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Abstract: In this narrative review, we delved into the intricate interplay between Apolipoprotein E
(APOE) alleles (typically associated with Alzheimer’s disease—AD) and alpha-synucleinopathies
(aS-pathies), involving Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), dementia
with Lewy bodies (DLB), and multiple-system atrophy (MSA). First, in-vitro, animal, and human-
based data on the exacerbating effect of APOE4 on LB pathology were summarized. We found
robust evidence that APOE4 carriage constitutes a risk factor for PDD—APOE2, and APOE3 may
not alter the risk of developing PDD. We confirmed that APOE4 copies confer an increased hazard
towards DLB, as well. Again APOE2 and APOE3 appear unrelated to the risk of conversion. Of
note, in individuals with DLB APOE4, carriage appears to be intermediately prevalent between AD
and PDD-PD (AD > DLB > PDD > PD). Less consistency existed when it came to PD; APOE-PD
associations tended to be markedly modified by ethnicity. Finally, we failed to establish an association
between the APOE gene and MSA. Phenotypic associations (age of disease onset, survival, cognitive–
neuropsychiatric- motor-, and sleep-related manifestations) between APOE alleles, and each of the
aforementioned conditions were also outlined. Finally, a synopsis of literature gaps was provided
followed by suggestions for future research.

Keywords: Parkinson’s disease; Parkinson’s disease dementia; dementia with Lewy bodies; Lewy
body dementia; multiple system atrophy

1. Introduction

In the intricate field of neurodegeneration, the pathogenesis of alpha-synucleinopathies
(aS-pathies) remains enigmatic. Although a delicate interplay between environmental fac-
tors and genetics is theorized to be accountable, the etiology of aS-pathies is far from
unveiled. Pathologically, aS-pathies are characterized by aggregations of a protein known
as alpha-synuclein (aS) within neurons and/or supporting brain cells [1]. These neuronal
and/or glial inclusions contribute to neuronal damage and depending on their territorial
distribution they may manifest with various phenotypes including Parkinson’s disease
(PD), Parkinson’s disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple-
system atrophy (MSA) [2]. The apolipoprotein E (APOE) gene is involved in the construction
of APOE, a multifunctional protein integral to lipid metabolism and transport [3]. APOE
genotypes have well-established risk-modifying properties in Alzheimer’s disease (AD)
and appear to be implicated in the pathology of aS-pathies, as well [4–7]. The current
narrative review aims to plunge into the puzzling interactions between the different APOE
alleles and aS-pathies, seeking to provide novel insights into the molecular foundations of
these neurodegenerative entities. Published evidence on the role of APOE genotypes in
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terms of aS-pathies’ prevalence, incidence, or other important disease parameters (e.g., phe-
notypic variations, disease severity, mortality rates, and so on) will be summarized, while
literature gaps and areas of contradiction will be untangled and discussed.

1.1. a-Synucleopathies

A neurodegenerative disorder characterized by the accumulation of the aS protein
aggregates within nerve cells and/or supporting brain cells is defined aS-pathy. Identified
in 1988 by Maroteaux and colleagues, aS is coded by the Synuclein Alpha (SNCA) gene on the
long arm of chromosome 4 (4q21) [8,9]. aS is predominantly abundant in presynaptic nerve
terminals, presumably assuming a pivotal role in synaptic functions, synaptic plasticity,
and neurotransmission [10].

Lewy bodies (LBs) and Lewy neurites (LNs) compose the defining pathological mark-
ers of aS-pathies. In 1997, it was observed that aS is present in Lewy bodies (LBs), which
additionally contain other proteins, such as ubiquitin, neurofilament protein, and alpha
B crystallin [11]. Although the complete process of LB formation remains a mystery, it
is believed that interactions between aS monomers and lipid membranes as well as the
compromization of stable aS tetramers constitute critical steps towards oligomerization
and in turn aggregation of aS [12,13]. Lewy neurites (LNs)—the second hallmark of aS-
pathies—constitute dystrophic neuritic processes in degenerating neurons featuring the
same immunohistochemical profile as LBs [14].

