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Abstract: Recent advances in protein structure prediction, driven by AlphaFold 2 and machine
learning, demonstrate proficiency in static structures but encounter challenges in capturing essential
dynamic features crucial for understanding biological function. In this context, homology-based
modeling emerges as a cost-effective and computationally efficient alternative. The MODELLER
(version 10.5, accessed on 30 November 2023) algorithm can be harnessed for this purpose since it
computes intermediate models during simulated annealing, enabling the exploration of attainable
configurational states and energies while minimizing its objective function. There have been a
few attempts to date to improve the models generated by its algorithm, and in particular, there is
no literature regarding the implementation of an averaging procedure involving the intermediate
models in the MODELLER algorithm. In this study, we examined MODELLER’s output using
225 target-template pairs, extracting the best representatives of intermediate models. Applying an
averaging procedure to the selected intermediate structures based on statistical potentials, we aimed
to determine: (1) whether averaging improves the quality of structural models during the building
phase; (2) if ranking by statistical potentials reliably selects the best models, leading to improved final
model quality; (3) whether using a single template versus multiple templates affects the averaging
approach; (4) whether the “ensemble” nature of the MODELLER building phase can be harnessed
to capture low-energy conformations in holo structures modeling. Our findings indicate that while
improvements typically fall short of a few decimal points in the model evaluation metric, a notable
fraction of configurations exhibit slightly higher similarity to the native structure than MODELLER’s
proposed final model. The averaging-building procedure proves particularly beneficial in (1) regions
of low sequence identity between the target and template(s), the most challenging aspect of homology
modeling; (2) holo protein conformations generation, an area in which MODELLER and related tools
usually fall short of the expected performance.

Keywords: MODELLER; averaging; lDDT score

1. Introduction

In recent years, the field of protein structure prediction has undergone a transfor-
mative shift with the introduction of cutting-edge methodologies such as AlphaFold and
machine-learning-based approaches [1]. Despite the remarkable accuracy of AlphaFold in
predicting static protein structures, it tends to provide predominantly single-conformation
representations. This limitation is notable when considering the intricate dynamics and con-
formational diversity inherent in proteins, where the conventional tool of homology-based
modeling continues to be relevant [2,3].

Understanding the dynamics and conformational sampling of proteins is essential
for bridging the gap between protein structure and biological function. However, exper-
imentally probing these dynamic features poses significant challenges. In this context,
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computational methods, particularly molecular dynamics simulations, have become indis-
pensable. Despite their utility, it is important to note that the computational costs associated
with these simulations are non-trivial.

Acknowledging the necessity of capturing the dynamic nature of proteins, recent
endeavors have explored the application of machine-learning-based tools [4–6]. Neverthe-
less, comparative modeling, employing averaging approaches, can strategically emerge
as a key player in elucidating protein dynamics. It also holds potential as a user-friendly
methodology accessible to a broad audience. The averaging technique [7–10] entails em-
ploying averaging methods during the refinement phases through two primary steps:
(1) utilizing an algorithm that slightly adjusts the spatial coordinates of a given model
through Monte Carlo (MC) or Molecular Dynamics (MD) simulations, thus generating
many structural replicates of the same sequence, which exhibit both energetic and spatial
similarity; (2) collecting a subset of those copies according to an arbitrary criterion and
making an average over the atomic coordinates of the selected structures to obtain a refined
theoretical prediction of the native structure of the protein.

One of the first assessments validating the improvements associated with averaging
were the results brought by Feig and co-workers in CASP10 [7,8]. The averaging basically
overcomes the idea of selecting a single snapshot from a generated structural ensemble
via a certain energetic criterion, suggesting instead the computation of an ensemble mean.
The structures involved in the averaging procedure are chosen along the simulation run
consistently with a rank, which is based on energetic evaluations. If, indeed, it is not always
true that the structure scoring the lowest energy in a computer simulation corresponds
to the one most resembling the native structure, the energy or pseudo-energy functions
used are generally trained to recognize a native structure in a set of decoys [8]. Sampling
an extensive array of structures during the simulation run is often not crucial to observe
improvements resulting from the application of averaging [7,8]. Although not rigorously
demonstrated, the enhancements brought about by averaging can be elucidated in two
distinct ways. Firstly, the trajectory of the simulation, which is sampled to extract structures
for averaging, can be conceptualized as a diffusive process in a high-dimensional space.
In this context, the trajectories are predominantly constrained by two free-energy trends.
The first trend, affecting residues initially distant from the native structure and from the
free energy minimum, corresponds to an essentially flat free energy landscape. Averaging
helps mitigate random changes to the starting structure by smoothing out fluctuations.
This is especially beneficial as it prevents non-reinforcing alterations. The second trend,
influencing residues closer to the native structure and to the free energy minimum, can
be assumed to exhibit a harmonic shape. Averaging mitigates random changes to the
initial model, effectively refining the position of the harmonic minimum in regions that
demonstrate greater conservation throughout the simulation and are consequently closer
to the native structure. Secondly, the series of copied configurations of identical structures
can be envisioned as the conformation that several identical sequences might adopt when
assembled into a crystal. Consequently, ensemble averaging more accurately emulates the
results achievable through, for instance, an X-ray crystallography experiment. Notably, a
significant finding arises when comparing the results of averaging with the native structure
obtained through an NMR experiment. This discovery underscores that the success of the
refinement is not confined solely to comparisons with X-ray-determined structures [9,10].

