature, used to
distinguish UM patients with different overall survival, that defined two clusters of patients
with differences in prognosis and tumor-microenvironment-infiltrating cells [28,29]. CTF1
has been part of a previously defined UM-immune-related three-gene signature on TCGA
data [30]. CARD11 was detected as a prognostic marker, with high expression associated to
poor OS in the TCGA UVM dataset; in particular, metastatic patients had higher expression
of this gene [31]; however, the MGS based on a larger dataset [17] assigned a protective
effect to this gene, probably due to a set of patients with limited survival, metastatic disease
and low CARD11 expression (Figures S2 and S3). HTR2B, TNFRSF19 and PTGER4 were
previously found to be overexpressed in class 2 tumors (metastatic) [32]; in particular,
TCGA UVM patients with high PTGER4 expression had worse survival [33]. Gene set
enrichment analysis of MGS elements (Table 2) shows that these genes are involved in
inflammatory (CARD11, PDE4B, TNFRSF19, HTR2B) and cell-motility-related biological
processes (MTUS1, ROBO1, PTGER4, CHL1, HTR2B, PDE4B, ROPN1, Figure 6, Table S2).

Table 2. Data fusion genes selected using multi-gene score (MGS) procedure. Genes are ordered
considering the number of different methods that detected the gene (n overlap column). Column
1 to 3 report presence (1) or absence (0) of the gene using each method: CNAPE and IGC are CNA
loss and data fusion, respectively. The cytoband and the multi-gene score (MGS score) of each gene
are reported in the last columns. Of all genes in Table 2, only the CTF1 gene was also detected
using MethylMix.

GENE CNAPE IGC Loss Data
Fusion n Overlap Cytoband MGS

Score

ROBO1 1 1 1 3 3p12.3 −0.241

ROPN1 1 1 1 3 3q21.1 0.312

CADM1 1 0 1 2 11q23.3 0.233

ITPR2 1 0 1 2 12p12.1 −0.323

ISM1 1 0 1 2 20p12.1 0.213

PDE4B 1 0 1 2 1p31.3 −0.291

ACSF2 1 0 1 2 17q21.33 0.302

BCHE 0 1 1 2 3q26.1 0.274

CHL1 0 1 1 2 3p26.3 −0.152

IL12RB2 0 0 1 1 1p31.3 −0.225

MTUS1 0 0 1 1 8p22 −0.276

CTF1 0 0 1 1 16p11.2 −0.301

CPS1 0 0 1 1 2q34 0.177

HTR2B 0 0 1 1 2q37.1 0.21

CARD11 0 0 1 1 7p22.2 −0.254

TNFRSF19 0 0 1 1 13q12.12 0.125

PTGER4 0 0 1 1 5p13.1 0.12
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Figure 4. (a,b) Genes detected using different data analysis and integration methods: most of the
data fusion genes were not detected using any other methods (48, 43 also considering IGC gain and
MethylMix), 13 are shared with CNAPE (b), and 8 were detected using CNAPE and IGC as low
expression driven by CNA loss; 2 were also detected as CNA gain by IGC; 5 are only shared with
IGC loss (b). Only 7 genes are shared between DF and Methylmix (a,b).
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Figure 5. Expression level and CNA state of genes detected using data fusion and IGC (TCGA UVM
dataset): low level of expression is associated with CNA loss. The Y axis reports the log expression
values, while the x axis reports the CNA state with −1 as loss, 1 as gain and 0 as neutral (e.g., no CNA).
Metastatic samples have generally low expression values compared to copy neutral (0) samples. Each
panel represents the expression levels of one gene in the TCGA dataset: ROBO1 (A), ROPN1 (B),
BCHE (C), CHL1 (D).
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Eventually, we considered whether there was any overlap between the 90 genes de-
tected using MethylMix with a consistent correlation between expression and methylation
levels in the high-risk data fusion class (1) and not in the other class (2, Figure 4). SLC25A38
was detected using all methods; it maps chromosome 3p and is downregulated in metastatic
UM patients; inactivation of this gene has been shown to promote distant metastasis in
mouse models [34]. Other genes such as PLXNB1 and HLA-A were part of an immune gene
signature used to define two risk classes, one of which had higher immune cell infiltration
and lower survival in the TCGA UVM dataset [35]. CTF1 and RAPGEF3 were previously
reported to be parts of gene signatures related to tumor microenvironment and immune
system [26,30], with the first seen downregulated and methylated in BAP1 mutated sam-
ples [36]; PALMD was found to have low expression in metastatic UM tissues [37], and
GSTA3 in low-survival patients [38].