aS-pathies are broadly classified into LB disease and MSA; the three core phenotypes
of LB disease are PD, PDD, and DLB; the two cardinal clinicopathologic subtypes of MSA
are the parkinsonian type (MSA-P) and the cerebellar type (MSA-C) [1]. In LB disease, aS
aggregation and LB formation primarily affect neurons, whereas in MSA glial cytoplasmic
inclusions (GCIs) are principally configured [15,16]. These entities share similar signs
and symptoms, and their clinical distinction remains quite challenging even after the
implementation of more elaborate and sophisticated investigations [17].

1.2. Parkinson’s Disease

The first description of PD is dated back to 1817, by dr. James Parkinson [18]. However,
it was not until 1912 that dr. Friedrich H. Lewy found intracytoplasmic inclusions in the
brains of deceased patients with PD; these neuronal inclusions were shortly later named
after him [1,18]. Nearly two centuries after its initial description in 1988, the United
Kingdom RD Society Brain Bank (UKPDSBB) introduced the first formal criteria for the
clinical diagnosis of PD [19].

PD is a progressive neurodegenerative disorder of the central nervous system (CNS)
marked by cardinal movement manifestations involving resting tremor, rigidity, bradykine-
sia, and postural instability [20]. Autonomic dysfunction, anosmia, sleep, cognitive, and
neuropsychiatric symptoms may occur. PD is associated with degeneration of dopamine-
producing neurons in the pars compacta of the substantia nigra [21]. Cytoplasmic inclusions
of aS forming LBs and LNs tend to accumulate within affected neurons [2,11,21]. Following
AD, it is the most common neurodegenerative disorder as well as the most prevalent entity
among aS-pathies [2].

1.3. Lewy Body Dementia

In 1962, dr. John Woodard documented a series of cases with prominent neuropsychi-
atric manifestations and predominant LB pathology in brain autopsies [22]. A fraction of
these patients exhibited Parkinsonian features, as well. Additional reports from Japan were
published over the next decades: cases with LB pathology of variable distributions, associ-
ated with heterogeneous phenotypes including motor, neurocognitive, or neuropsychiatric
symptoms were detailly described [15]. In 1996, the first consensus guidelines for the
diagnosis of DLB were published [23]. Today, the broader term LBD is used to encompass
DLB and PDD, two major neurocognitive entities that present substantial clinicopathologic
and neurochemical overlap. Their distinction is rather arbitrary, with the ‘one-year rule’
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groundlessly distinguishing between the two [24]. If dementia coincides with or emerges
within one year after the occurrence of Parkinsonism, DLB is diagnosed; if Parkinsonism
precedes dementia onset by more than one year, the diagnosis of PDD is established [25].

LBD primarily manifests with cognitive, neuropsychiatric, motor (parkinsonism), and
sleep disturbances [26]. The cardinal cognitive manifestations involve executive, visuospa-
tial, and attention deficits, manifesting with a fluctuating course. Visual hallucinations are
the most characteristic among neuropsychiatric symptoms, with delusions, hallucinations
in other modalities, apathy, and affective disorders ensuing. REM sleep behavior disorder
(RBD) has been integrated into the core clinical diagnostic criteria while hypersomnia
constitutes a supportive feature. Hyposmia, autonomic dysfunction, and hypersensitivity
to neuroleptics, among others, are supportive clinical manifestations.

LBD is a quite prevalent in degenerative major neurocognitive disorders, second only
to AD [27]. The pathological hallmark of LBD is the presence of LBs and LNs in the brain-
stem, limbic system, and cerebral cortex [28,29]. Given the absence of specific therapies,
understanding the pathobiology of LBD is crucial for the development of new treatments.

1.4. Multiple System Atrophy

The first report of two cases with MSA (formerly known as Shy Drager syndrome) is
attributed to dr. Milton Shy and dr. Glen Drager back in 1960. Almost four decades later, in
1998, the first consensus diagnostic criteria were published, separating the Parkinsonian
from the cerebellar MSA type [30,31].

