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Abstract: The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a
symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and
other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function
and contributes to host health. The microbiota, while benefiting from a nourishing environment, is
involved in the development, metabolism and immunity of the host, contributing to the maintenance
of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of
host–microbe symbiosis via a unique immunological network that populates the intestinal wall with
different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial
(IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are
mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the
γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a
significant role in immune surveillance and tissue maintenance. This review provides an overview
of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on
γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal
neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota
and brain.

Keywords: microbiota; inflammation; γδ T cells; dysbiosis; neurotransmitters

1. Introduction

The symbiotic commensal microbiota of mammals includes bacteria, fungi, viruses,
and other microbial and eukaryotic species. These complex communities of microbes
inhabit barrier surfaces of the digestive, respiratory, skin, and urogenital tracts and plays
a crucial role in controlling many aspects of host physiology [1]. Despite having more
than 100 trillion microbes in the intestinal tract, 90% of gut microbiota bacteria belong to
two phyla, Firmicutes and Bacteroidetes [2,3], and one Archaean species, Methanobrevibacter
smithii [4]. Humans are born germ-free, so our microbiota population is shaped by the
external environment and nutrients. Although these microorganisms may be seen as foreign
entities, our immune system has developed to foster a harmonious relationship with them.
The gut microbiota assists in maintaining immune balance, resisting pathogens, and aiding
in digestion, all in return for a nourishing environment. For example, probiotics are
health-promoting microorganisms that work as antagonists by killing intestinal Escherichia
coli and Streptococcus spp. by producing various metabolites and immunoregulators that
enhance the body’s immune response and cytokine levels. Furthermore, Lactobacillus and
Bifidobacterium spp. can enhance intestinal peristalsis, thereby reducing the retention of
harmful or carcinogenic substances in the intestinal tract [5].
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Gut microbes are believed to shape immunity and maintain homeostasis by interacting
with the mucosal immune system through several highly integrated signaling systems and
gene regulatory networks [6]. Viruses and fungi are prevalent within the gut and potentially
hold significant functions in maintaining a healthy gut environment. Changes in the viral
population within the gastrointestinal tract can impact the bacterial microbiome and its
variety, as viruses can drive the evolution of bacterial resistance. For instance, viruses can
facilitate the transfer of genetic material between bacterial communities horizontally, which
can change the balance of different bacterial communities [7].

The immune system is a sophisticated and intricate collection of innate and adaptive
components that work together to maintain the body’s homeostasis. A complex microbiota
has occurred simultaneously with the development of distinct branches within the immune
system, particularly those related to adaptive immunity. This suggests that the immune
machinery has evolved to allow microbial communities to establish and maintain mutu-
ally beneficial relationships. In return, the microbiota actively supports and regulates the
immune system response. Conditions affecting humans, such as allergies, autoimmune
disorders, and inflammatory diseases, are often a consequence of a failure in controlling
immune responses that target self-derived, microbiota-derived, or environmental antigens.
Moreover, several factors such as dietary changes, the use of antibiotics, and the elimina-
tion of symbiotic partners have led to alterations in the composition and function of the
microbiota [1]. Despite this close dependence, gut microbes and immune cells have their
own niche within the gut: microbes are restricted to live in the gut lumen while immune
cells are located in the gut tissue (epithelium and lamina propria). Commensal bacteria
rarely break the intestinal barrier, and it is from the lumen that they participate in functions
that are essential for host intestinal homeostasis. At the same time, host immune cells exert
control on the microbiota population to prevent their invasion and systemic dissemination.
Microbes that reach the gut mucosa interact with immune cells through proteins expressed
on their surface or by releasing specific molecules, which triggers an immune response that
results in microbial killing [8].

Large repertoires of immune cell types populate the GI tract, making it the organ
with the most complex immune system in the body, with variations in distribution and
abundance. The intestinal epithelium predominantly accommodates T cells, while the
lamina propria harbors a diverse range of immune cells, including B cells, T cells, innate
lymphoid cells (ILCs), dendritic cells, macrophages, eosinophils, and mast cells [9]. These
cells communicate with one another through cytokine production or cell–cell contact
orchestrating the gut immune system [10]. Mucosal T cells are categorized into two major
subsets based on their T cell receptor (TCR) and coreceptor expression. The first type is
known as “type a” T cells, which express the conventional TCRαβ and coreceptors CD4 or
CD8αβ. The second group are the non-conventional or “type b” mucosal T cells, which
can express either TCRαβ or TCRγδ and typically include CD8αα homodimers. In general,
the lamina propria predominantly houses “type a” T cells, while “type b” T cells are more
prevalent in the mucosal epithelium [11] (Figure 1).

Aβ T cells and γδ T cells differ in their modes of antigen recognition. Aβ T cells
specifically recognize antigen peptides presented by the major histocompatibility complex
(MHC). However, γδ T cells lack this MHC restriction and utilize their γδTCR to recognize
a broader range of structurally diverse and biologically unrelated substances, including
lipopeptides, proteins derived from microorganisms, and self-proteins [12,13]. Therefore,
γδ T cells can be classified as part of the innate immune system, where their TCRs function
as pattern recognition receptors. However, γδ T cells can also participate in the adaptive
immune response by rearranging TCR genes to generate diverse junctional combinations
and developing a memory phenotype [14]. Thus, γδ T cells exhibit characteristics of both
the adaptive and innate immune systems.

This review summarizes the various mechanisms by which the crosstalk between gut
microbiota and γδ T cells contributes to intestinal homeostasis, tolerance, and inflammation.
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Moreover, the microbiota–gut–brain axis is discussed along with the role of the microbiota
in maintaining neuro-immune cells.
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2. Microbiota and Intestinal Mucosa

The evolution of the immune system, especially the elements related to adaptive
immunity, occurred alongside the emergence of a diverse microbiota. The gut-associated
lymphoid tissue (GALT) in germ-free mice has decreased levels of immune cells in the lam-
ina propria (T cells and IgA-producing B cells) and epithelial (intraepithelial lymphocytes;
IELs) compartments [15–17], which highlights the importance of the gut microbiota in the
development and maturation of the immune system. Moreover, gut microbiota can also
regulate the secretion of antibacterial molecules by intestinal epithelial cells and IELs [18].