Here, we present a novel application of the averaging technique (Figure 1), which
is applied during the dynamic path of model building, instead of being limited in its
usage to the post-processing phase alone. We tested the results of this kind of approach
on the homology modeling software MODELLER (version 10.5, accessed on 30 November
2023) [11]. The MODELLER algorithm utilizes one or more homologous sequences, whose
structures are known, as templates for model building. The atoms of the sequence under
examination are initially arranged on the topologically equivalent atoms of the homolo-
gous templates. Subsequently, a restrained molecular dynamics protocol incorporating
a simulated annealing procedure is implemented. This allows for the exploration of the
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available conformational space for the unknown structure, based on the model restrained
by the backbone. The output from MODELLER aligns with an energy-optimized structure
generated in the final step of the simulation.
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Figure 1. Comparative illustration depicting the workflow of the averaging method in contrast to
MODELLER for dynamic protein structure prediction.

In this study, we leveraged the intermediate structures generated during the MOD-
ELLER simulations to construct models through averaging. The proposed algorithm was
tested on a meticulously chosen set of 225 target-template pairs to assess whether this
averaging-based model construction procedure could improve the overall quality of the
generated models.

2. Results
2.1. Comparing Single Template AVG Models with MODELLER Results

In order to check the existence of a correlation between the number of runs used
to build the configurations pool and the quality of the final model, we computed the
global mean of the difference between the averaging-built models (AVG-models) and the
mean of the MODELLER default very_fast outputs (FINAL-models) with respect to a
given assessment score (Local Distance Difference Test (lDDT) and High-Accuracy Global
Distance Test (GDT-HA)) and reported the results as a function of the number of runs. The
graphs in Figure 2a show that the overall effect of applying the averaging was that of slightly
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improving the model of the target structure. Another feature that is recognizable from these
graphs is that the diversity among the results obtained by different ranking was greater
when the structures were extracted from the MODELLER default slow strategy compared to
the MODELLER dope slow strategy. This implies that the choice of the statistical potential
for ranking has a higher relevance when using the MODELLER default slow configurations
pool and that the dDFIRE score, among the tested statistical potentials, might be the most
efficient in this case. Moreover, the lDDT graphs show an almost monotonic trend which
ends in a plateau, showing that the effect on the lDDT score of the AVG-model was stable
when using 30, 35 or 40 runs, while the GDT-HA related graphs show a more homogeneous
distribution of the data, especially when the structures are extracted from the MODELLER
dope slow strategy, showing that the effect of the number of runs used for the creation of
the AVG-models did not affect their GDT-HA score significantly.

The graphs in Figure 2b show, on the other hand, that the quality of the AVG-model
might depend more on the number of intermediate models used to build it, rather than
the number of runs used to create the configuration pool. Once again, this effect is more
evidenced in the graphs concerning the lDDT score, which suggest that at least an amount
of 10 structures is needed to get a mean improvement of 0.025 lDDT points, while from the
GDT-HA graphs, it is not possible to obtain this information clearly.
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Figure 2. Trend of the global mean differences between the score corresponding to the AVG models
and the mean score obtained from the output models of MODELLER when using its original molpdf
(default) and the MD protocol, as a function of the number of (a) runs used to build the configurations
pool and (b) intermediate models used to build the AVG-models. The labels “gap” in brackets identify
whether the whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels
∆GDT-HA and ∆lDDT represent the global mean values of the difference AVG − FINAL for the given
ranking tool. The data refer to the single-template models.

We then checked the effect of the averaging method on the target-template pairs
characterized by low sequence identities (<30%). The graphs shown in Figure 3 suggest
that the greater contribution to the mean values of both lDDT and GDT-HA are given by
the target-template pairs whose sequence identity was less than 30%. Such observation
was also confirmed by the graphs shown in Figure 4a, which report the overall scatter plot
of the ∆lDDT and ∆GDT-HA for each target-template pair. This outcome might have been
expected, as the homology modeling is a quite efficient tool when given target-template
pairs which can be considered as homologous (sequence identity >30%) [5]. This means
that the averaging algorithm does not excessively affect the outcome of the model with
respect to the one obtained by homology modeling alone.

