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This Special Issue focuses on the significance of ion-transporting proteins, such as ion
channels and transporters, providing evidence for their significant contribution to bodily
and cellular functions via the regulation of signal transduction and ionic environments [1–5].
In the late 1980s, the cystic fibrosis transmembrane regulator (CFTR) gene and its most
common cystic fibrosis (CF)-causing mutation (∆F508) were discovered [6]. Subsequently,
many other genes which encode proteins from ion-transporting channels and transporters
have been found to be associated with human disease. Even though the discovery of genes
which are associated with human diseases marks a major advance within the field, the
development of therapies to treat such channelopathies and transportopathies has not yet
been fully accomplished.

CF patients are well known for showing deficient water secretion in the lungs, the
liver, the sinuses, the small and large intestines, pancreatic and hepatobiliary ducts and
male reproductive tracts [7–12]. One of the most serious problems in patients with CF is
death from pneumonia caused by impaired fluid secretion into the airway cavity, which
leads to dry lungs and an increased susceptibility to infection [8]. A gene responsible for
one of the most serious problems in CF patients, impaired fluid secretion into the airway
cavity, has been cloned by a research group in Toronto, Canada [6], and the gene has
been called the cystic fibrosis transmembrane regulator (CFTR) [6]. This discovery has
clearly pointed out that CF is a genetic disease, and various types of CFTR mutations have
been classified from a functional perspective [13–16]: e.g., G542, ∆F508, G551D, R117H,
A445E [13] (Figure 1), 3849 + 10kbC > T and C1400X [14]. The most common CFTR mutation
is ∆F508 (loss of phenylalanine at position 508), which leads to a deficiency in the amount
of protein being trafficked to the cell membrane [14–16]. Thus, ∆F508 CFTR has no role in
the secretion of Cl− into the airway lumen [14–16]. Deficient Cl− secretion into the airway
lumen, resulting in impaired water secretion, leads to dryness in the airway lumen and
causes bacterial and viral infections. Similar CFTR dysfunction is not only observed in
the lung but is also present in other organs such as the liver, the sinuses, the intestine,
the colon, hepatobiliary and pancreatic ducts and male reproductive tracts [8–11]. CFTR
modulator therapy is currently implemented by enhancing CFTR function through two
mechanisms [17]. Potentiators such as ivacaftor increase the probability of the channel
being open, allowing Cl− and HCO3

− to pass across the cell membrane and through the
channel more easily. Correctors such as lumacaftor, tezacaftor and elexacaftor improve
the number of CFTR Cl− channels on the cell surface by helping proteins to fold properly,
allowing the translocation of CFTR Cl− channels to the cell membrane surface. Severe
variants such as ∆F508 required both potentiators and correctors to ameliorate the quantity
and function of channels at the membrane surface of cells. Currently, four modulators have
been approved by drug regulatory agencies in Europe and the USA, and the indication for
each therapeutic agent depends on the specific CFTR genetic variants present [18]. Further,
Cl− channels play a variety of important roles in bodily and cellular functions, such as
regulation of cell volume [19,20] (Figure 2) and cell migration [21] (Figure 3).
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Figure 1. Classification of CFTR mutations. This figure has been published in an article by Koivula 
et al. [13], and is described under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/) on 16 January, 2024. 