Commensal microorganisms colonize the gut after birth, and their antigens aid in the
development of immunocompetency by stimulating lymphocyte proliferation in response
to antigenic stimulation. Breast milk is a major contributor to the microbial colonization
of the gut. Apart from its nutritional molecules, immune cells, and IgA antibodies [1],
human breast milk also contains microorganisms, mainly bacteria belonging to the phyla
Firmicutes, Proteobacteria, and Actinobacteria [19]. More than 800 bacterial species, mainly
facultative anaerobic or strictly aerobic groups, with the great majority being Bifidobacterium
spp., have been identified [20]. All components work together to influence the composition
of the gut microbiota in infants and the way the host’s immune system responds to these
bacteria. Maternal IgA antibodies help to restrict immune activation and bacterial attach-
ment by binding to nutrients and bacterial substances. The presence of metabolites such
as oligosaccharides, one of the most abundant molecules in breast milk, acts as prebiotic
promoting the growth of predominantly beneficial bifidobacterial microbiota in the infant’s
gastrointestinal system, modulating the gut microbiota, and preventing inflammation [1].
Cytokines produced by immune cells, on the other hand, are found in small amounts
(picograms). Inflammatory cytokines, such as IL-1β, IL-6, IL-8, IL-12, TNFα, and IFNγ,
are present in colostrum and mature breast milk. These cytokines can help to boost the
immune system by stimulating the production of white blood cells and antibodies, while
the immunosuppressive cytokine IL-10 helps to reduce inflammation and promote healing.
Additionally, human milk bacteria have been reported to likely contribute to the infant’s
gut microbiota colonization by influencing gut microbes through various mechanisms,
including competition for nutrients and binding sites, direct inhibition, or participation in
trophic chains [21].

The intestinal epithelial barrier (IEB) is considered a dynamic interface as it regulates
the passage of nutrients, water, and electrolytes, while effectively limiting the passage of
pathogens and toxins. IEB dysregulation can lead to increased intestinal permeability and



Int. J. Mol. Sci. 2024, 25, 1747 4 of 24

thus facilitate the entrance of antigens that, subsequently, activate the immune system and
initiate inflammatory responses [22]. The microbiota contributes to the proper functioning
of the IEB by modulating the expression of tight junction molecules in the epithelial
cells that control IEB permeability [23]. The microbiota has the potential to regulate host
physiology through the production of a highly diverse metabolites repertoire, which play
a critical role in the modulation of intestinal epithelial cells (IECs) and the maintenance
of the gut epithelial barrier. Key among these metabolites are short-chain fatty acids
(SCFAs), including acetic acid, butyric acid, and propionic acid, which are produced
through bacterial fermentation of dietary fibers in the colon. These SCFAs penetrate the
intestinal epithelial barrier and interact with host cells, influencing immune responses and
disease risk. Moreover, SCFAs maintain the integrity of the intestinal epithelial barrier
by regulating luminal pH and mucus production, providing fuel for epithelial cells, and
impact the differentiation and proliferation of IECs [23,24]. It has been suggested that
fermentable dietary fibers might facilitate mucin secretion by generating short-chain fatty
acids like butyrate, the main short-chain fatty acid that plays a significant role in regulating
mucin release. Butyrate serves as a major energy source for colonocytes and influences
their gene expression through two mechanisms: inhibiting histone deacetylase (HDAC) or
binding to G-protein coupled receptors (GPR41 or GPR43). On the other hand, acetate and
propionate play roles beyond the intestine, acting as metabolic substrates for lipogenesis
and gluconeogenesis [25]. Germ-free mice exhibit impaired mitochondrial respiration and
increased autophagy in colonocytes compared to conventionally raised mice, indicating
that the microbiota contributes to the survival of colonocytes [25].

The gastrointestinal tract, which is recognized as the largest interface for immune func-
tion in relation to the external environment, is constantly exposed to numerous substances
that trigger immune responses. Considering the large number of antigens encountered
by the host intestinal cells, it is crucial for the body to maintain a stable immune system
within a healthy gut by maintaining a balance between its inflammatory reactions against
harmful pathogens and its tolerance to beneficial bacteria and food antigens [26]. T cell
homeostasis and differentiation are extensively modulated by gut bacteria. For example,
Bacteroides fragilis and segmented filamentous bacteria (SFB) in the intestine have been
shown to induce Tregs and Th17 cells, respectively, affecting the host’s response to infec-
tions. Moreover, signals originating from gut microbiota have the potential to regulate
immune cells, enabling them to exhibit both pro-inflammatory and anti-inflammatory
responses, thus affecting the susceptibility to diseases [27]. One of the primary mechanisms
of communication between host and microbiota is through the recognition of conserved
microbial-associated molecular patterns (MAMPs). These patterns are identified by pattern
recognition receptors (PRRs) such as Toll-like receptors (TLRs) and C-type lectin receptors
(CLRs), located on the cell membrane, and Nod-like receptors (NLRs) within the cyto-
plasm [28] and expressed on macrophages, monocytes, neutrophils, mast cells, dendritic
cells (DCs), T lymphocytes and IECs [29]. Nevertheless, intestinal microorganisms express
microbial-related molecular patterns that can activate TLRs on innate immune cells [30].
This activation triggers a series of intracellular signaling pathways that lead to the pro-
duction of cytokines and chemokines and the transcription of different genes crucial for
infection control. The predominant signaling pathways are the MyD88-dependent path-
ways that lead to the activation of transcription factor NF-κB and the mitogen-activated
protein (MAP) kinases p38 and JNK, thus upregulating the expression of numerous proin-
flammatory cytokines. The second pathway is the TRIF-dependent pathway, activated by
TLR3 and TLR4, which cause the activation of the transcription factors IRFs (interferon
regulatory factors) 3 and 7. IRF3 and IRF7 will then induce the transcription of three genes,
namely, (1) type I interferon-beta (IFNβ), (2) IFN-inducible protein 10 (IP-10/CXCL10),
and (3) chemokine (C-C motif) ligand 5 (CCL5/RANTES), thus controlling infection by
either recruiting more immune cells to the site of infection, stimulating the production of
antimicrobial peptides (AMPs), or directly eliminating pathogens [31] (Figure 2).
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A disruption in the balance of intestinal microorganisms leads to intestinal dysbacte-
riosis that can induce the differentiation of CD4+ and CD8+ T cells and, therefore, initiate
an adaptive immune response [30]. The exact mechanism underlying this response is
still under investigation, but recent studies have demonstrated that shifts in the metabo-
lites released by microbial species can impact the function of immune cells. SCFAs are
water-soluble, and therefore can be easily transported throughout the body; thus, they are
believed to influence the differentiation, function, and regulation of T cells and other im-
mune cells through promoting the release of pro- or anti-inflammatory cytokines required
for specific effector functions [32]. Collectively, the above studies show that commensal
microorganisms are essential for the development of the immune system. They contribute
to the proper functioning of the IEB by the production of SCFAs and modulate the immune
response through their MAMPs.