According to the outcomes reported in Figure 3, the choice of the statistical potential
seems to a have a very low influence on the global mean differences, but at the same time,
the structures extracted from the MODELLER-DOPE strategy seem to give generally better
results, suggesting that the intermediate structures generated during the MODELLER-
DOPE runs might score better than those generated by the MODELLER algorithm alone.
Focusing the ∆lDDT and ∆GDT-HA per target-template pair to the low sequence identity
cases (SeqId < 30%), as shown in Figure 4b, it seems that there was not a defined trend with
respect to low sequence identity values, as the data seem homogeneously sparse around a
given value above 0.0, especially if we consider the MODELLER-DOPE runs.
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Figure 3. Graphs reporting the trend of the global mean differences, limited to the low sequence
identity set, between the score corresponding to the AVG models and the mean score obtained from
the output models of MODELLER when using its original molpdf (default) and the MD protocol
as a function of the number of (a) runs used to build the configurations pool and (b) the number of
intermediate models used to build the AVGmodels. The labels “gap” in brackets identify whether the
whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels ∆GDT-HA and
∆lDDT represent the global mean values of the difference AVG − FINAL for the given ranking tool.
The data refer to the single-template models.
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Figure 4. Differences between the score corresponding to the AVG models and the mean score
obtained from the output models of MODELLER when using its original molpdf (default) and the
MD protocol as a function of the sequence identity between the target and the template structures.
(a) Whole set (b) focusing on the low identity set. The labels “gap” in brackets identify whether the
whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels ∆GDT-HA and
∆lDDT represent the values of the difference AVG − FINAL for each pair for the given ranking tool.
The data refer to the single-template models.

2.2. Comparing Multiple-Template AVG Models with MODELLER Results

The multiple-template set is a collection of 120 targets from the original Analysis Set
(AS), which were provided with a number from two to five templates to build the model
with [12]. As in the case of the single-template models, the results of the averaging on the
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multiple-template build models only brought a slight enhancement to the final structure
with respect to the MODELLER’s algorithm, and the different ranking methods were all
quite equivalent (Figure 5). An ascending trend was obtained for the lDDT evaluations as
the number of runs used increased (Figure 5a), and the plateau trending according to the
number of intermediate structures used was also found (Figure 5b).
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However, when the AS was reduced to those targets sharing less than 30% of sequence
identity with their templates, the increasing trend with respect to the number of runs
used was observed only in the lDDT graph concerning the models obtained using the
MODELLER default slow intermediate structures (Figure 6a), and even the plateau trend
was lost in every case, except for the MODELLER default slow strategy (Figure 6b).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 18 
 

 

 

 

Figure 6. Graphs reporting the trend of the global mean differences, limited to the low sequence 
identity set, between the score corresponding to the AVG models and the mean score obtained from 
the output models of MODELLER when using its original molpdf (default) and the MD protocol as 
a function of the number of (a) runs used to build the configurations pool and (b) the number of 
intermediate models used to build the AVGmodels. The labels “gap” in brackets identify whether 
the whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels ΔGDT-
HA and ΔlDDT represent the global mean values of the difference AVG − FINAL for the given 
ranking tool. The data refer to the multiple-template models. 

Regarding the distribution of the differences between the metric calculated on the 
AVG model and the mean of the FINAL models obtained from the MODELLER strategy, 
in the case of the multiple templates, there was not an ascending trend toward the lower 

Figure 6. Graphs reporting the trend of the global mean differences, limited to the low sequence
identity set, between the score corresponding to the AVG models and the mean score obtained from
the output models of MODELLER when using its original molpdf (default) and the MD protocol
as a function of the number of (a) runs used to build the configurations pool and (b) the number of
intermediate models used to build the AVGmodels. The labels “gap” in brackets identify whether the
whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels ∆GDT-HA and
∆lDDT represent the global mean values of the difference AVG − FINAL for the given ranking tool.
The data refer to the multiple-template models.
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Regarding the distribution of the differences between the metric calculated on the AVG
model and the mean of the FINAL models obtained from the MODELLER strategy, in the
case of the multiple templates, there was not an ascending trend toward the lower sequence
identities as there was for the single template (Figure 7a); also, in this case, zooming in the
low sequence identity region showed a homogeneous scatter plot around a value close to
zero (Figure 7b). It is known in the literature that, especially in case of low sequence identity
between the target and template, the multiple template procedure is generally enough to
enhance the result of a homology modeling prediction [11]. The averaging technique was
less efficient on such models, as in every case, the results obtained showed minor values
with respect to their single-template counterpart.
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obtained from the output models of MODELLER when using its original molpdf (default) and the
MD protocol as a function of the sequence identity between the target and the template structures.
(a) Whole set, (b) focusing on the low identity set. The labels “gap” in brackets identify whether the
whole pool of configurations was used (gap = 1) or only half of it (gap = 2). The labels ∆GDT-HA and
∆lDDT represent the values of the difference AVG − FINAL for each pair for the given ranking tool.
The data refer to the multiple-template models.

