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Abstract: Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its
potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and
in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms.
Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been
conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative
stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and
oxidative stress. We discussed human and animal studies that are related to exercise intervention
and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential
therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals
that are associated with acute and chronic inflammatory conditions. Given its health-promoting
effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.

Keywords: glucosinolate; sulforaphane; immunity; exercise; inflammation; oxidative stress; cytokines;
reactive oxygen species; antioxidant

1. Introduction

Research with bioactive compounds is getting more attention due to their unique
nutritional value and numerous health benefits. Fruits, vegetables, and whole grains are
considered a good source of bioactive compounds, and they have many health benefits
beyond fundamental nutritional values. In addition, various epidemiological studies
reported the importance of bioactive compounds in diminishing the risk of life-threatening
chronic diseases, for instance, cancer, diabetes, stroke, heart disease, obesity, and so on.
Some bioactive compounds are more popular with certain consumers for sustainable
personalized nutrition solutions [1–4].

Our immune system consistently maintains a sustainable homogenous condition by
protecting us from any harmful or foreign substances, using a generic mechanism that
involves the innate or non-specific immune system [5]. This system is also known as the
first-line defense system, since it reacts very quickly. The innate immune system provides
an immediate response against pathogens to prevent the spread of pathogens or foreign
particles throughout the body. Additionally, it involves natural killer (NK) cells, which bind
to the major histocompatibility complexes (MHCs) of affected cells [6]. The specialized or
adaptive immune response is also known as the second-line defense system. It works on
specific types of pathogens that cause infection. The adaptive immune system is slower
compared with the innate immune system, since it needs to recognize the antigen first
and then function to form new antibodies to neutralize the specific antigen. This immune
system has the ability to remember specific types of antigens, so that it responds quickly
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the next time a similar antigen is encountered. Thus, the newly formed antibodies become
a permanent component of the immune system inside the body [7].

Exercise has been considered well-structured and persistent body movement to main-
tain physical and mental well-being properly; however, its effects on overall health and well-
ness depend on its intensity and duration [8]. Regular exercise can exert anti-inflammatory
effects by releasing anti-inflammatory cytokines [9]. On the other hand, intense exercise
may induce the augmented production of pro-inflammatory cytokines such as interleukin
(IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and reactive oxygen species (ROS), resulting
in inflammation and oxidative stress [10,11]. Inflammation, characterized by fever, redness,
pain, swelling, and dysfunction, may cause cellular proliferation and inhibition of apoptosis,
consequently elevating the risk of cancer [12]. Also, oxidative stress (a disparity between
the balance of oxidants (ROS) and antioxidants) occurs during the excess production of
ROS that overwhelms the eliminatory effects of antioxidants, leading to a disturbance in the
redox signaling and control and/or molecular damage [13]. Endogenous antioxidants work
against the free radicals to neutralize the imbalanced status and maintain a sustainable
physiological condition. In addition to that, food-derived natural antioxidants also promote
immune functions by reducing oxidative stress [14].

GSLs (Glucosinolates) comprise a sulfur-bonded β-D-glucopyranose residue, a hy-
droxylamine sulfate ester, and a variable aglycon side chain that is derived from an α-amino
acid (R-group). The R-group is derived from different amino acids based on which GSLs
are classified as aliphatic (from alanine, leucine, isoleucine, methionine, or valine), in-
dole (from tryptophan), and aromatic (from phenylalanine or tyrosine) [15]. GSLs were
first introduced to the research community in 1831 by Robiquet and Boutrin, and around
137 GSLs have been identified up to date using modern spectroscopic methods [16,17]. GSLs
are renowned secondary plant metabolites, particularly abundant in the Brassicaceae family
and vegetables of the Brassica oleracea L. species, such as broccoli, cabbage, cauliflower,
etc. [18]. Additionally, GSLs can be synthesized chemically, but the process is comparatively
more expensive than obtaining the natural GSLs [19].