3. Intestinal γδ T Cells

Gamma delta (γδ) T cells were first discovered in 1984 by Saito and collaborators [33]
and are a unique subset of T cells mainly present within the barrier tissues such as epithelia
of skin, intestines, and lungs. Only a small percentage of γδ T cells are found in circulating
blood and peripheral tissues [34]. Phenotypically, the intestinal γδ T cells are mostly CD8+

T cells [35], in contrast with the ones located in peripheral tissues that are CD4-CD8-[36].
γδ T cells can be classified in different subsets based on the type of γ- and δ-chains of the
TCR. Herein, we concentrate on the γδ T cells present the intestinal epithelium, where the
most abundant type expresses Vγ5 TCR in mice [37] and Vδ1Vγ2+ TCR in humans [38,39].
The main function of γδ T cells in the intestine is to maintain epithelial integrity and restrict
the entrance of microbial pathogens and avoid their systemic dissemination, which makes
them essential components of mucosal immunity. They are able to produce a wide range
of cytokines, chemokines, perforins, and granzymes either constitutively or following
interactions with surrounding cells like dendritic cells (DCs) and epithelial cells, or their
products, as well as microbial metabolites in the intestinal lumen [40–42].
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Lymphopoiesis of γδT cells occurs mainly in the thymus. Intestinal homing of γδ T
cells is regulated by two molecules expressed on their cell membrane, the C-C chemokine
receptor type 9 (CCR9) and the heterodimeric integrin αEβ7. CCR9 binds to its ligand
CCL25, a chemokine that is abundantly produced by intestinal epithelial cells, to promote
the intestinal migration of γδ T cells [43–45]. The integrin αE (CD103) forms a receptor
complex with β7 that dimerizes and binds to the epithelial cell adhesion protein E-cadherin,
expressed on intestinal epithelial cells, facilitating the entry and residence of γδ IELs in the
intestinal epithelium [46,47].

Molecules such as IL-7, IL-15, butyrophilin-like molecules (BTNL), the ligand-activated
transcription factor AhR (aryl hydrocarbon receptor), and aldo-keto reductase 1B8 (AKR1B8)
are essential for the proliferation, survival, and maintenance of the homeostatic mechanism
of intestinal γδ T cells [48]. The G protein-coupled receptor GPR18 can also regulate the
expansion of γδ T cells in the gut and their positioning next to epithelial cells [49,50].

γδ T cells also express the natural killer group 2D receptor (NKG2D), an activating re-
ceptor associated with an adaptor molecule (DAP10) that enables signal transduction [51,52].
NKG2D receptors interact with their ligands, the MHC class I-related chains (MIC) A and B
expressed on damaged cells [53]. Their binding during microbial infection provides a signal
that activates the release of cytotoxic cytokines (IFNγ, TNFα) and, therefore, their effector
cytolytic response [54]. This suggests that γδ cells are able to directly respond to infected
or damaged cells expressing MIC. In this regard, it has been shown that human Vδ1 T cells
carrying NKG2D receptors have the capability to kill MICA-positive tumor cells [52,55].
The γδTCR can also recognize ligands induced by infection or stress, like annexin A2 and
endothelial protein C receptor (EPCR) [56,57]. Therefore, γδ IELs are able to recognize
and respond to epithelial cell stress antigens or bacterial antigens expressed by infected
cells [58]. Although γδ T cells display significant heterogeneity, and several distinct subsets
have been identified based on the cytokine produced, there are two main functional subsets
that are shared among multiple γδ T cell populations: (a) the IL-17-producing Th17-like
subset and (b) the IFNγ-producing Th1-like subset [59].

IL-17 production is controlled by IL-23 and plays a vital role in coordinating innate
immune functions. IL-17 facilitates the accumulation of neutrophils in peripheral tissues,
aiding in pathogen clearance and host defense against various infections [60,61]. IL-17 also
contributes to the preservation of mucosal barrier functions by promoting tight junction
formation and mucin secretion. Similar to Th17 cells, IL-17-producing γδ T cells express
CCR6, IL-23R, and AhR. Additionally, IL-17+ γδ T cells express TLR1, TLR2, and dectin-1.
During infection, the binding of ligands to those pathogen-recognition receptors results in
selective expansion and neutrophil recruitment [61]. CD30L/CD30 signaling pathways are
crucial for the maintenance and activation of naturally occurring IL-17A-producing γδ T
cells in mucosa-associated tissues and thus control the infection. Thus, mice deficient in
CD30L or CD30 proteins were shown to be hypersusceptible to an acute infection by Listeria
monocytogenes. At the early stages of Listeria monocytogenes infection, these mice have a
higher bacterial load in the peritoneal cavity, coincident with a decrease in the number of
neutrophils and IL-17A-producing γδ T cells [62].

In contrast, IFNγ-producing γδ T cells are crucial for an effective immune response
against tumor development, viruses, intracellular bacteria, and protozoan parasites through
enhancing phagocyte activity [63,64]. The production of IFNγ is greatly induced by IL-12
and IL-18, which are secreted by dendritic cells (DCs) [65]. Infection with a Plasmodium
parasite activates both γδ T cells and DCs. Upon activation, γδ T cells express CD40L and
produce IFNγ, which promote DC maturation and increase expression of MHC II molecules
and co-stimulatory factors like CD86 on DCs, leading to an increase in IL-12 production by
DCs. Consequently, the activated DCs induce the production of IFNγ from γδ T cells and
the differentiation of naïve CD4+ T cells into Th1 cells to also produce IFNγ [64].

γδ T cells in the gut mucosa can also secrete other cytokines like IL-22 that, together
with IL-17, can suppress microbial populations. IL-22 production is regulated by differ-
ent factors, including IL-23R signaling, AhR, and RAR-related orphan receptor gamma



Int. J. Mol. Sci. 2024, 25, 1747 7 of 24

(RORγt) [66,67]. γδ T cells can also produce growth factors such as keratinocyte growth
factor (KGF) that helps to maintain the integrity of the epithelial barrier and stimulate the
production of antimicrobial peptides (AMPs) by epithelial cells. KGF not only promotes
the proliferation, maturation, and repair of damaged epithelial cells, but also regulates the
formation of tight junctions and, therefore, intestinal permeability [68–71]. Moreover, γδ T
cells in the intestinal epithelium can produce the antimicrobial peptide RegIIIγ (regener-
ating islet-derived protein 3) in response to bacterial infection of the epithelial cells. This
antibacterial response is dependent on the stimulation of epithelial cell-intrinsic MyD88
signaling by bacteria, which suggests that epithelial cells provide microbe-dependent cues
to γδ IELs [58].