MSA is a rare neurodegenerative disorder that presents with autonomic dysfunction
and either predominant Parkinsonian features (poorly responsive to dopamine replace-
ment) or prominent cerebellar syndrome [32]. Symptoms such as RBD, dysphagia, speech
impairment, respiratory stridor, or olfactory dysfunction may also coexist. Pathologically,
GCIs of aS are accumulated in the olivopontocerebellar and/or striatonigral system [24,33].
Cognitive changes tend to be of secondary importance in MSA.

2. The Multifaceted Role of Apolipoprotein E in the Brain

APOE has three major polymorphic alleles in humans (APOE2, APOE3, and APOE4).
Each allele is related to important structural and functional alterations in the proteinic
molecule of APOE [34]. APOE is an extracellular protein synthesized by astrocytes (primar-
ily responsible for its production) and activated microglia in the brain. It plays a pivotal role
in brain homeostasis via various pathways, including lipid transport, glucose metabolism,
synaptic integrity, and plasticity, as well as membrane trafficking [35,36]. The relationship
between APOE isoforms and AD risk is well-established [4,5]. Each APOE isoform appears
to be differentially associated with amyloid β (Aβ)-related and Aβ-independent pathways
involved in the course of AD (e.g., neuroinflammation, vascular function, blood–brain
barrier function, and so on), ultimately altering the net risk of incident AD [34]. Previous
research has specifically shown the crucial role of APOE in the metabolism of Aβ [37–40].
Isoform-dependent binding to Aβ regulates its production and clearance. APOE4 enhances
Aβ production and hinders its phagocytic clearance leading to Aβ deposition. APOE2,
on the other hand, decelerates this process. At the same time, the role of APOE–lipid
interactions appears to be of pivotal importance in αS aggregation [41]. Neuronal APOE
has been reported to attenuate both neuronal αS uptake and release, with APOE deficiency
decreasing the expression of APOE receptors responsible for αS uptake and enhancing
chaperone-mediated autophagy [42]. APOE deficiency ultimately results in the accumula-
tion of insoluble αS and phosphorylated αS in the brain, as well as altered membrane lipid
profiles [36]. The modification of membrane composition appears to influence αS binding
which might lead to altered β-sheet formation and, in turn, further fibrillization [36].

2.1. Clinical Relationship of APOE with Alzheimer’s Disease

AD stands as the predominant cause of dementia globally with its prevalence surging
on the grounds of the increasingly prolonged life expectancy. Amid the array of identified



Int. J. Mol. Sci. 2024, 25, 1795 4 of 13

risk factors, APOE genotypes emerge as the most important genetic determinants of late-
onset AD [4]. APOE3—the most common genetic variant—is considered neutral in terms
of incident AD risk [43]. APOE4 variants confer an elevated hazard towards late-onset
sporadic AD in a dose-dependent manner (risk size increases relative to the number of
APOE4 alleles) [4,5,43]. At the same time, APOE4 is linked to a younger age of (late-onset)
AD onset, with this effect again varying as a function of the number of APOE4 copies [5].
On the other hand, APOE2 has a protective effect against AD. Individuals carrying one or
two copies of the APOE2 have a reduced dose-dependent risk of developing AD; those who
do convert to AD tend to do so at an older age [4,5,43,44]. The above-mentioned association
between APOE alleles and susceptibility to AD (APOE4 > 3 > 2) is mediated via multiple
pathways: increased Aβ deposition and tau aggregation, induction of neuroinflammation
through the production of proinflammatory cytokines and microglia stimulation, increased
intracellular lipid accumulation, and disruption of effective myelin formation (among
others) [45]. In addition to these common alleles, several rare APOE variants, such as
apoE3-R136S (known as apoE3-Christchurch or apoE3-Ch), apoE3-V236E (referred to as apoE3-
Jacksonville or apoE3-Jac), and apoE4-R251G, have been identified. These rare variants are
believed to offer some level of protection against the pathological processes associated with
AD [4].