GSLs are biologically inactive and pass through enzymatic hydrolysis by a glycoprotein
named myrosinase (thioglucosidase glucohydrolase) to produce a wide range of diverse
biologically active substances, such as indoles, thiocyanates, isothiocyanates, and so on, with
a rearrangement of their chemical structure [20]. The beneficial and adverse effects of GSLs
in animal nutrition have been investigated. Nevertheless, for human nutrition, the harmful
impacts of GSLs remain to be probed because of the low availability of evidence from the
literature. However, the health-promoting effects of GSLs and their metabolites in humans
are frequently mentioned, including immunomodulatory, cardioprotective, antibacterial,
anticancer, chemopreventive, antioxidant, and anti-inflammatory functions [21]. Thus, the
dietary intake of GSLs-rich foods has been identified as one of the more promising strategies
to prevent or minimize inflammation and oxidative stress because of its role in activating
detoxification enzymes, the scavenging of ROS, and inducing immune functions [22].

Sulforaphane (1-isothiocyanato-4-methylsulfinylbutane, SFN) is a naturally occurring
isothiocyanate (ITC), which is currently the topic of active research due to its attribute as
a critical regulator of cellular defenses through the activation or inactivation of vital tran-
scription factors during any cellular stimulatory responses [23,24]. SFN could activate the
nuclear factor erythroid 2-related factor 2 (Nrf2) and inhibit the nuclear factor-kappa-light-
chain-enhancer of activated B cells (NF-κB), the major transcription factor in regulating
cellular responses to inflammation and oxidative stress [20,23]. SFN, a hydrolytic product
from glucoraphanin (4-methylsulfinylbutyl glucosinolate), attenuates the expression of
pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) by downregulating the NF-κB protein
expression and enhances the phase 2 enzymes such as heme oxygenase 1 (HO-1) by upreg-
ulating Nrf2, thereby reducing exercise-induced inflammation and oxidative stress [22,23].
In addition to that, SFN may mitigate exercise-induced excessive free radical production
by creating an influx production of the endogenous antioxidant defense system [23]. In
addition, SFN naturally induces phase 2 enzyme expression, which is important for cancer
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chemoprevention, and various epidemiological studies reported that sufficient absorption
of SFN in the body also lowers the risk of cancer [25].

This is a brief review of the immunomodulating effects of SFN in exercise-induced
inflammation and oxidative stress. Here, we summarized previous studies using SFN-
rich foods or supplementation to improve immune functions after intense exercise. The
potential mechanisms/mode of actions of SFN to reduce inflammation and oxidative stress
due to exhaustive exercise were also illustrated. Additionally, we briefly mentioned a few
of the potential therapeutic effects of SFN in various diseased conditions.