Granzyme A and B are proteins highly expressed in γδT cells [72]. They are secreted
constitutively at steady state as well as in response to CD103 ligation to the E-cadherin
on epithelial cells facilitating the apoptotic cell death of the later ones [73]. Granzymes
and perforins produced by γδ T cells are capable of killing infected and tumor cells [74].
γδ T cells can also produce immunosuppressant cytokines like TGF-β or IL-10 regulating
other cells involved in the innate immunity response [75]. Table 1 summarizes the products
secreted by γδ T cells in response to the different stimuli and the receptors involved in
each case.

As mentioned above, γδ T cells are among the most abundant populations in the gut
representing the first line of mucosal immune defense. However, there is variation in the
frequency and function of these γδ T cells in the different layers of the gut [76]. IELs with
up to 40% γδ T cells are intercalated between the epithelial cells and represent the first layer
of intestinal T cells that support the epithelium barrier’s function, maintain microbiota
symbiosis, and contribute to gastrointestinal inflammation and disease [77]. A second layer
of intestinal γδ T cells is found among lamina propria lymphocytes (LPLs). These γδ LPLs
are able to produce IL-17 and IL-22, which regulate the release of antimicrobial peptides
and strengthen tight junctions between enterocytes to restrict bacterial dissemination and
minimize intestinal inflammation. The third group of γδ T cells is located in the Peyer’s
patches and likely plays a role in antigen presentation and promoting mucosal humoral
immunity [76].

Table 1. The ligands involved in the modulation of intestinal γδ T cell functions.

Ligand Receptor
on γδ T Cells Effector Factors Function References

IL-23 IL-23R

IL-22, IL-17

- Preservation of mucosal
barrier function

- Tight junction formation
and secretion of AMP
and mucins

[60,61,66,67]
Xenobiotics
Natural products
Microbiota metabolites
Endogenous molecules

AhR
(Aryl hydrocarbon
receptor)

CD30L CD30 IL-17
- Preservation of mucosal

barrier function
- Antimicrobial

[62,78]

MICA/B
(stress marker)

NKG2D
(natural killer group2,

member A)

IFNγ, TNFα
KGF-1

- Fights against
intracellular pathogens

- Destruction of infected or
damaged cells

- Mucosal injury repair

[52–54,68,79]

MAMPs
TLR1
TLR2

Dectin-1

IFNγ

IL-17
Reg III

- Expansion and
neutrophil recruitment

- Pathogen control
[58,61]
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Table 1. Cont.

Ligand Receptor
on γδ T Cells Effector Factors Function References

IL-12
IL-18

IL-12R
IL-18R

IFNγ

↑CD40L
Enhancement of
phagocytic activity [64,65]

E-cadherin
(on IECs) αEβ7 integrin Granzyme A/B

Perforin
Lysis of infected and
transformed intestinal cells [72,80]

Microorganisms-
derived proteins
Lipopeptides
Self-proteins
Btnl

TCR
IFNγ

IL-17
TNFα

Development of
effector subsets [39,56–58]

MIC
(stress marker) NKG2A IL-10, TGFβ

- Treg expansion
- Promotes integrity of the

epithelium
[75]

IL-15 IL-15R
Maintenance, localization,
proliferation, and maturation
of γδT cells

[81]

Unknown
GPR18

(orphan G-coupled
receptor)

Promotes entry, residence, and
maturation of γδT cells in
intestinal epithelium (homing)

[49]

CCL25
(epithelial cells) CCR9

Promotes entry and residence
of γδT cells in the intestinal
epithelium (homing)

[43–45]

The special characteristics and great plasticity of the γδ T cells confer a crucial role in
regulating the mucosal immune response against resident and invasive intestinal bacteria.
Due to the quick response producing cytokines and growth factors in response to any
changes, γδ T cells are major contributors to epithelial homeostasis (Figure 3).
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18; CCR9: C-C chemokine receptor type 9; NKG2A: natural killer group 2 member A; CCR6: C-
C chemokine receptor type 6; TLR: toll-like receptor; γδTCR: γδ T cell receptor; IL: interleukin;
AhR: aryl hydrocarbon receptor; CD30: also known as TNF receptor superfamily member 8; TGFβ:
transforming growth factor β; RegIII: regenerating islet-derived protein 3; KGF: keratinocyte growth
factor; IFNγ: interferon γ; TNFα: tumor necrosis factor α; GCSF: granulocytes-colony stimulating
factor. Created with BioRender.

4. Intestinal T Cells and Microbiota Interactions

γδ T cells in the intestinal epithelium are continuously interacting with the commensal
gut microbiota that keeps them constitutively activated, as they are able to quickly respond
to signals through their TCR, TLR, and NLR [82–84]. At the same time, γδ T cells contribute
to the regulation of the microbial population and maintenance of intestinal homeostasis. So,
it seems evident that there is a crosstalk between γδ T cells and gut microbiota. However,
the exact mechanisms by which this interaction takes place have only recently begun to
be understood.

Early studies using germ-free (GF) mice reported that γδ T cells from the intraepithelial
compartment were not affected by the intestinal microbiota [58,85]. However, a more recent
study demonstrated that the gut microbiota is needed to maintain γδ T cells which, in turn,
are essential for maintaining mucosal tolerance [86]. Using a broad-spectrum antibiotic
treatment to deplete the microbiota, Rezende and collaborators reported a decrease in
the number of γδ T cells, in both the lamina propria and intraepithelial compartment of
the small intestine, as well as an enhancement in pro-inflammatory immune responses
in treated mice. This suggests that the microbiota promotes oral tolerance by restraining
inflammatory responses in the gut and by maintaining γδ T cell populations. Moreover, the
same authors elegantly showed that γδ−/− mice exhibited a dysregulated mucosal immune
system characterized by increased Th17 and decreased Treg cells. This was associated
with an impaired recruitment of tolerogenic DCs to the MLNs and a reduced capacity to
produce IL-10 by CX3CR1+ mononuclear phagocytes. Interestingly, γδ−/− mice also had
marked intestinal dysbiosis affecting several bacterial species in the intestine. When the
defective species were restored, the production of IL-10 increased, the Th17/Treg balance
was normalized, and oral tolerance was rescued. The study identified Ruminococcus gnavus
and Akkermansia muciniphila as essential microbes that interact with γδ T cells to maintain
oral tolerance. Furthermore, γδ T cells secrete the micro-RNA let-7f that promotes the
growth of R. gnavus to maintain homeostatic microbiota [86]. Similarly, two other studies
demonstrated the importance of Clostridium spp. and Bacteroides fragilis in promoting
the accumulation of IL-10+ Tregs in the colon, thus contributing to the maintenance of
immune homeostasis in the intestine [87,88]. In contrast, SFB were shown to stimulate the
production of IL-17 and IL-22, which promote the development of Th17 cells in mice [89].