2.3. Assessing the Ability of the AVG Strategy to Predict Holo Protein Conformations

The “ensemble” nature of the MODELLER building phase can be harnessed, in the-
ory, also to capture low-energy conformations in holo structures modeling (i.e., including
heteroatoms in the final model, based on the ligand(s) found in the template structures). In-
deed, recognizing the significance of capturing conformational diversity, various pipelines
have been developed to address this aspect [13,14]. However, none incorporate protein-
ligand scoring, a feature we consider to be essential for enhancing the assessment of
averaged models. Since the residue topology and parameter libraries to be used for ligands
are usually missing in MODELLER, a “block” residue (BLK) is used to read HETATM
records from holo structure templates. These BLKs are treated differently from the other
atoms during preparation of dynamic restraints: they are restrained, more or less, as rigid
bodies to the conformation of the equivalent residue(s) in the template(s). No chemical
information is used. Therefore, we implemented in our pipeline the possibility to make
use of the Smina [15] scoring function to identify those low-energy conformations in which
the binding site sidechains are optimally positioned to interact with the ligand(s) modeled
into the protein structure. Overall, 11 holo structures were modeled by the AVG and MOD-
ELLER methods, using as templates the corresponding apo protein and an homologous
holo structure bound to the target ligand. Binding pockets were defined to include the
residues with at least an atom within 4.0 Å of the ligand found in the experimentally deter-
mined structure. We computed all-atom binding pocket RMSDs between each modeled
structure and all experimentally determined structures of the same protein. A preliminary
comparative analysis of the results (Table 1 and Figure 8) suggests that the AVG approach
yields better results compared to MODELLER (mean RMSD was 1.2 and 0.8 for MOD-
ELLER and AVG, respectively), being able to capture the ensemble of holo conformations
of the protein in which the side chains of the residues interacting with the ligand are well
oriented to optimize their contacts with the ligand.
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included in the ATP binding cleft (<4.0 Å from any ATP atom) are shown and highlighted with the
corresponding one-letter code and number. Oxygen and nitrogen atoms are colored in red and blue,
respectively. Carbon atoms for models in (a,b) are shown in cyan and violet, respectively.
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Table 1. Comparative analysis of the Root Mean Square Deviation (RMSD) values obtained from two
different modeling methods: the default MODELLER approach and our proposed averaging method.
The table showcases the performance of both methods across a dataset of 11 proteins [16], with the
final row presenting the mean RMSD values for each method, illustrating the overall effectiveness
and improvement offered by the averaging method in homology modeling.

Protein PDB
Apo

PDB
Holo

Holo
Ligand

PDB
Template

Template
Ligand %id

RMSD
Default

Modeller

RMSD
Averaging

Method

Carbonic anhydrase II 2CBE 1BCD FMS 4YGF AZM 29.3 0.5 0.2

Peroxisome proliferator-activated
receptor γ 1PRG 2GTK 208 6NWS L77 28.0 1.7 0.5

Vascular endothelial growth
factor receptor kinase 1VR2 2P2I 608 6P3D 0LI 29.1 0.8 0.7