2. Experimental Studies with SFN Intervention

The production of free radicals and oxidants is a normal physiological process, and
when we exercise, an imbalance may be created between oxidant and antioxidant pro-
duction levels [26]. Most free radicals are produced in the mitochondria via the electron
transport chain [27]. Endogenous antioxidants work against the free radicals to neutralize
the imbalanced status and maintain a sustainable physiological condition. However, an
overwhelming production of ROS may hamper normal cellular metabolic processes [28].
Any electrophilic stimulation or stress activates Nrf2; SFN could be an efficient indirect
antioxidant to help an individual to recover quickly from the stressed condition [29]. Since
exercise training requires lots of muscle movement, nutrient supplements before and after
exercise may ease muscle fatigue or muscle pain, providing efficient exercise-induced
benefits [30–32]. In a randomized, double-blind, placebo-controlled, cross-over designed
study, it was hypothesized that SFN may be used for extended periods as a therapeutic sup-
plement for athletes for the prevention of muscle damage, since it involves high-intensity
exercise [33]. In this study, young, healthy subjects were treated with SFN (30 mg/d) for
four weeks in the first trial; then, after the four-week washout period, the SFN or placebo
groups were changed to the opposite treatment in the second trial. Creatine kinase (CK) and
pro-inflammatory cytokine IL-6 are the two most essential markers for exercise-induced
muscle damage, and long-term oral intake of SFN suppresses both markers after a sin-
gle bout of vigorous resistance exercise [33]. In rodents, SFN (25 mg/kg body weight)
administration for three consecutive days reduced exhaustive exercise-induced muscle
damage while increasing the total antioxidant capacity and attenuating plasma lactate
dehydrogenase (LDH) and CK activities [34]. Additionally, single-dose SFN (50 mg/kg
body weight) administration reduced plasma LDH, glutamic oxaloacetic transaminase
(GOT), and glutamic pyruvic transaminase (GPT) after a single-bout exhaustive exercise
test in animals [35]. It minimized the gene expression of pro-inflammatory cytokines in
the liver [35]. Pretreatment with SFN for three days (25 mg/kg body weight) also im-
proved exercise endurance capacity [34]. Delayed-onset muscle soreness (DOMS) is a
common phenomenon after eccentric exercise, while taking SFN prior to exercise may
suppress DOMS after two days of eccentric exercise [36]. Exercise training positively
affected endurance capacity, but SFN administration may accelerate the muscles’ antiox-
idant defense response, improving an individual’s running distance and duration [37].
SFN treatment ensured a safe and sound strategy to protect age-associated muscle and
heart dysfunction. In an aged-mice model, it was reported that SFN-fed old mice were
able to run longer than the control group [38]. In a cohort study, a 7-day intense training
program supplemented with broccoli sprout juice reported that SFN mitigated several
markers of oxidative stress, like the myeloperoxidase (MPO) level and lactate concentration
in the blood, and improved the blood glucose profile and enhanced the physical perfor-
mance and adaptation to intense exercise training [39]. Further, SFN contributed effectively
in a muscular dystrophy x-linked (mdx) knock-out model; oral administration of SFN
(2 mg/kg/day) for eight weeks, followed by an acute exercise protocol, protected dys-
trophic muscles from oxidative damage in mdx mice and improved the muscle func-
tion, ROS level, and inflammation and reduced immune cell infiltration [40]. Yang et al.
conducted a study and reported that SFN protected the liver from exhaustive exercise-
induced excessive ROS production [41]. We also reported that a single dose of SFN ad-
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ministration may protect the liver from exhaustive exercise-induced oxidative stress and
inflammation [35]. So far, multiple independent studies have been conducted with SFN
in both human and animal studies, and most of them reported that SFN can improve
post-exercise inflammatory or oxidative stress parameters (Table 1).

Table 1. Research elucidating the effect of SFN intervention on exercise-induced inflammation and
oxidative stress.

Subjects Study Design Dose/Day, Time Exercise Protocol Key Findings Reference

9 healthy adults
Randomized

double-blinded
cross-over

75 g broccoli sprout
juice, 9 days Intense exercise training

Improves Nrf2 expression,
decreases lactate

accumulation
[39]

16 healthy men Randomized control
trial

SFN tablet, 30 mg,
2 weeks Eccentric exercise Increases Nrf2 expression,

suppresses DOMS [36]

10 healthy men
Randomized,
double-blind,

placebo-controlled
cross-over

SFN, 30 mg, 4 weeks Heavy-resistance
exercise Decreases CK and IL-6 [33]

32 male Wister rats Animal model SFN, 25 mg/kg, 3 days
Acute exhaustive

exercise (motorized
treadmill)

Decreases plasma LDH
and CPK, muscle MDA.

Increases NQO1 and
antioxidant enzyme

activity.

[34]

32 male wild-type mice Nrf2 knock-out mice
model SFN, 25 mg/kg, 3 days

Acute exhaustive
exercise (motorized

treadmill)

Upregulation of Nrf2
expression, reduced

oxidative stress markers in
skeletal muscle

[42]

12 mdx mice,
6 C57BL/10 mice Mdx mice model SFN, 2 mg/kg, 8 weeks

Acute exhaustive
exercise (motorized

treadmill)

Improved muscle function
associated with Nrf2

signaling
[40]

36 male C57BL/6 mice Animal model SFN, 25 mg/kg, 2 h
before exercise

Acute exhaustive
exercise (motorized

treadmill)

Reduces AST, ALT, LDH,
and pro-inflammatory
cytokine expression in

liver through the
activation of Nrf2/HO-1

signaling pathway

[35]

40 C57BL/6 mice Cohort of old and young
mice

SFN diet (442.5 mg/kg),
12 weeks

Acute exhaustive
exercise (motorized

treadmill)

Improved skeletal muscle
function in old mice by
restoring Nrf2 activity

[38]

24 C57BL/6J male
wild-type mice Animal model SFN, 25 mg/kg, 3 days HIIT

Improved exercise capacity
by inducing Nrf2, HO-1,
CAT, SOD2, and Gpx1

protein expression.