Dupraz and collaborators demonstrated that SCFAs in the colon and cecum (mice
and humans) exert a suppressive effect on IL-17-producing γδ T cells. Propionate directly
impacts intestinal γδ T cells by inhibiting IL-17 and IL-22 production through the inhibition
of HDAC [90]. However, several commensal microorganisms have been reported to have
the capacity to increase the number of IL-17-producing γδ T cells (IL-17+IL-1R1+) through
the VAV1 guanine nucleotide exchange factor [91]. Moreover, it has been shown that IL-17-
producing γδ T cells protected mice against C. difficile-induced colitis [92]. Several studies
have reported that phosphorylated microbial metabolites or phosphoantigens such as
HMBPP (E-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate), isopentenyl phosphate, amino-
bisphosphonate, and synthetic phosphoantigen derivatives are able to directly stimulate
γδ T cells [40,93,94]. As mentioned earlier, γδ T cells can also directly recognize pathogen-
associated molecular patterns through their TLRs and start an inflammatory response that
will lead to the elimination of pathogens [61,91]. Microbial products or antigens could also
act indirectly on γδ T cells through DCs via cell-to-cell interaction or cytokines [95].

Other microbiota-derived molecules have been shown to modulate the function of
tissue-resident T cell populations through specific receptors or by entering the cells, to
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modulate the activity of specific transcription factors. Molecules such as SCFAs [96–98],
secondary bile-acids [99], retinoic acid [100], dietary tryptophan derivatives [101,102], and
polyamines [103] can induce, using different mechanisms, the differentiation of specific T
cell populations and/or modulate their activity. Moreover, dietary tryptophan derivatives
can function as AhR agonists. In this regard, E. coli and Lactobacillus reuteri have been
reported to metabolize dietary products and convert them into ligands to the AhR and,
subsequently, initiate an intracellular signal [101,102]. As a result, E. coli induced the release
of proinflammatory cytokines in NKT cells [101], and Lactobacillus reuteri induced the differ-
entiation of IELs [102]. More recently, it has been shown that the gut microbiota mediates
the inhibition of lymphopoiesis which is associated with an increase in Lactobacillus and
Bacteroides, and the production of butyrate under dietary restrictions (20–40% reduction in
daily food intake) [104]. To date, no data have been reported specifically on γδ T cells.

Enteric bacterial pathogens, such as E. coli and Salmonella typhimurium, are able to
penetrate the intestinal barrier and induce the expression of RegIIIγ by γδ IELs through
an MyD88-dependent manner [58]. The microbiota is also involved in the motility and
positioning of γδ IELs within the intestinal epithelium, which is essential for an efficient
surveillance of the epithelium [105]. Finally, microbial colonization of the GI tract has been
shown to regulate the accessibility of enhancer regions of genes involved in a variety of
signaling and metabolic pathways in IELs [106].

Collectively, these studies provide strong evidence to support the idea that microbiota
can modulate immune responses in the GI tract by favoring the differentiation of specific T
cell populations (Table 2).

Table 2. Modulation of T cells in the intestinal mucosa by microbiota and microbial metabolites.

Gut Microbiota Target Cells Effect References

Ruminococcus gnavus Akermansia muciniphilaas γδ T cells ↑ Oral tolerance [86]

Phylum Firmicutes aerobic Bacteroidetes γδ T cells ↑ IL-17 [91]

SFB (segmented filamentous bacteria) γδ T cells ↑ IL-17
↑ IL-22 [89]

E. coli
Salmonella typhymurium γδ T cells ↑ Reg III [58]

Commensal microbiota γδ T cells ↑ Mobility in the intestinal epithelium [105]

Microbial metabolites
(SCFAs, Propionate) γδ T cells ↓ IL-17

↓ IL-22 [90]

Phosphorylated microbial metabolites γδ T cells ↑ Cell activity [40,93,94]

Clostridium spp.
Bacteroid fragilis Tregs ↓ IL-10 [87,88]

E. coli NK T cells ↑ Pro-inflammatory cytokines [101]

Microbial metabolites (SCFAs, retinoid acid,
polyamines, tryptophan derivatives) T cells ↑ T cell differentiation

↑ T cell activity [96–105]

Commensal microbiota IELs ↑Chromatin accessibility [106]

Lactobacillus reuteri IELs ↑ T cell differentiation [102]

Lactobacillus, Bacteroides IELs ↑ Lymphopoiesis [104]

5. Dysbiosis and Inflammation

Dysbiosis occurs as a result of an imbalance in the normal gut microbiota composition
where the microbial diversity decreases, and harmful pro-inflammatory bacteria increase
in number. During dysbiosis, microbiota is incapable of protecting against pathogenic
organisms that induce inflammation and produce genotoxins or carcinogenic metabolites.
Gastrointestinal infections or a short-term diet change can alter gut microbiota composition
and cause dysbiosis. However, the gut microbiota is resilient and can revert to its original
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structure once physiological conditions return to normal. Nevertheless, in chronic dis-
eases such as inflammatory bowel disease (IBD) or following exposure to broad-spectrum
antibiotics, the gut microbiota can lose its resilience [25]. Changes in diet can result in
inadequate nutrition of the microbiota contributing to compromised microbiota function
and dysbiosis [107].