3. Discussion

Integration of multiple genomics and phenotype data is gradually unveiling the
complex molecular biology behind genetic diseases and cancers [39–41]. Data fusion has
been previously applied as a tool to cluster patients or how to extract relevant features
for disease prognosis by integrating data of several NGS, imaging and other clinically
related datasets from the same group of samples [42–44]. The main limitations to the
application of these approaches are batch effects, the curse of dimensionality that arises
with genomic data and missing information or heterogeneity (data incompleteness) [43].
Regarding the first point, in each sequencing experiment, technical differences among
replicates could mask or mimic biological variation; for example, different sequencing
coverage among two groups of samples sequenced with RNAseq could potentially lead to
the discovery of several false positives, as differentially expressed genes, if samples are not
properly normalized [45]. The curse of dimensionality resides in the fact that in an NGS
experiment, the number of features greatly exceeds the number of samples [46], which can
easily result in model overfitting [47] and the inability to extract any relevant biological
features or perform meaningful classification using the same model in a different dataset.
Data fusion or integration methods can work on a full dataset or on a limited subset of
genes, i.e., the most variable features [8,10,12,48]. In this way, most of the non-informative
features are removed, reducing the required computational resources and the noise inside
the dataset. In this work, we have shown that data fusion can potentially improve patient
classification, as two patients previously classified by single domain analysis as high risk,
but that had not developed metastasis during follow up, were classified with low- and
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intermediate-risk patients (Figure 2, on the left). However, it is not clear whether this
classification could be efficient in a larger dataset since, to date, TCGA UVM is the only
publicly available multidomain uveal melanoma dataset. However, promising results were
obtained by applying DF on UM samples with expression data only and on TCGA samples
for which mean gene methylation data were also available [49]. Interestingly, 9 out of the
17 DF detected genes that passed MGS were also detected using CNAPE or IGC; 2 of them
were associated with a CNA loss (ROBO1, ROPN1, BCHE, CHL1). Interestingly, ROPN1
and BCHE, both mapping on chromosome 3q, have generally low expression levels in
TCGA patients that developed metastasis during follow-up but not so in other UM datasets
(Figures S2 and S3). One explanation could be that several patients from datasets other
than the TCGA dataset could have a partial deletion on chromosome 3, not involving these
two genes (Figure S3). Unfortunately, no CNA data are available for these patients. The use
of multiple datasets to evaluate the method is essential to obtain an accurate estimate of the
reliability of a classification method. Limited training set size, in the past, had determined
the development of overfitted bioinformatic models that were not superior to a random
predictor in the classification of new samples [50]. In this work, we could only test the
performance of the genes selected by data fusion applications with a multi-gene score on
a larger dataset. Some of these genes were also described in different works regarding
UM [51], while two of them (CHL1 and IL12RB2) were also found to be hypermethylated
with low expression in invasive malignant melanoma cells [52]; in particular, CHL1 is in an
hypermethylated region on 3p in TCGA class 2 UMs [53].

Data fusion research should focus on new methods of data integration from multiple
domains. Some genes could be affected by multiple genomic events that inactivate their
expression (as from mutation, CNA and methylation domain). Single domain analysis
failed to detect these genes as significantly altered in tumors, while the analysis of multiple
domains could be a strong basis to distinguish between genes with a functional role in
pathogenesis and those not causally involved markers.