[37]

10 C57BL/6J male mice Animal model SFN, 10 mg/kg,
30 mg/kg, 90 mg/kg

Exercise by swimming
until exhaustion

Protects liver by reducing
expression of

inflammatory markers and
upregulating the

antioxidant enzyme
expression

[41]

DOMS: delayed-onset muscle soreness; CK: creatine kinase; IL: interleukin; LDH: lactate dehydrogenase; CPK:
creatine phosphokinase; MDA: malondialdehyde; NQO1: NADPH quinone oxidoreductase 1; AST: aspartate
aminotransferase; ALT: alanine aminotransferase; HO: heme oxygenase; HIIT: high-intensity interval training;
CAT: catalase; SOD: superoxide dismutase; Gpx: glutathione peroxidase.

3. How SFN Reacts within Cell Signaling Pathways
3.1. The Activation of Nrf2 Transcription Factor

Exercise significantly changes cellular activities in the organism while increasing oxida-
tive stress and energetic stress. These changes must be addressed by activating or inactivating
the modification of several vital transcription factors [43]. Nrf2 is an essential transcription fac-
tor that remains inactive while connected with the repressor protein Kelch-like ECH-associated
protein 1 (Keap1) [44,45]. During cellular oxidative stress, Keap1 releases Nrf2 and translo-
cates into the nucleus. It modulates gene expression by reacting with the promoter region
of antioxidant-responsive elements (AREs) with the assistance of small musculoaponeurotic
fibrosarcoma proteins (MAF) [45]. SFN is attributed with upregulating the expression of
Nrf2-mediated phase 2 enzymes (including NADPH: quinone oxidoreductase 1 (NQO1)
and heme oxygenase 1 (HO-1)) and the endogenous antioxidant enzyme gene expression
(Figure 1) [35,46]. In an animal experiment using Nrf2 knock-out mice, intraperitoneal admin-
istration of SFN (25 mg/kg) reduced oxidative stress markers, i.e., TBARS and the GSSG/GSH
ratio. In the Nrf2++ group, a reduced level of muscle damage markers (LDH and CK) and
the downstream regulation of TBARS and the GSSG/GSH ratio lead to enhanced endurance
exercise capacity from SFN-induced Nrf2 activation [42]. Changes in GSH homeostasis may be
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reflected in the ratio of GSSG/GSH, since the GSH concentration becomes low and the GSSG
concentration is high during oxidative stress [47]. Many independent studies investigated
the upsurge of the GSSG/GSH ratio due to exercise training, which may be correlated with
the lactate/pyruvate ratio [48–50]. Monocarboxylate transporter (MCT) 1 and MCT 4 are en-
gaged in the lactate–pyruvate interchange and metabolism. SFN pretreatment before hypoxic
exercise increases the expression of the lactate transporter MCT1 and increases the running
capacity, with elevated LDH activity [43]. Under stimulated conditions, Nrf2 activation may
enhance the expression of MCT1 during muscle expression [51]. Bose et al. reported that
an SFN diet increased the exercise capacity of old mice, which was almost similar to the
young mice group fed with the non-SFN diet (regular mice diet). Additionally, SFN improved
muscle strength and increased the number of stem cells with improved function in skeletal
muscles. The probable mechanism was presented as the active function of Nrf2-ARE binding
activity and improved skeletal muscle function in the SFN-fed old mice group. Additionally,
genes involved in antioxidant, antielectrophile, and glutathione synthesis pathways play a
crucial role during aging. At the same time, SFN increases the transcriptional activation of
these essential genes’ expression by restoring the Keap1/Nrf2/ARE pathway [38]. Besides im-
proving endurance capacity, SFN preintervention protects from exhaustive exercise-induced
liver damage [41]. Yang et al. conducted an animal study with a mild and high dose of SFN
and executed exhaustive exercise for seven consecutive days along with SFN treatment and
reported that an SFN intervention improved the adequacy of antioxidative stress and reduced
inflammation in the liver and therefore diminished liver damage and ameliorated exercise
endurance [41].
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Figure 1. Cellular interaction between Nrf2 and SFN. Keap1 inhibits Nrf2 degradation in homeostatic
conditions by promoting Nrf2 ubiquitination (Ub) in the cytoplasm. During oxidative stress, Nrf2
phosphorylates and translocates into the nucleus to promote antioxidant response element (ARE)
expression, as well as induces gene expression of HO-1, NQO1, CAT, and SOD. In this regard, SFN
acts as a Nrf2 activator that promotes the dissociation of Nrf2 from its negative regulator Keap1 and
upregulates this reaction comprehensively.