2.2. Associations between APOE and a-Synuclein Pathology

Apart from the two primary pathological features—Aβ and tau depositions—AD
brains often exhibit additional pathological alterations [35]. Large autopsy series of patients
with a clinically established diagnosis of AD have revealed that only a fraction of AD cases
(between 35 and 50%) show pure AD pathology: most cases exhibit mixed neuropatho-
logical alterations with predominant vascular (~25%), LB (~13%), or other (e.g., TDP43)
specific pathologies [46–49]. These findings have given rise to theories of genetic overlap
between AD and LB pathology and have fueled relevant research [50]. In this context, in
the last few years, a number of studies have tried to shed light on the relationship between
the APOE gene and LB pathology, in association with or independently of the presence of
AD pathology.

The first reports that provided preliminary pathologoanatomic evidence consistent
with the hypothesis that the APOE gene is related to LB pathology are dated back to
1995 [51]. Later, interactions between intracellular aS and APOE (protein) dependent path-
ways were suggested to mediate the stimulation of shared neurodegenerative mechanisms
in PD and AD [52]. In the course of time, additional evidence has accumulated to confirm
the role of APOE gene in LB pathology and emplace APOE in its rightful spot among
genetic factors with proven importance in the field of aS-pathies: (1) Emamzadeh and
colleagues revealed that APOE4 was linked to aS aggregation, using in vitro models; [53];
(2) Zhao and colleagues found that APOE4 exacerbated αS pathology (as well as astroglio-
sis, neuronal, and synaptic loss) independently of Aβ deposition, using both animal models
and postmortem human brains [36,54]; (3) Davis and colleagues replicated these findings in
animal models while added some evidence on a potential protective role of APOE2 against
aS aggregation [41]; (4) Mann and colleagues as well as Dickson and colleagues showed
that APOE4 carriage leads to greater severity of LB pathology in autopsy confirmed cases
of DLB [55,56]; (5) Gearing and colleagues revealed that a dose-dependent association
exists between APOE4 (as a function of the number of copies) and PD-related pathological
changes in neuropathologically confirmed AD cases [57]; (6) Wakabayasi and colleagues
reported that both LB and AD pathology are increased in PD carriers of APOE4 [28]; (7) Jin
and colleagues found that APOE4 increases LB pathology in brains of autopsy confirmed
AD patients [35]; (8) Robinson and colleagues exhibited that APOE4 is a risk factor for
co-pathologies independent of neurodegenerative disease, with Aβ and aS being most
prevalent [58].

On the other hand, researchers have occasionally found that APOE4 is linked to
concomitant AD pathology among cases with LB pathology, but patients with pure LB
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neuropathologic alterations have similar APOE4 carriage frequencies to those without
LB/AD pathology [59–62]. Additionally, APOE4 alleles have been reported to lead to earlier
onset of neuropathologically confirmed mixed AD/LB—but not pure LBD—dementia in
a dose-dependent manner [63]. Of note, these findings do not preclude an association
between APOE4 and LB histopathology since the strong well-established relationship
between APOE4 and AD is probably overwhelming that between APOE4 and LB pathology,
introducing predominantly AD-related co-pathological changes in the vast majority of
cases. Hence, reports of an association between APOE4 and LBD in the absence of (at least
mild) AD co-pathology are rare [64,65].

With respect to PD in particular, there are more studies suggesting that APOE4 is
distributed similarly to non-PD controls; also, APOE4 seems to increase only concomitant
AD-related neuropathologic alterations or cortical—but not nigral—LB pathology [66–68].
Therefore, the scarcity of supporting evidence corroborates a lack of an association between
PD and APOE4. The induction of AD or cortical LB neuropathology may, however, account
for some phenotypic variation irrespective of the major underlying neurodegenerative
cause (e.g., PD or MSA) [69,70]. Of course, apart from AD-LB neuropathology, latent
associations or interactions between APOE alleles and alternative pathologies that mediate
phenotypic variations cannot be excluded. As a paradigm serves the relationship of APOE
with white matter hyperintensities (WMH). For instance, significant interactions between
WMH burden and APOE4 carriage were found to mediate cognitive performance in older
adults with AD or DLB: WMH volume was associated with poorer cognitive performance
(attention, executive function, memory, and language) only in APOE4 carriers [71].