4. Materials and Methods
4.1. jSVD Data Preparation and Analysis

TCGA methylation and RNA-seq data were downloaded from Broad GDAC Firehose
(https://gdac.broadinstitute.org, accessed on 31 January 2023). RSEM gene expression
counts were filtered from outliers by removing genes with less than 100 or more than
10ˆ6 counts over all samples. RNAseq data normalization was based on the blind vst
normalization function, as implemented in the DESeq2 R package (v 1.32.0) [54]. Feature
reduction was performed by selecting the 1500 genes with the highest MAD for RNA-seq
and the 1% most variable methylation probes; these data were used as input for the jSVD
python script, as previously applied by Amaro and coauthors [9], setting the number of
columns produced by the U matrix to 3. Patient clustering on the U matrix, produced by
the jSVD, was based on the k-means method (complete agglomeration, Euclidean distance)
from the R package ConsensusClusterPlus [55]; the number of cluster k was selected by
minimizing connectivity and maximizing silhouette score, as computed by the clvalid
R package [56]. Differentially expressed genes and methylated features, among patient
clusters, were extracted with the significance analysis of microarray as implemented in
R (Samr) [19]. Resulting DEGs and differentially methylated probes were analyzed with
SPSS Statistics 20; in particular, multivariate Cox regression and multi-gene score analysis
was computed on Piaggio et al.’s dataset [17], and the same analysis was conducted on the
methylation probes of the TCGA UVM dataset [16].

4.2. CNAPE and IGC

RNA-seq and CNA data analyzed using CNAPE and the IGC R package [7,20]
were downloaded from cBioPortal (https://www.cbioportal.org/, accessed on 24 Jan-
uary 2024) [57,58]; only genes with a CNA in at least 4 samples were considered for further
analysis. These pieces of software work on expression and CNA matrices with the same

https://gdac.broadinstitute.org
https://www.cbioportal.org/
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genes, as rows, and patients, as columns. IGC tests whether the expression of one gene
is associated to CNA events overlapping the locus: detected relations could be “loss” if
a decrease in RNA expression is associated with deletion events, “gain” if increased ex-
pression is associated with augmented copies of one gene, or “both” when the two events
(gain and loss) are observed in the same gene [7]. In a first step, samples with CNA on
one gene are classified as CNA-gain (“gain”, with an increase in CNA), CNA-loss (“loss”,
with a decrease in CNA) or CNA-neutral (no CNA detected). At this point, a gene can be
classified as gain or loss on the proportion of samples that have the CNA event (e.g., if
more than 20% of samples have a CNA gain on that gene, it is classified as “gain”). As a
final step, Student’s t-test with unequal variance is computed on the expression values.
For each gene, a false discovery rate (FDR) and p value is reported; in this work, only
“gain” and “loss” elements with an FDR below 0.05 were considered (as obtained with the
find_cna_driven_gene function with standard parameters: gain, loss_prop = 0.2). CNAPE
uses RNA-seq data to develop a model able to distinguish between samples with or with-
out a large CNA event [20]. In this work, the model was trained on NGS data in order to
distinguish between chromosome 3 gain or loss; the genes selected by the model to make a
prediction were considered for further analysis and reported in Supplementary Table S1
and Figure 4. The model was trained with the cv.glmnet function with default parameters,
except the number of cross-validation folds, which was set to 20 to have stable results
(md = cv.glmnet(x = as.matrix(dtx), y = dty, family =“binomial”, nfolds = 20, alpha = 0.1))

4.3. MethylMix

RNA-seq UVM data were downloaded from cBioPortal [57,58], and mean gene methy-
lation levels were obtained from https://gdac.broadinstitute.org/ (accessed on 31 January
2023). The table of mean gene methylation was split in two, the first composed of samples
classified in class 1 by data fusion and considered as cancer samples (METcancer), the
second comprising class 2 patients, treated as control samples (METnormal). RNA-seq data
of class 1 patients were retrieved from cBioportal normalized expression data and treated
as a cancer gene expression profile (MAcancer). The Methylmix R package [21] was used to
detect transcriptionally predictive genes with the MethylMix function MethylMix(METcancer,
GEcancer, METnormal). Briefly, genes with different methylation levels in cancer and control
data were tested to assess whether they had a significant relationship with expression data.

4.4. Joint Singular Value Decomposition

Joint singular value decomposition, described in [8,59], was developed with the Python
package Pymanopt (v 0.2.5) [60]. jSVD factorizes each genomic data matrix A as (1):

A ≈ UΣiVT
i (1)

Σi is a singular value diagonal matrix; the others are orthonormal. The U matrix is
shared among each matrix decomposition; therefore, it represents the fused information
from A datasets and is used for patient clustering. A Riemannian Trust scheme has been
used to obtain a minimum on the product of Stiefel manifolds (set as Product([Stiefel(I,k),
Stiefel(N1,k), Stiefel(N2,k)]: N1 and N2 represent the number of genes or methylation
probes of the RNA-seq, Methylation matrix, respectively). The minimization was stopped
when the norm of the projected gradient was lower than 1−12 (mingradnorm = 1 × 10−12).