3.2. The Inhibition of NF-κB Activity

NF-κB is a prime protein transcription factor that efficiently controls the expression
of genes that are involved in inflammatory responses. This protein complex consists of
five precursors: NF-κB1 (or p50), NF-κB2 (or p52), and RelA (or p65), RelB, and c-Rel [52].
NF-κB is a heterodimer that is mainly composed of either p50 or p52 and p65. The NF-κB
subunit p50 and p52 lacks a transactivation domain. Therefore, it needs to make a complex
heterodimer with a subunit of the Rel family [53]. The NF-κB complex is activated by
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two pathways: the canonical and non-canonical, or alternative, pathway. Most of the
inflammatory signal is mediated through canonical pathways [54].

SFN also protects cells from inflammatory reactions by interacting with key signaling path-
ways and inflammatory cytokines [23]. The NF-κB protein is relevant to inflammatory reactions,
where the inhibitor of NF-κB kinase (IKK) is activated in response to any stimulation. Activated
IKK then phosphorylates the NF-κB inhibitor, IκB, causes proteasomal degradation, leaves
NF-κB to enter into the nucleus, and commences transcription of genes, i.e., pro-inflammatory
cytokines IL-6, IL-1β, and TNF-α. These pro-inflammatory markers are also known as secondary
messengers and induce the function of NF-κB [55]. The activation of NF-κB in immune cells
leads to an excessive production of pro-inflammatory mediators, caused by chronic inflamma-
tory conditions and autoimmune diseases. Both the canonical and non-canonical pathways are
involved in the activation of NF-κB [56]. The canonical pathway is dominant at the inflammatory
site and is triggered by the production of pro-inflammatory cytokines [57].

SFN is familiar in this regard due to its anti-inflammatory properties. SFN-pretreated
cells interfere with NF-κB nuclear translocation and IκB degradation [58]. SFN may
reduce inflammation by inhibiting NF-κB binding to DNA [59]. Various stimuli like
lipopolysaccharide, hydrogen peroxide, acrolein, and TNF-α were used against various cell
lines to assess the effective dose and concentration of SFN to minimize the inflammatory
responses [29,60–65]. In addition, SFN may mitigate exercise-induced endotoxin produc-
tion, which triggers the production of inducible nitric oxide synthase (iNOS) and nitrate
production, as well as pro-inflammatory cytokines’ gene expression [29]. Sun et al. reported
that a four-week SFN treatment alleviates muscle inflammation that is attributed to Nrf2-
mediated inhibition of the NF-κB signaling pathway [66]. Few animal studies reported
that selective doses of SFN are inversely associated with inflammatory responses [67,68].
Figure 2 briefly describes the inverse association between SFN and the NF-κB signaling
system. NF-κB activation also acts as a key mediator for the priming signal of NLRP3
(nucleotide-binding oligomerization domain, leucine-rich repeat, and the pyrin domain
containing 3) inflammasome activation [69]. Inflammasomes are multiprotein complexes
that cause inflammatory reactions [70]. Prolonged inflammation causes sepsis, since muscle
tissue is more prone to damage during sepsis, which results in sepsis-related pathogene-
sis [71,72]. Recently, it was reported that SFN attenuated the NLRP3 protein level in muscle
myoblasts and reduced the secretion of inflammatory cytokine IL-1β and toll-like receptor
4 (TLR4) [73]. Moreover, SFN treatment also restores myogenic differentiation by repressing
the activation of the TLR4 pathway [73].
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Figure 2. When oxidative stress increases during exercise, IκBα is phosphorylated, and an released
activated NF-κB that entered into the nucleus, which increases production of pro-inflammatory cytokines
and chemokine expression. SFN intervention improves exercise performance by reducing reactive oxygen
species, inflammatory cytokines, and chemokines, as well as inactivated NF-κB signaling pathway.