As described above, the mechanisms by which the microbiota controls intestinal home-
ostasis include substances like lipopolysaccharides, flagellins, and peptidoglycans that can
influence cell survival, replication, apoptosis, and inflammation through direct interaction
with intestinal cell receptors. Microbial dysbiosis disturbs the mucosal barrier, which can
lead to the translocation of lipopolysaccharides (LPSs) and endotoxin accumulation, result-
ing in a hyperactive immune system [107,108]. Intestinal inflammatory and autoimmune
diseases (colitis, IBD), as well as systemic autoimmune diseases such as type 1 diabetes,
rheumatic arthritis, and multiple sclerosis, are driven by dysbiosis [108] in the intestinal mi-
crobiota and linked to an impaired epithelial barrier, inflammation, bacterial translocation,
and a decline in Tregs in the gut mucosa. The imbalance in the ratio of helper T cells/Tregs
plays a pivotal role in the development of inflammatory and autoimmune diseases. It has
been shown that microbiota-derived signals are essential for the development and function
of colonic Tregs (cTregs), which are critical for limiting intestinal inflammation [109]. A
healthy microbiota contains anti-inflammatory bacteria like Faecalibacterium prausnitzii that
induce the overexpression of the tight junction proteins and stimulate the differentiation
of Tregs [110] or Bacteroides fragilis that produce the polysaccharide PSA and stimulate the
production of IL-10 from T cells, limiting the activity of Th17 cells during intestinal inflam-
mation [111]. However, other bacteria, like Fusobacterium nucleatum, promote inflammation
by suppressing the activity of cytotoxic T cells and by altering the expression of microRNAs
(miRNAs), resulting in the inhibition of autophagy [112].

IBD is an inflammatory gastrointestinal disease with different etiologies including
the gut microbiota [113,114]. Microbiome populations of patients with IBD often exhibit
a number of changes, not only in composition but also in diversity compared to that of
healthy individuals [115,116]: the abundance of beneficial bacteria are reduced while harm-
ful bacteria are increased [117]. Several mechanisms have been shown to be involved in the
development of intestinal inflammation by the different intestinal microbial communities in
IBD patients. Direct interaction between the microbiota and a variety of immune cells leads
to the secretion of inflammatory factors. Many studies have shown that IBD is correlated
with an increased activity of T cells secreting IL-17 and IL-22 cytokines [118] and a decrease
in that of Tregs [119], which leads to an imbalance in the T17/Tregs ratio that mediates
an exaggerated immune response, intestinal injury, and, therefore, the development and
maintenance of IBD. Microbiota-derived metabolites, like SCFAs, tryptophan, and bile
acids, can regulate the differentiation and expansion of Tregs, for which a decrease in these
metabolites is related to an increase in inflammation [76]. All three types of metabolites
have been reported to be decreased in IBD [120–122]. Another mechanism that contributes
to intestinal inflammation in IBD is direct damage to the intestinal barrier due to physio-
logical [123,124] or metabolic defects [125] of the epithelial cells that leads to an increased
epithelial permeability and, therefore, inflammation.

Intestinal dysbiosis has also been associated with other inflammatory conditions in
distal organs [126]. Several studies have shown that treatment with broad-spectrum antibi-
otics results in an impaired innate and adaptive immune response following systemic viral
infections [127,128], which suggests the diffusion of microbial products and metabolites
from the gut to the bloodstream [129]. Diseases such as chronic kidney disease [130] and
systemic lupus erythematosus (extensively reviewed in [131]) have been associated with
dysbiosis, which supports the important role that the microbiota plays in the development
of chronic inflammatory diseases. Moreover, several anti-inflammatory molecules pro-
duced by intestinal bacteria have been identified, and they could be developed as effective
treatments against chronic inflammatory diseases [132]. In summary, systemic immunity
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seems to be shaped by microbial products and any disturbance in these products will lead
to defective host systemic immune responses and result in pathological inflammation [1].

6. Intestinal Neuro-Immune Regulation

The interaction between the nervous and immune systems has been investigated for a
long time, but it was only in 2002 when the inflammatory reflex was described [133]. In this
neuro-immune circuit, the afferent vagus nerve is stimulated by inflammatory molecules in
the periphery and transmits this information to the brain. In response, the brain, through
the efferent vagus nerve, suppresses the production of pro-inflammatory cytokines, espe-
cially TNFα. It is also known that neurons express membrane receptors for cytokines and
other molecules produced by immune cells [134–137], as well as pattern recognition recep-
tors that allow them to directly respond to microbial signals [138–141]. On the other hand,
immune cells are not only able to respond to neurotransmitters and neuropeptides through
their receptors, but some of them also possess the capacity to produce and metabolize
neurotransmitters [138,139,142,143]. The gastrointestinal tract is controlled by a complex
network of nerves, including the intrinsic enteric nervous system (ENS) and the extrinsic
sympathetic, parasympathetic, and visceral afferent neurons [144]. We have evidence
that intestinal γδ T cells express receptors for acetylcholine (ACh), allowing these cells to
respond directly to cholinergic stimulation (unpublished observations). Furthermore, many
nerves come into close contact with immune cells in the gastrointestinal mucosa, forming
neuron–immune cell units that can be altered by signals from the gut lumen, such as nutri-
ents or microbes [141,145–147]. For example, in the colonic lamina propria, myeloid cells
and Tregs are located in the proximity of neuronal projections [148–150]. These myeloid
cells express high levels of muscarinic acetylcholine (mACh) receptors that, upon ACh
stimulation, upregulate the synthesis of retinoid acid [150]. In the absence of cholinergic
stimulation (vagotomy), a reduction in the number of Tregs was observed, which suggests
that the cholinergic pathway modulates Treg differentiation [150,151]. However, this mod-
ulation was disturbed in germ-free mice, indicating that microbial metabolites are required
for this neuronal modulation of Tregs [150]. Moreover, the microbiota can modulate the
number of enteric neurons and their projections to the lamina propria, as was shown in
germ-free mice colonized with Clostridium ramosum [148]. Therefore, the gastrointestinal im-
mune system and nervous system are able to constantly monitor the intestinal environment
and rapidly respond to any threats. For example, our group demonstrated that cholinergic
stimulation via systemic administration of acetylcholinesterase (AChE) inhibitors enhanced
the gastrointestinal barrier’s defense mechanisms, leading to host protection against oral
pathogens [152].