Rac-beta serine/threonine
protein kinase 1GZK 3D0E G93 6BXI ANP 29.6 0.9 0.9

AmpC β-Lactamase 2BLS 1L2S STC 4E6W APB 26.1 0.9 0.5

Catechol O-methyltransferase 4PYI 3BWM SAM 5ZW4 SAM 25.2 3.2 0.8

Beta-secretase 1 2ZHV 3L5D BDV 1PPM 0P1 27.5 2.2 2.0

Fatty acid-binding
protein, adipocyte 3RZY 2NNQ T4B 2IFB PLM 29.2 0.6 0.3

Peroxisome proliferator-activated
receptor δ 2GWX 2ZNP K55 7KXD Z7G 27.4 1.5 0.6

Blood coagulation factor Xa 1HCG 3KL6 443 6ZOV GBS 27.4 0.5 0.3

Aurora kinase A 4J8N 5OSD ADP 3D5W ADP 34.1 0.6 0.3

Mean RMSD 1.2 0.8

3. Discussion

As previously explained, the accuracy of the models produced by homology modeling
can be estimated according to the degree of sequence identity between the target and the
template. The presented data hint that the overall quality of the MODELLER_dope AVG
models slightly overcome the MODELLER_default FINAL and the MODELLER_default
AVG models, mostly in the low sequence identity region, while the performance of the
MODELLER_dope AVG models is more uncertain in the highest sequence identity re-
gion. This latter result is due to the fact that, in these cases, the restraints applied by the
MODELLER algorithm result to be very strict, so that the optimized structures picked
from the optimized configurations pool are not very likely to differ from the FINAL model
regardless of the strategy, lacking so the configurational variety to, at least, move away
from the default proposed model. Therefore, the improvement results are confirmed to be
greater when the averaging is coupled with the use of the MODELLER_dope strategies [12],
and it is, in turn, less dependent on the statistical potential that is applied.

In this work, the trends observed for the GDT-HA, when taken as a function of the
sequence identity between a target and its template(s), are reported. The ∆GDT-HA rarely
assumes negative values, especially in the low sequence identity region (Figures 4 and 7).
Such trend indicates that the combination of MODELLER_dope simulations together with
averaging procedures have a moderate efficiency in improving the quality of the models,
even when the optimized averaging set is constructed by picking randomly from the
configurational pool. However, it is evident from the presented data that the extent of such
improvement is strongly dependent on the metric (GDT-HA vs. lDDT) and on the statistical
potential used for ranking. In a best-case scenario, the averaging procedure brought a
net gain in the performance of the model building, as reported for example in Figure 9.
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However, in general, our results show that, though averaging technique is potentially a
powerful tool in the refinement of protein structure modeling, its effects in the building
phase of the model do not seem to be outstanding, as it would be expected. Moreover,
the computational power needed to use the averaging algorithm overcomes the slight
improvement of the quality of the results which are obtained by the technique. Nevertheless,
although the improvements obtained do not usually overcome the threshold of a few
percentage points in the evaluation of the mean GDT-HA, the results are nonetheless
relevant, since such a grade of difference is found to be relevant at CASP competition
level. For example, it must be noted that a ∼3.5% improvement in the mean GDT-HA
corresponds to the difference in TBM performance between the first server in CASP 12 and
the server at position five [17]. Furthermore, the most valuable result is that it was seen
that the effect of the averaging-building procedure generates enhancements especially in
the region of low sequence identity between the target and the template(s). In addition, the
implementation of external potentials in the objective function of MODELLER definitely
biases the outcome toward a better similarity with the native structures. As shown before,
this is particularly true when implementing the Smina scoring function to identify low-
energy holo conformations of ligand-bound models. Indeed, since protein binding clefts
are highly flexible, each protein can adopt multiple conformations that depend whether a
ligand is present, and which one is bound. We thus evaluated the accuracy of each model
generated during the AVG phase using the Smina scoring function and by computing the
binding cleft RMSD to that of the corresponding available experimental structure of the
same protein. We then compared the obtained results to the MODELLER procedure, and
we showed that holo conformations are more accurately described by the highest-ranking
models extracted by the AVG method, when optionally implemented with the Smina
scoring function, than to the best models obtained by MODELLER. These results have
important implications for protein structure prediction in drug discovery, especially if we
consider that, until now, AlphaFold and similar AI-based tools do not allow one to specify
a bound ligand when generating a protein model, and most importantly, the accuracy of
ligand binding poses predicted by computational docking to AlphaFold models is much
lower than when docking to experimentally determined apo proteins [18].
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Figure 9. Example of three-dimensional modeling improvement brought by the averaging-building
procedure over the default protocol of MODELLER (MODELLER_default). The experimentally
determined structure of target_2 (PDB: 1CC8, colored in orange) is superposed to the model with
the lowest objective function value from the MODELLER_default strategy (shown in the left image,
colored in white) and the dDFIRE-rank model (shown in the right image, colored in pale green). As
shown by the GDT-HA values reported below the two images, the averaging-built model displays a
higher structural similarity with the target. Template used: 3CJK, % identity 21.88%, coverage: 88.89%.
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4. Materials and Methods
4.1. Statistical Potentials

We used a statistical potential-based ranking as a criterion to apply the averaging
phase on the intermediate structures of the simulation [19,20]. Statistical potentials are
pseudo-energetic functions designed with two main aims: being able to recognize a native
structure in a set of decoys and identify the most accurate model for a target structure in a
set of given three-dimensional models. These mathematical tools are based on potentials
of mean force and exploit the properties of the Boltzmann distribution to estimate the
strength of a given interaction according to the frequency it is measured within a protein
set. This method aims to estimate these probabilities in a general manner, so that the most
significant interactions in the building of the three-dimensional structure of a protein is
highlighted. In this work, we tested dDFIRE [21], SBROD [22], DOOP [23], and ANDIS [24]
as ranking criterions to select the intermediate configurations which would be used to
create our averaging-built model.