4. The Therapeutic Attributes of SFN in Combination with Other Nutrients
4.1. The Synergistic Effect of SFN and Other Nutraceuticals

Several clinical and preclinical studies have reported the therapeutic effects of SFN
in many diseases that are related to inflammation. Subsequently, few studies have been
performed on the combined effect of SFN with different nutrients like vitamin D, nobiletin
(NBN), and curcumin (CUR) [74–76]. SFN combined with vitamin D upregulated Nrf2
expression [76]. Moreover, CUR and SFN are more effective in preventing inflammation-
associated diseases. Both CUR and SFN have some efficacy to induce the Nrf2/ARE
signaling pathway; however, CUR and SFN become more effective, even at a lower concen-
tration. Cheung et al. reported that CUR and SFN synergistically induce HO-1 expression
and simultaneously reduce iNOS and cyclooxygenase (COX)-2 protein expression and
related inflammatory markers [74].

4.2. SFN as a Cancer Chemopreventive Nutraceutical

SFN is also known for significant cancer chemopreventive benefits, and a plethora
of research was performed regarding the affectivity of SFN against different types of
cancer like liver cancer, prostate cancer, breast cancer, ovarian cancer, pancreatic cancer, and
colorectal cancer [77–82]. Cornblatt et al. performed a study to extrapolate the practical dose
of SFN as a cancer chemopreventive agent and reported that SFN metabolites are readily
available in the mammary tissue after receiving a single dose of SFN (200 µmole), which
is prepared from myrosinase-active broccoli sprout powder [78]. This dose is equivalent
to 35 mg of SFN (molecular weight of SFN: 177.29). After thirty minutes of a single dose
of SFN (150 µmol), significant induction was noticed with two important cryoprotective
enzymes, HO-1 and detoxification enzyme NQO1, in the mammary tissue [78]. After
12 h of SFN ingestion, a maximum of 12-fold of the induction of NQO1 was observed in the
mammary tissue, while significant induction was found after 2 h. Similarly, HO-1 induction
was significantly observed within one hour of ingestion [78]. Moreover, another animal
study reported that SFN administration prevented tumor formation in rats who were
treated with the carcinogen 9,10-dimethyl-1,2-benzanthracene [83]. SFN modulates our
immune system by regulating T-cell and B-cell proliferation and phagocytic activity and by
influencing the cytotoxicity in NK cells. The NK cells are critically important in controlling
carcinogenesis [84]. Due to the chemopreventive effect, SFN can readily block and suppress
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the carcinogen [85]. Numerous mechanisms of SFN are being investigated to target multiple
carcinogenetic cells. Many suggested that SFN exerted a chemopreventive function by
preventing the phase 1 enzymes’ activation, along with the induction of detoxification
enzymes, therefore suppressing pro-inflammatory responses within the cells [86]. The NF-
κB signaling pathway is a critical part of the innate immune system and plays a vital role in
cancer initiation and progression. The active form of NF-κB upregulates the anti-apoptotic
gene expression, therefore, it indirectly upregulates cell proliferation [87]. In cancer patients,
NF-κB remains active, and SFN administration may downregulate the NF-κB expression in
prostate cancer cells [88]. Heiss et al. reported that SFN can directly inhibit the activation
of the NF-κB subunit and reduce the DNA-binding capacity without interfering with the
endotoxin-induced breakdown of the inhibitor of NF-κB and the nuclear translocation of
NF-κB [59].