Despite the long-standing recognition of the importance of the gut–brain axis in main-
taining homeostasis, our understanding of how distinct microbiota and their products
regulate gut–brain function has become clear only over the past 10 years. There is evidence
that microbes and the brain communicate through a variety of channels, including the
immune system, tryptophan metabolism, vagus nerve, and enteric nervous system, using
microbial metabolites, such as SCFAs, branched chain amino acids, and peptidoglycans.
Several neuromodulatory metabolites produced by microbiota, including tryptophan pre-
cursors and metabolites, 5-hydroxytryptamine (5-HT), GABA, and catecholamines have
been identified [153]. It was demonstrated that the metabolite 4-ethylphenylsulfate pro-
duced by gut bacteria can induce anxiety-like behavior in mice [154–156]. Moreover, the gut
microbiota modulates locomotor activity in Drosophila, probably through bacterial-derived
metabolites [157,158]. On the other hand, chronic psychosocial stress was shown to alter
the composition of the gut microbiota, specifically decreasing the relative abundance of
Bacteroides species (harmless bacteria) and increasing the relative abundance of Clostridium
species (harmful bacteria). This change in microbiota composition was correlated with
increased levels of proinflammatory cytokines, such as IL-6, and the chemokine CCL2 [159].
Moreover, chronic stress can disrupt the intestinal barrier, making it leaky and increasing
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the risk of bacterial translocation and thus the circulating levels of immunomodulatory
bacterial cell wall components such as lipopolysaccharide [160] (Table 3).

SCFAs are among the most abundant metabolites of the gut microbiota and play a
critical role in communication between the microbiota and the immune system. Over the
past few years, a rich body of evidence has accumulated demonstrating how the three
main SCFAs (namely acetate, propionate, and butyrate) do not only contribute to the
development and effector properties of immune cells of the GI tract but also function as
immunoregulatory mediators in a variety of autoimmune diseases. These include multiple
sclerosis, type 1 diabetes, IBD, celiac disease, and rheumatoid arthritis. Generally, SCFAs act
to downregulate proinflammatory responses, including IL-1β, IL-6, IL-17, and Th17 cells
and increase IL-10 and Treg cell effector function, thus promoting an immunoregulatory
environment (refer to [161] for a recent review on this topic). The role of propionate in
multiple sclerosis has been well studied [162] (Table 3). In fact, in a landmark clinical
study using propionate to supplement standard therapy in multiple sclerosis patients, a
significant and sustained increase in functionally competent Treg cells, and a significant
decrease in Th1 and Th17 cells, was observed after a mere 2 weeks of treatment [163].
These alterations were associated with marked improvement in disease severity, including
a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after
3 years of propionate supplementation [163]. In the context of γδ T cells, propionate has
been shown to repress IL-17-producing mouse intestinal γδ T cells as well as the production
of IL-17 by human IL-17-producing γδT cells from patients with IBD [91]. In another
landmark study, a reduction in specific Lactobacillus species was associated with an increase
in colonic IL-17-producing γδ T cells (γδ 17 T cells) and increased vulnerability to chronic
social stress, leading to depression. Interestingly, these stress-susceptible cellular and
behavioral phenotypes were shown to be causally mediated by dectin-1, an innate immune
receptor expressed on γδ T cells [164]. These studies highlight the central role of intestinal
γδ T cells in the gut–immune–brain axis.

Diabetes in mice and humans is associated with significant intestinal dysbiosis [165,166]
and elevated circulating levels of branched-chain amino acids (BCAAs) synthesized by gut
microbiota [167], specifically Clostridiales and Lachnospiraceae [166] (Table 3). In diabetes,
there is also a reduction in vagal activity, manifested by decreased ACh levels and increased
AChE [168], that is associated with a downregulation of tight junction proteins and an
increased intestinal permeability. Yan and colleagues showed that treatment of diabetic
mice with pyridostigmine (a reversible AChE inhibitor) resulted in an enhancement of vagal
activity, restoration of homeostatic gut microbiota, decreased BCAA-producing microbiota
and BCAA circulating levels, and improvement in intestinal permeability [166]. Given
the involvement of γδ T cells in the maintenance of the epithelial barrier and the fact
that γδ T cells express receptors for ACh, it is possible that these cells are part of the
mechanism involved in this process. However further studies are needed to understand
how the different T cell populations in the gut are regulated by neurotransmitters and
other neuronal signals, and if this regulation is direct or indirect via antigen-presenting
cells or soluble cytokine mediators. Moreover, future work is required to determine
how the microbiota modulates these neuro-immune interactions and identify the specific
microbiome and microbial products involved.

Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive
loss of dopaminergic neurons and accumulation of Lewis bodies in the central nervous
system (CNS). Before the onset of the motor symptoms that characterize PD, patients
develop GI symptoms related to damage in the integrity of the mucosal barriers [169,170]
which led to severe inflammation and GI dysfunction. In fact, higher levels of TNF and
other pro-inflammatory cytokines were found in PD patients when compared to control
groups [171]. Moreover, α-synuclein (cytoskeleton protein that forms the Lewis bodies) has
been reported to also accumulate in the neurons of the ENS and gut epithelium [172] which
contribute to the degeneration of the gut tissue [173]. Dysbiosis has also been observed in
PD patients, which contributes to chronic inflammation. Several studies have identified
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correlations between specific bacterial changes and PD severity. For instance, an increase in
Enterobacteriaceae correlates with postural instability and gait difficulty, while decreased
Prevotellaceae levels are associated with increased gut permeability and vitamin deficien-
cies [174]. Furthermore, reductions in the anti-inflammatory Lactobacillaceae family are likely
involved in PD-related gut [174,175]. Lower levels of Prevotellaceae, Lactobacillaceae, and
Lachnospiraceae have been linked to decreased SCFA [176,177] and ghrelin production, both
critical for neuroprotection. Dysbiosis has been suggested as the cause of the accumulation
of α-synuclein in the gut [178], which regulates the gut immune functions [179] such as
recruitment of neutrophils and monocytes to the GI [180] and the maturation of DCs to
produce IL-1β and IL-6 [180,181]. Gut inflammation would also lead to dysfunction of the
mucosal barrier and bacterial dissemination, inducing neuroinflammation and neurodegen-
eration (Table 3). However, the exact mechanism is unclear and needs to be investigated
further. Several immune cells have been found to reside in the meninges [182], where they
secrete cytokines that interact with neurons, astrocytes, or microglia [183]. Among these
immune cells are γδ T cells that regulate memory and some behaviors via the release of
cytokines [184,185]. In neurodegenerative diseases, including PD, there is an inflammation
of the CNS that is associated with the severity of the disease [186]. Moreover, immune
reactions could be associated with the initiation and development of neurodegenerative
diseases [187]. Although there is no conclusive evidence, γδ T cells could be among the first
immune cells to arrive to the CNS and be in charge of regulating neuroinflammation [59].
PD patients exhibited a higher proportion of γδ T cells in cerebrospinal fluid (CSF) [188],
but fewer γδ T cells circulating in their blood compared to healthy individuals [189], sug-
gesting a potential migration of these cells from the bloodstream to the brain. Moreover,
γδ T cells in the CSF were more activated than the ones in the blood [188]. Brain γδ T
cells could be stimulated by microglia, the brain-resident macrophages, to produce IL-17.
Microglia can be stimulated through the TLRs (2, 4, 7, and 9) and secrete the cytokines
IL-1β and IL-23 that, in turn, will activate γδ T cells to produce IL-17 [190]. γδ T cells can
also be activated directly by α-synuclein binding to their TLR2 [191]. In summary, γδ T
cells can play essential and diverse roles in the initiation and progression of PD and other
neurodegenerative diseases that should be investigated further.