2.3. Clinical Links between APOE-PD and PDD

APOE has been a subject of significant interest in the field of PD research (Table 1).
Understanding its role in PD has been a complex endeavor, with studies presenting variable
and sometimes conflicting findings [72]. Hence, the exact impact of APOE on PD remains a
topic of ongoing investigation and debate within the scientific community.

In 2009, Williams-Gray and colleagues updated the original meta-analyses of Huang
and colleagues on the associations between APOE alleles and PD or PDD [73–75]. Syn-
thesizing the results of 32 case–control studies, the authors found that the presence of at
least one APOE2 allele contributed modestly to PD susceptibility (OR = 1.16). On the other
hand, using data from 17 case–control studies, APOE4 carriage was reported to confer
an elevated hazard towards PDD by a more prominent association (OR = 1.74). About a
decade later, Li and colleagues pooled data from 47 case–control studies and replicated the
modest association between APOE2 carriage and PD (OR = 1.23) [76]. At the same time,
subgroup analyses revealed a new association between APOE4 and PD, limited only among
individuals of Asian ancestry (OR = 1.43). The authors looked into genotypic associations
as well: APOE2/4 genotype was found to confer a substantial risk towards PD in Asians
(OR = 4.43) and APOE3/4 was reported to constitute a moderate risk factor for PD among
Latin-American populations (OR = 1.44) and exert a protective effect against PD among
Caucasians (OR = 0.86). Shortly after, the ethnic association between APOE4 and PD was
reproduced in the meta-analysis of Sun and colleagues (39 case–control studies) [77]. Inves-
tigators found that APOE2 and APOE4 are not related to the risk of PD—the only exception
being Asian populations where APOE4 was found to modestly increase the risk of PD
(OR = 1.22). Moreover, APOE3 showed a mild protective effect against PD [OR = 0.90]. The
risk of PDD on the other hand was found elevated in those with APOE4 [(OR = 1.46), an
association that was accentuated in Asian populations (OR = 1.88)] and moderated among
individuals with APOE3 (OR = 0.72). Finally, in 2018, in their meta-analysis of case–control
studies (17 in total), Pang and colleagues confirmed the relationship between APOE4 and
PDD (OR = 1.72) and the lack of a relationship between APOE2-3 and PDD [78]. Overall,
all meta-analyses agree that APOE4 confers a risk towards PDD. Less consistency exists
when it comes to PD. Incongruent evidence leans towards modest protective properties for
APOE3 and differential APOE2 and APOE4 (or genotypic) associations by ethnicity.
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Apart from susceptibility to PD and PDD, several researchers have focused on the
potential link between APOE4 and the age of PD onset. Published evidence has occasionally
suggested that the presence of at least one APOE4 copy is related to earlier PD onset while
the presence of APOE3 and/or APOE2 alleles may delay its onset [79–83]. At the same time,
the vast majority of published reports failed to reproduce these associations precluding
any relationship between APOE and age of PD onset [84–89].

Another aspect that has accumulated considerable interest is the potential phenotypic
associations of APOE4 and PD. Several researchers have found that APOE4 carriage is
related to steeper cognitive decline and especially memory and executive function de-
cline [90–97]. Similarly, APOE4 alleles have been reported to contribute to more severe
motor semiology and more abrupt motor progression (e.g., more common gait freezing,
higher UPDRS total scores, and more precipitous motor decline) [98–101]. Finally, APOE4
carriers have a stronger affinity towards neuropsychiatric manifestations (especially psy-
chotic symptoms) [98,101–103]. Again, published evidence is not uniformly concurring
with respect to neuropsychiatric and motor associations; however, the consistency and
reproducibility of cognition-related findings probably reflect a true relationship between
APOE4 and cognitive impairment—decline in individuals with PD [18,94,104–106]. By
extension, these findings come in accordance with the robust relationship between APOE4
and PDD.