4.2. MODELLER Algorithm and Its Variants

MODELLER is a comparative modeling software developed by Andrej Šali in 1989, and
it is one of the most used tools in model building, due to its accuracy and low computational
requirements [11]. The computational part is executed by a collection of algorithms written
in Fortran code, but MODELLER is implemented as an interpreter of a high-level language
specialized for dealing with protein structures. The version used in this work is MODELLER
9.21, which uses the CHARMM22 force field in the execution of the simulation runs. In
MODELLER, the comparative modeling algorithm is based on the satisfaction of spatial
restraints method. Given an alignment of the sequence to be modeled (the target) with
the related protein structures (the templates), the satisfaction of spatial restraints happens
in two steps: (1) extraction of spatial restraints using the information derived from the
alignment; (2) satisfaction of the restraints to obtain a 3D model.

The restraints in MODELLER are expressed as probability density functions (which
will be referred as pdfs) associated with the geometric and structural features of the protein,
such as distances between main-chain atoms, dihedral angles, distances between atoms
belonging to different residues and so on. Using only the pdfs associated with individual
features (represented as pF( fi)) is insufficient for running a simulation that accurately
captures the native structure of the target protein (see Equation (1)):

P = ∏i pF( fi). (1)

To address this limitation, pdfs were assumed to be independent of each other and
were combined through a product to derive the molecular pdf associated to the protein
structure (which is referred to as molpdf):

pF( fi) = pPhy( fi)pHom( fi). (2)

The term pF( fi) is expressed as the joint probability of the physical (pPhy( fi)) and
homology (pHom( fi)) (see Equation (2)) restraints associated with the feature, which are
assumed to be independent as well. The purpose of a definition of a molpdf is due to the
necessity of having a function to be optimized along the simulation to obtain the most
probable configuration for a sequence of unknown structure. Due to errors associated
with floating points, the function which is optimized during the simulation is actually a
transformation of the molpdf (see Equation (3)), which is called the objective function. This
transformation turns the molpdf in an additive quantity, turning the productory contained
in P into a sum over the transformations of the feature pdfs:

F = −ln(P) = −∑i l(pF( fi)) . (3)
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The objective function can be expressed as the sum of a physical objective function
FPhy and a homology objective function FHom (see Equation (4)), since the form of the single
pF( fi) is the product of pPhy( fi) and pHom( fi) (see Equation (2)). The term FPhy considers
only the CHARMM22 contributions (covalent bond length potential, bond angle potential,
stereochemical cosine torsion potential, stereochemical improper torsion potential), while
the FHom is composed by a combination of harmonic terms (associated to the Gaussian
definition of the pHom( fi), see [11]) dealing with the interatomic distances of the model
(Carbon α distance restraints, main-chain nitrogen and oxygen distance restraints, side-
chain–main-chain distance restraints, side-chain–side-chain distance restraints), whose
equilibrium positions are set around the corresponding values of the templates [12].

F = FPhy + FHom. (4)

The aim of the algorithm therefore becomes the minimization of the objective function
F. Since the objective function represents the free energy associated to the three-dimensional
configuration of the protein, given its additive property, it is possible to further add
energetic terms in order to try to achieve a more accurate energy minimization, since most
of the time, the FHom term drives the final model in a structure which is too close to the
template structure, and the FPhy term is not sophisticated enough to drive the final model
neither in a structure closer to the target, nor deal with the random walk characterizing
disordered or loop regions of the structure. In [12], an attempt was made to customize the
objective function by adding the DOPE score terms [25], resulting in an improvement of
the final model of the structure. In this work, we therefore tested our averaging method by
applying it on sets of configurations extracted both from simulations run with the default
molpdf and the DOPE-molpdf.

Additionally, MODELLER provides five MD routines, which differ by the amount
of timesteps composing them (for more information, visit https://salilab.org/modeller,
accessed on 30 November 2023). In this work, we used the “slow” routine, which is
suggested in order to have a reasonably correct model for the target structure, due to the
wider configurational space explored, compared to the default mode “very fast”.