Table 3. Gut dysbiosis-associated diseases.

Disease Gut Microbiota Microbiota
Metabolites Effect References

Parkinson’s ↑ Enterobacteriaceae Postural instability

↓ Prevotellaceae
↓ Lactobacillaceae
↓ Lachnospiraceae

↓ SCFA
↓ Ghrelin

↑ α-synuclein
↑ Inflammation
↑ Gut permeability
↑ Bacterial dissemination
Neurodegeneration

[174–180]

Chronic Psychosocial
Stress

↓ Bacteroide sps.
↑ Clostridium sps.

↑ IL-6
↑ CCL2
↑ Gut permeability

[159]

Multiple Sclerosis (MS) ↓ Propionate-generating
bacteria ↓ Propionate

↑ IL-1β, IL-6, IL-17
↑ IL-17
↓ IL-10
↓ Treg

[161,162]

Type 1 Diabetes ↑ Clostridiales order
↑ Lachnospiraceae ↑ BCAA ↑ Gut permeability [165–167]

7. Conclusions

The interaction between the gut microbiota and the host’s immune system leads
to diverse cellular and molecular responses that maintain the body’s homeostasis. The
microbiota communicates with the mucosal immune system through different signaling
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pathways and gene regulatory networks that regulate immune cells and maintain the
integrity of the intestinal epithelial barrier, restricting the entrance of pathogens and pre-
venting chronic inflammation. Moreover, dysbiosis can impair the immune system and
induce inflammation, immune sensitization, compromised barrier function, and autoim-
mune diseases. The effector functions of γδ T cells, which are essential components of
the mucosal immune system, are modulated by microbial- and host-derived molecules,
although the mechanisms are not completely understood yet.

γδ T cells are involved in maintaining the homeostasis of the gut epithelial barrier and
immune surveillance. Due to their inherent plasticity, these cells respond differentially to
various antigens and are, therefore, versatile players in the regulation of immune responses
in inflammatory diseases as well as in the defense against infections and tumors. In
response to infections, γδ T cells can rapidly respond to avoid systemic dissemination and
induce an adaptive immune response by recruiting neutrophils, macrophages, and DC.
Despite the advancement in our understanding of γδ T cells as key regulators of mucosal
physiology and pathology, there are several questions that remain unanswered. How do
intestinal γδ T cells respond to neurotransmitters? Can neurotransmitters regulate their
response to pathogens? Would this affect the microbiota composition? Another question
remaining to be answered are whether γδ T cells can transmit signals to neurons and
how. Neuroimmune regulatory networks are beginning to be dissected at the cellular
and molecular levels. However, the full impact of the intestinal microbiota on these
networks remains to be elucidated. Better understanding of these intricate relationships
and their implications may contribute to the development of novel and effective therapeutic
approaches for conditions related to metabolic diseases, dysbiosis, or cancer.
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Abbreviations

ACh acetycholine
AChE acetylcholinesterase
AhR aryl hydrocarbon receptor
AKR1B8 aldo-keto reductase 1B8
AMPs antimicrobial peptides
AP activator protein 1
BCAAs branched-chain amino acids
BTNL butyrophilin-like molecules
CCL C-C chemokine ligand
CCL5 C-C chemokine ligand 5 also known as RANTES
CCR C-C chemokine receptor
CD30 also known as TNF receptor superfamily member 8
CLR C-type lectin receptors
CNS central nervous system
CSF cerebrospinal fluid
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cTreg colonic regulatory T cells
CXCL10 C-X-C motif chemokine ligand 10 or Interferon gamma-induced protein
CX3CR1 CX3C motif chemokine receptor 1 or G-protein coupled receptor 13
DAP10 DNAX-activating protein of 10KDa
DCs dendritic cells
ENS enteric nervous system
EPRC endothelial protein C receptor
GABA γ-Aminobutyric acid
GALT gut-associated lymphoid tissue
GCSF granulocytes-colony stimulating factor
GI gastro-intestinal
GF germ-free
GMPs granulocyte–monocyte progenitors
GPR G-protein coupled receptor
HDAC histone deacetylase
HMBPP 4-hydroxy-3-methyl-but-2-enyl pyrophosphate
5-HT 5-hydroxytryptamine
IBD inflammatory bowel disease
IEB intestinal epithelial barrier
IEC intestinal epithelial cells
IELs intra-epithelial lymphocytes
IFNβ interferon beta
IFNγ interferon gamma
IL interleukin
ILCs innate lymphoid cells
IL23R interleukin 23 receptor
IP-10 interferon-inducible protein 10
IRF interferon regulatory factors
JNK c-Jun N-terminal kinases
KGF keratinocyte growth factor
LPLs lamina propria lymphocytes
LPS lipopolysaccharide
MAMPs microbial-associated molecular patterns
MAPK mitogen-activated protein kinase
MHC major histocompatibility complex
MIC MHC class-I- related chain
MNPs mononuclear phagocytes
MyD88 myeloid differentiation primary response 88
miRNA microRNA
NF-κB: nuclear factor kappa B
NKG2D natural killer group 2D receptor
NLR Nod-like receptor
PD Parkinson’s disease
PRR patterns recognition receptor
RANTES regulated upon activation, normal T cell expressed and secreted (CCL5)
RegIII regenerating islet-derived protein 3
RORγ RAR-related orphan receptor gamma
SCFA short-chain fatty acids
SFB segmented filamentous bacteria
TCR T cell receptor
TGFβ transforming growth factor beta
TNFα tumor necrosis factor alpha
TLR toll-like receptor

TRIF TIR
(Toll/interleukin-1 receptor) domain-containing adaptor protein inducing
interferon beta

Treg regulatory T cell
Th17 T helper 17-secreating cells
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