2.4. Clinical Relationship between APOE-DLB

In 2020, the meta-analysis by Sanghvi and colleagues (synthesizing data from 75 articles
in total) confirmed the association between APOE4 carriage and DLB (OR = 2.70) while repli-
cating the weaker, already known association between APOE4 and PDD (OR = 1.60) [107]
(Table 1). Of note, APOE4 copies appear to be intermediately prevalent between AD and
PDD-PD (AD > DLB > PDD > PD), although a minority of papers report a prevalence even
higher than in AD [64,108–113].

Less evidence exists with respect to the age of DLB onset, with researchers occasionally
reporting an association between APOE4 and earlier age of DLB onset (similar to AD)
and only one report showing that APOE2 may delay conversion to DLB [108,114,115].
Furthermore, APOE4 copies have been related to a dose-dependent decrease in survival
among individuals with DLB (similar to those with AD) [50,116–119].

Regarding phenotypic associations, APOE4 expression in aS animal (mice) models
have been related to impaired cognitive and behavioral performances [54]. Moreover, the
presence of at least one APOE4 copy among DLB patients has been linked to cognitive, neu-
ropsychiatric, and autonomic manifestations involving steeper cognitive decline, memory
and executive dysfunction, delusions, apathy, depression, and hyperhidrosis but not any
motor symptoms [62,113,120].

2.5. Clinical Associations between APOE-MSA

Cairns and colleagues were the first to investigate the relationship between APOE gene
and MSA and reported that APOE4 was equally prevalent between individuals with MSA
and healthy controls [121]. Shortly after, the lack of an association between APOE alleles
and MSA was replicated in other case–control studies) [118,122,123] while evidence was
also added on the absence of an association with age of MSA onset [124] (Table 1). Of note,
APOE4 has been additionally found unrelated to the risk of idiopathic RBD conversion to
aS-pathies (PB DLB or MSA) [125]. Lately, although an association with MSA again failed
to be established, researchers have reported signs of an effect of APOE4 on reduced aS
uptake from oligodendroglia among adults with MSA [126,127]. Irrespective of the lack of
a link between APOE4 and MSA, research is generally scarce with respect to the potential
effect of APOE4 on phenotypic MSA variations (e.g., a recent study found that APOE4
carriage may be associated with depression in MSA carriers) [126].
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Table 1. Summary of clinical associations between APOE alleles and α-Synucleinopathies.

PD

APOE by ethnic interactions may alter PD risk: APOE4 may confer a risk towards PD in Asian populations
(OR = 1.22—Sun et al., 2019 [77]; OR = 1.43—Li et al., 2018 [76]), APOE2/4 genotype may increase the risk more prominently
among Asians (OR = 4.43—Li et al., 2018 [76]), APOE3/4 may constitute a risk factor for PD in Latin-American populations
(OR 1.44—Li et al., 2018 [76]) and exert a protective effect against PD among Caucasians (OR = 0.86—Li et al., 2018 [76]).
Age of PD onset is probably unrelated to APOE alleles.
APOE4 carriage is related to steeper cognitive decline.
APOE4 copies may elevate the risk of neuropsychiatric manifestations.
The association between APOE alleles and motor progression requires further research.

PDD

APOE4 carriage confers an elevated hazard towards PDD (OR = 1.60—Sanghvi et al., 2020 [107];
OR = 1.72—Pang et al., 2018 [78]; OR = 1.74—Williams-Gray et al., 2009 [75]).
Ethnic interactions may play a role: APOE4 may confer an elevated risk towards PD in Asian populations
(OR = 1.88 Sun et al., 2019 [77])

DLB
APOE4 carriage confers an elevated hazard towards DLB (OR = 2.70—Sanghvi et al., 2020 [107]).
APOE4 copies may decrease survival among individuals with DLB.
Age of DLB onset and phenotypic associations require further research.