4.3. SFN and Other Chronic Diseases

Considering broccoli sprout powder (BSP) to be a rich source of SFN, a randomized,
double-blind and placebo-controlled clinical trial was conducted among type 2 diabetic
patients. A four-week intervention of BSP (the SFN content of BSP was determined to be
~22.5 µmol/g) resulted in the lowering of the inflammatory mediator IL-6 concentration
in type 2 diabetic patients compared to the control [89]. Additionally, SFN administration
(100 µmol per kg/body weight) also upregulates the insulin signaling pathway, as well
as improves the glucose tolerance (Figure 3) [90]. In 2021, a clinical trial was conducted
with type 2 diabetes mellitus (T2D) patients with an intervention of aerobic resistance
training and broccoli supplementation (10 g/day; 22.5 mmol/g SFN) for 12 weeks [91].
They reported that broccoli supplementation with exercise training improved the lipid
profile, body composition variables, and insulin level among the diabetes group compared
to broccoli supplementation alone or exercise training alone [91]. Additionally, several
studies reported that SFN intervention can reduce obesity through various mechanisms like
the browning of fat, altering leptin resistance, and promoting lipolysis [92–95]. However,
SFN showed no anti-inflammatory or antioxidative effects in patients with chronic kidney
diseases (CKDs). A cross-over, randomized, double-blind study was performed with CKD
patients, providing 150 µmol of SFN for two months and showing no effect in terms of
Nrf2 and NF-κB expression or inflammatory markers [96]. An acute toxic dose of SFN
(300 mg/kg body weight) causes pro-convulsion, hypothermia (150–300 mg/kg), impaired
motor coordination (200–300 mg/kg), and reduced muscle strength (200–250 mg/kg) [97].
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Figure 3. SFN mediates vital transcription factors Nrf2 and NF-κB and reduces inflammation and
oxidative stress.

During the COVID-19 pandemic, caused by the SARS-CoV-2 (Severe Acute Respiratory
Syndrome Coronavirus 2) virus, SFN was used as a drug to treat the immune cells in the
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lungs, which results in a reduction in T-cell activation and cytokine production [98]. Since
SARS-CoV-2 directly promotes NLRP3 inflammasome activation, and SFN was reported to
inhibit the inflammasome activation via Nrf2 activation, SFN may indirectly contribute to
diminishing the cytokine storm in patients with COVID-19 [99,100]. However, direct studies
regarding exercise and SFN intervention in COVID-19 patients are yet to be published.

5. Discussion and Further Perspectives

Numerous research articles have reported the interplay between SFN and its activity
at the transcriptional level. In this review, we discussed mainly the impact of SFN on
exercise capacity and the inherent physiological changes after an SFN intervention. SFN
could be a sustainable intervention to improve exercise endurance capacity and elevate the
mitochondrial function and cellular antioxidant responses. It has been reported that SFN
showed its protective effect against exercise-induced ROS production with the induction
of the Nrf2 pathway, which further activates several genes that are related to antioxidant
and anti-inflammatory responses. SFN also protects organisms by increasing the activity
of endogenous antioxidants, i.e., SOD, CAT, GPx, HO-1, and NQO1. Inflammation is a
significant cause of the progression of several chronic diseases; SFN interferes with the
regulation of the NF-κB pathway and, therefore, reduces the secretion of pro-inflammatory
cytokines and other inflammatory markers’ expression. Since an excessive production of
ROS impairs redox homeostasis, SFN intervention may improve the imbalanced condition
by modulating several major transcription factors, like Nrf2. Moreover, SFN is thought to
have an anti-inflammatory role, in conjunction with its other chemopreventive properties.
This review mainly mentioned published research articles on SFN intervention and exer-
cise outcomes. Hence, limited research articles on exercise and SFN were presented; we
expanded the article with primary research on the SFN mechanisms and also briefly men-
tioned the therapeutic and chemopreventive role of SFN in different diseased conditions.
Although various randomized control trials with different protocols were conducted and
reported, a generally acceptable guideline for the intake of SFN is yet to be declared. To our
knowledge, SFN is one of the most studied phytochemicals among ITCs and has shown
plenty of health benefits. In order to gain a precise understanding of SFN consumption,
more preclinical and clinical studies are required.
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