4.3. Analysis Set

The Analysis Set (AS) includes 225 target-template protein structure pairs, experi-
mentally resolved by crystallography, and the exact procedure according to which the
AS was created is reported in [12]. It was constructed from Protein Data Bank (PDB) col-
lected structures exploiting the software PISCES (https://pisces.ucdavis.edu/, accessed
on 30 November 2023), which filters the PDB and extracts sets of structures with specific
features; the high number of structures contained in the PDB makes it, indeed, extremely
redundant, as many structural files correspond to the measure of one sequence structure in
different experimental conditions. In the obtained AS, the target structures contained are
not homologous, sharing less than 10% of amino acid sequence with each other, and the
template sequence identity with the corresponding target ranges from 10% to 99%. The
target-template alignments in this set were built using the HHalign sequence alignment
program. The construction method of the AS provides a protein set representative of the in-
formation inferable from the non-redundant structures collected in the PDB. Thanks to the
heterogeneity of the AS, it is possible to carry out an analysis on the general performance
achieved by the modifications produced with respect to the default MODELLER algorithm.
In order to do so, in the analysis, we report quantities referred as the global-mean, whose
nomenclature indicates that, given a feature A calculated on a single target-template anal-
ysis (for example, the result of the structural assessment of one model), its global-mean
corresponds to the arithmetic mean of the features A computed singularly on the N targets
of the AS, as shown in Equation (5):

Aglobal_mean =
1
N ∑N

i=1 Ai, (5)

https://salilab.org/modeller
https://pisces.ucdavis.edu/
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where Ai represents the value of the feature A calculated for the i-th target.
The global-mean will be exploited to gain an overall comparison of the produced

models, mainly taking the ones produced by the default MODELLER algorithm as reference.
The statistical relevance of the results obtained from such comparisons was assessed by the
Wilcoxon signed-rank test. The Wilcoxon signed-rank test is a non-parametric, statistical-
hypothesis test commonly used to compare aspects characterizing two related sets by
computing and ranking the differences between them. The null hypothesis of this test is
that the results calculated on the two compared sets are distributed according to the same
probability distribution, whose knowledge is not fundamental to carry out the test. The
probability-value (p-value) outcomes of the Wilcoxon test assess whether the differences
obtained are due to statistical fluctuations or emerge from an underlying distinction in
the feature distributions governing the two different sets. The statistical relevance of the
eventual changes in the global-mean due to the averaging procedure was evaluated by
calculating the Wilcoxon test p-values, p-value = 5% as the confidence threshold.

4.4. Building a Configurations Pool

The basis to gain a good performance from an averaging algorithm is the possibility
to have the availability of a broad sample of configurations corresponding to the same
structure, from which a certain number of models to use in the averaging procedure is
derived [9]. Such a sample will be further referred to as “configurations pool”. In this work,
the averaging-building algorithm was tested on two different MODELLER strategies, which
differ in the definition of the objective function (default molpdf and the DOPE-molpdf,
as explained in “MODELLER algorithm and its variants”). Since the sample of interme-
diate structures extracted from one MODELLER run alone did not provide a sufficiently
large configurations pool, we tested our algorithm by creating six configurations pools,
merging the intermediate steps from 40, 35, 30, 25, 20, and 15 MODELLER runs for each
target-template pair from the AS, in order to obtain a hint on the minimum number of
runs requested to obtain suitable results. Each run differed only by the initial, randomly
perturbed configuration (https://salilab.org/modeller, accessed on 30 November 2023),
and the merging operation was also legitimated by the reported results that the parallel
production of multiple samples usually leads to a production of better averaging refined
models [9]. Due to the small value assigned to the timestep in MODELLER (4ps), the
dynamics followed by the structures should not be considered as an actual representation
of physico-chemical phenomena, while it should be rather seen as a means to perturb the
structure and explore a limited area in a configurational space. Therefore, the intermediate
frames which are created within consecutive timesteps in a MODELLER simulation usually
show a strong correlation, generating an effect of redundancy of models in the total inter-
mediate sample. According to this outcome, we assumed that collecting the intermediate
structures at each step of the simulation would not bring any significant improvement
to the averaging procedure; this justifies the reduction applied on the amount of data to
collect, which would have been uselessly too computational expensive both to save and
analyze. The number of extracted structures was adjusted by empirically evaluating the
differences between two consecutive models produced by the very_fast procedure; then,
the number of frames extracted from the slow procedure was chosen in order to have a
set of intermediate models comparable with the set obtained by the very_fast procedure.
The two MODELLER strategies reported were performed using the slow molecular dy-
namics routine. Given a MODELLER strategy, the intermediate non-optimized models
(called raw models) associated with each run were extracted every 34 timesteps and stored,
resulting in the collection of 149 intermediate structures from each simulation, regardless
of the objective function which characterizes the strategy. We also tested the algorithm,
taking only half of the pool of configurations, by excluding the structures corresponding to
odd timesteps.