MSA Evidence suggests against an association between APOE alleles and MSA.
Phenotypic associations require further research.

PD: Parkinson’s disease; PDD: PD dementia; DLB: dementia with Lewy bodies; MSA: multiple system atrophy;
APOE: apolipoprotein E; OR: odds ratio.

3. Literature Gaps and Future Perspectives

Looking ahead, further research is warranted to decipher the interplay between
the APOE gene and aS-pathies. Future studies should venture deeper into the intricate
molecular mechanisms through which APOE4 drives neurodegeneration, expedites aS
aggregation and configures its territorial distribution (cortical vs. nigral), modulates
neuroinflammation, and affects amyloid and tau deposition in individuals with LBD. Of
note, shared genetic loci between AD and LBD probably reflect the existence of common
neurodegenerative pathways. Therefore, relevant research promises not only enhanced
comprehension of the molecular and pathophysiological foundations of LBD but also a
broader illumination of the mechanisms underlying neurodegeneration.

Further studies are also warranted to shed light on the relationship between APOE4
and LBD’s phenotypic variations. Focus should be placed on the potential association be-
tween APOE4 and cognitive decline to elucidate which specific domains are predominantly
affected and which of these associations are driven by aS or AD-related co-pathological
changes. Moreover, apart from psychotic symptoms, published studies have not inves-
tigated phenotypic associations of APOE4 with neuropsychiatric manifestations. Again,
considering that a pathological AD component is to be expected, researchers ought to
include cases with available brain autopsies. In addition, contradictory evidence exists with
respect to the APOE gene—motor associations; therefore, upcoming studies should provide
more definitive conclusions. In the same context, various other phenotypic features of
LBD (e.g., RBD, autonomic dysfunction, and neuroleptic sensitivity) remain almost utterly
unexplored in terms of association with APOE4 and future articles shall delve into these
potential associations, as well.

4. Conclusions

This narrative literature review delved into the multifaceted role of the APOE gene
in aS-pathies. We found robust evidence that APOE4 carriage constitutes a risk factor for
PDD—APOE2 and APOE3 may not alter the risk of progression. We confirmed that APOE4
copies confer an increased hazard towards DLB, as well. Again, APOE2 and APOE3 appear
unrelated to the risk of conversion. Of note, in individuals with DLB, APOE4 carriage
appears to be intermediately prevalent between AD and PDD-PD (AD > DLB > PDD > PD).
Less consistency existed when it came to PD while the APOE gene–PD associations tended
to be markedly modified by ethnicity. Finally, we failed to establish an association between
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the APOE gene and MSA. In terms of phenotypic associations, APOE4 carriers exhibit more
precipitous cognitive decline and a tendency towards psychotic manifestations (halluci-
nations or delusions) irrespective of the exact underlying neurodegenerative entity (PD,
PDD, or DLB). Individuals with DLB and APOE4 also had elevated mortality rates. Motor
symptoms and signs, on the other hand, appear to be unrelated to the APOE gene. The
relationship of APOE alleles with the remaining features of aS-pathies remains enigmatic
(other neuropsychiatric manifestations, autonomic dysfunction, RBD, neuroleptic sensitivity,
and so on).

aS-pathies, with their complex clinical manifestations and elusive nature, persist as a
formidable diagnostic and therapeutic challenge. As the armamentarium and availability
of more elaborate diagnostic biomarkers increase, the pre-mortem diagnosis of these
conditions has become more and more accurate. On the other hand, the treatment of these
conditions is limited to symptom management without any available agents to intercept
their progress. Therefore, a better understanding of aS-pathies’ pathogenesis is of crucial
importance so as to identify new treatment targets (specific molecules, pathophysiological
pathways, homeostatic mechanisms, and so on). Ongoing investigations on the role of
APOE in aS-pathies will deepen our understanding of these complex interactions. It
remains to be seen, if these findings will transition from mere scientific discoveries to
actionable therapies.
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