4.5. Gene Signature Performance Evaluation

Features selected by all methods presented in this paper (CNAPE, IGC, MethylMix
and Data Fusion) were assessed as gene signatures to predict chromosome 3 monosomy
and metastatic disease development compared to chromosome 3 monosomy on the Piaggio
et al. 2022 dataset [17] in terms of AUC, as previously applied for signature and phe-
notype prediction validation [34,61–63]. Gene signature scores were computed with the
simpleScore() function of the signscore R package [64,65]. The computed TotalScore of
each signature and overall score computed on available genes reported in Table S1 were

https://gdac.broadinstitute.org/
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converted to a value between 0 and 1 by subtracting to each value the minimum value of
the signature and dividing it by the difference of the maximum and minimum value of the
signature. The ROCR package (v 1.0-11) [66] was used to compute the ROC curves and
relative AUC of each signature, by comparing the difference between 1 and the signature
score (except for IGC gain) and the M3 or metastasis classes.

5. Conclusions

In this work, different data integration and single domain gene prioritization methods
were applied to the UM TCGA dataset. Most of the genes detected using IGC and CNAPE
are located on chromosomal positions where relevant CNAs used for clinical assessment of
UM metastatic risk are present (1p, 16q, 3p loss and 6p, 8q gain, Table 3) [67].

Table 3. Chromosome localization of genes reported in Table S1. For each method, the number
of genes mapping on chromosomes relevant for cytogenetic characterization of uveal melanoma
are reported.

Chr CNAPE IGC Gain IGC Loss Data Fusion MethylMix

1p 9 0 606 5 6

1q 8 0 0 1 4

3p 71 0 301 7 4

3q 53 0 285 5 0

6p 11 265 0 2 5

6q 3 0 244 1 2

8p 5 1 0 2 1

8q 11 236 0 3 3

16p 3 0 0 2 2

16q 2 0 98 1 0

other 123 0 0 48 63

total 299 502 1534 77 90

Chromosome 16q and 1p deletion were found to increase metastatic risk in patients
with M3 and chromosome 8 amplification [67]. IGC prioritizes CNA associated genes
on the basis of related RNA expression. Therefore, genes that are not strictly regulated
by deletion or gain events will not be detected. CNAPE selected a set of genes able to
discriminate between chromosome 3 monosomic and disomic patients of the TCGA UVM
dataset: the genes detected were not only localized on 3p or 3q, since features in other
genomics locations were used for M3 prediction. Data-fusion- and MethylMix-prioritized
feature localization was more dispersed on the whole genome compared to genes detected
using IGC: the integration of RNAseq and methylation array data also prioritizes genes
that are not strictly regulated by CNAs. Therefore, the integration of results from different
gene selection methods can detect features that are relevant for UM prognosis but are
not detectable in a single genomic domain. The prediction performance of the signature
detected using all methods presented in this work (Table S1) is reported in Figure 7. In
general, gene expression signatures predictive of chromosome 3 monosomy obtained higher
AUC values compared to metastatic disease onset estimation. This reflects the fact that chr3
monosomy is certain at the time of analysis whereas metastases can also develop after the
end of follow-up. High-risk cases that did not develop metastases during follow-up might
do so afterwards.

Interestingly, CNAPE outperformed all methods on M3 prediction, obtaining high
AUC in the TCGA and the remaining part of the Piaggio dataset [17] (Figure 7a,b). If we
compare the performance of IGC loss on M3 prediction, we can observe a consistent de-
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crease in the AUC score by comparing the dataset where the gene signature was computed
and a different test set (AUC from 0.91 to 0.77). It should be taken into account that IGC
simply detects genes with expression level associated to CNA of the gene, without per-
forming any supervised feature selection for M3 prediction. Therefore, worse performance
in different datasets could be expected. Regarding the prediction of metastatic disease from
gene signatures, a general decrease in the performance is observable comparing the dataset
where features were extracted with the validation datasets (Figure 7c,d). Considering only
the TCGA dataset, some methods show a performance superior to chromosome 3 classifica-
tion for metastatic risk prediction, while all curves are near M3 classification in all other
samples (Figure 7d).
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