We tested the algorithm by extracting the 0.3% and 0.5% top-ranking structures from
the configurations pool ensembles; such structures were exploited to generate the averaging-

https://salilab.org/modeller
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built models. Finally, the averaging-built models underwent a conjugate gradient optimiza-
tion, which is needed to avoid possible stereochemical inconsistencies of the final model.
The objective function used in the conjugate gradient optimization corresponds with the
objective function of the DOPE-molpdf MODELLER strategy.

4.5. GDT-HA and lDDT Metrics

We employed the High-Accuracy Global Distance Test (GDT-HA) [26] and the Local
Distance Difference Test (lDDT) [27] scores as criteria for assessing the reliability of the
obtained models with respect to the corresponding experimentally known structures.

The Local-Global Alignment (LGA) method facilitates the comparison of protein
structures or specific fragments of protein structures by creating many different local
superpositions to identify regions of similarity between proteins. The LGA scoring function
has two components: the Longest Continuous Segments (LCS), for the detection of local
regions of similarity by focusing on the RMSD, and the Global Distance Test (GDT), also
named as the Total Score GDT (GDT-TS), designed to find regions of global structure
similarity by focusing on distance. The High-Accuracy GDT (GDT-HA) score [28] is the
high–precision version of the GDT-TS score, featuring smaller distance cutoffs (distance
cutoffs of 1, 2, 4, and 8 Å are replaced with distance cutoffs of 0.5, 1.0, 2.0, and 4.0 Å) [29].

The Local Distance Difference Test (lDDT) is a superposition-free score used to assess
protein structure models in comparison to a reference structure. This evaluation is achieved
by measuring the local distance differences among all atoms within a model. The lDDT
score offers a metric to gauge how well the environment of a reference structure is replicated
in a protein model [27].

4.6. MODELLER Trajectories Analysis

The idea behind the averaging procedure resides in the hypothesis that, due to the
peculiar pseudo-energy landscape explored during a simulation, there is a chance for
the existence of intermediate models which are more consistent with the target structure
than the ones proposed by default by MODELLER; to the best of our knowledge, such
hypothesis has not yet been investigated in literature. An example of the MD’s trajectories
representing the GDT-HA calculated on the intermediate models produced in a single
MODELLER simulation is reported in Figure 10. This, basically, represents the trend of the
accuracy of the generated intermediate models along the simulation. It appears that there
are models whose similarity to the target structure results more accurately than the one
assessed on the FINAL model. This result is shown in Figure 10 by displaying a horizontal
red line representing the value of the GDT-HA [28] metric between the FINAL model of
the simulation and the experimentally determined target structure, noticing that a fraction
of the intermediate frames from the MODELLER trajectory surpasses the threshold signed
by the horizontal line.
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final structure of the simulation, and the value “Fitter structures” indicates the percentage of interme-
diate structures which outperformed such a result.

4.7. Ranking by Means of Statistical Potentials

The selection procedure by ranking was carried out as follows: (1) The intermediate
models were ranked according to the scores of one statistical potential, calculated on the
raw configurations pool. (2) After ranking, only a fraction of the top structures of the
classification was selected, forming the raw averaging set. This set was used to pick the
models from the optimized configurations pool, to finally carry out the averaging procedure.
In this work, the effect of averaging was tested by selecting the top 0.3% and top 0.5%
models of the rank. (3) The models to be used in the averaging procedure were selected
from the optimized configurations pool by picking the optimized version of the structures
contained in the raw averaging set, composing the optimized averaging set.

We used the GDT-HA [28] and the lDDT [29] scores to compare the models obtained
with the respective experimentally known structures, assessing the reliability of the model
with respect to the experimental data. We reported the results comparing both the GDT-
HA and the lDDT scores obtained with the averaging-built models (hereinafter “AVG-
models”) with the mean scores obtained from the output models of MODELLER default
strategy (hereinafter “FINAL-models”), which is characterized by the default-molpdf
and the very-fast MD, and with the output models built using the strategy from which
the configurations constituting the AVG-models were extracted (respectively, default-
models and dope-models, overall strategy-models). Such comparison was expressed as
an arithmetical difference between the score obtained for the single AVG-model, and the
mean score obtained from the output models were used to create the configurations pool.

5. Conclusions

This study explores the impact of implementing the averaging technique during the
homology modeling building phase, employing the MODELLER algorithm. Intermediate
structures extracted from MODELLER runs were ranked based on various scores, and
the selected structures were used to build a model through position averaging. The
effectiveness of this approach relies on refining ranking scores closely linked to native
protein structures. An innovative aspect of the algorithm developed in this project is the
integration of a refinement tool within the MODELLER-based model building phase. This
eliminates the need for additional simulations beyond homology modeling, simplifying
the acquisition of the required pool of configurations. The algorithm is available at https:
//github.com/pymodproject/Averaging/tree/main, (accessed on 30 November 2023).
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