 
Figure 2. Six families of volume-regulated Cl− channels. (i) TMEM16 family: calcium spark activates 
TMEM16A/Ano1, thereby leading to Cl−-efflux. (ii) Bestrophins: Bestrophins like Best1, are activated 
due to intracellular calcium spark or cell swelling and result in Cl− efflux. (iii) Maxi-Cl: can be acti-
vated by ATP and/or cell swelling, resulting in the secretion of Cl− in bulk amounts. (iv) CLC family: 
CLC-2 on the plasma membrane is activated by cell swelling, resulting in Cl− efflux. CLC-3 in the 
ER is involved in the secretion of Cl− in exchange for hydrogen ions, similarly to CLC-4 and 5 in the 
endosomes. CLC-6 and 7 are involved in the secretion of Cl− from the lysosomes. (v) Ligand-gated 
Cl− channels comprising glycine- and GABAa-gated Cl− channels: when the ligands bind to the 
membrane receptor, the receptors act as Cl− channels. (vi) CFTR: cytoplasmic cAMP activates the 
CFTR channel and thereby causes Cl− efflux. ER: endoplasmic reticulum, RyR: ryanodine receptor, 
IP3R: Inositol-triphosphate receptor. Ion denotation: Red: Ca2+; Green: Cl−; Red: hydrogen ion; Blue: 
GABA ligand; Green: Glycine ligand. This figure has been published in an article by Sinha et al. [19], 
and is described under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/) on 16 January, 2024. 
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Figure 2. Six families of volume-regulated Cl− channels. (i) TMEM16 family: calcium spark activates
TMEM16A/Ano1, thereby leading to Cl−-efflux. (ii) Bestrophins: Bestrophins like Best1, are activated
due to intracellular calcium spark or cell swelling and result in Cl− efflux. (iii) Maxi-Cl: can be
activated by ATP and/or cell swelling, resulting in the secretion of Cl− in bulk amounts. (iv) CLC
family: CLC-2 on the plasma membrane is activated by cell swelling, resulting in Cl− efflux. CLC-3
in the ER is involved in the secretion of Cl− in exchange for hydrogen ions, similarly to CLC-4 and 5
in the endosomes. CLC-6 and 7 are involved in the secretion of Cl− from the lysosomes. (v) Ligand-
gated Cl− channels comprising glycine- and GABAa-gated Cl− channels: when the ligands bind to
the membrane receptor, the receptors act as Cl− channels. (vi) CFTR: cytoplasmic cAMP activates the
CFTR channel and thereby causes Cl− efflux. ER: endoplasmic reticulum, RyR: ryanodine receptor,
IP3R: Inositol-triphosphate receptor. Ion denotation: Red: Ca2+; Green: Cl−; Red: hydrogen ion; Blue:
GABA ligand; Green: Glycine ligand. This figure has been published in an article by Sinha et al. [19],
and is described under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/) on 16 January 2024.
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Figure 3. Changes to cell shape required during cell migration. Na+-K+-2Cl− cotransporter 1 (NKCC1) 
and aquaporin (AQP) are expressed on the migrating-side membrane. NKCC1 is involved in Cl− 
uptake into the cytosolic space with Na+ and K+ [22–26]. The uptake of these ions results in an influx 
of water into the cytosolic space via AQP due to an increase in cytosolic osmolarity [22]. The move-
ment of Cl−, Na+, K+ and water causes an increase in cell volume accompanied by [Cl−]c elevation, 
which promotes tubulin polymerization (elongation) [27] by inhibiting GTPase activity [21]. Like 
tubulin polymerization, actin monomers are enhanced to be polymerized. Then, cells migrate via 
these processes. On the one hand, K+-Cl− cotransporter (KCC), volume-regulated anion channel 
(VRAC), Ca2+-activated K+ channel (K+Ca3.1) and AQP are expressed on the tail-end membrane dur-
ing cell migration and Cl− with K+ are excreted to the extracellular space via KCC, VRAC and K+Ca3.1 
[22,26]. AQP-mediated water efflux to the extracellular space is caused by diminution in cytosolic 
osmolarity due to excretion of these ions. The movement of Cl−, K+ and water results in a decrease 
in cell volume accompanied by [Cl−]c diminution, which leads to tubulin depolymerization (short-
ening) during the tail-end of the cell migration [27] by activating GTPase [21]. WNK activated by 
lowered [Cl−]c induces phosphorylation (activation) of OSR1/SPACK, which increases NKCC1 activ-
ity by phosphorylating NKCC1 [23]. Thus, WNK is crucial within cell migration [23]. This figure has 
been published in an article by Marunaka [21] and is described under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) on 16 
January, 2024. 
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The amiloride-sensitive epithelial Na+ channel (ENaC) has been cloned by a research 
group in Lausanne, Switzerland, as it has been recognized as a causative gene for Liddle 
syndrome [29,30]. Each ENaC subunit consists of two transmembrane domains with in-
tracellular N and C termini, and a large extracellular domain. The ion selectivity filter can 
specifically discriminate Na+, and the filter is located in the middle of the transmembrane 
domains [31]. The extracellular domain contains protease cleavage sites that enable its in-
hibitory effects on ENaC to be eliminated; it plays a key role in regulating ENaC activation 
[32,33]. The N-terminal ubiquitylation of the α and γ subunits has been implicated in the 
endocytosis and degradation of ENaC [34]; both the HGxxR sequence in the N-terminal 
and the PPPxY sequence in the C-terminal participate in regulating the ENaC. Mutations 
in the HGxxR sequence or the PPPxY sequence lead to the ENaC functioning abnormally, 
and are associated with the occurrence of Liddle syndrome [35] and pseudohypoaldoste-
ronism (PHA) [36], i.e., the truncation of β or γ ENaC causes Liddle syndrome by elevating 
the amount of Na+ reabsorption in the kidney by increasing the number of functional 
ENaC located at the plasma membrane [36–41]. 

Figure 3. Changes to cell shape required during cell migration. Na+-K+-2Cl− cotransporter 1
(NKCC1) and aquaporin (AQP) are expressed on the migrating-side membrane. NKCC1 is involved
in Cl− uptake into the cytosolic space with Na+ and K+ [22–26]. The uptake of these ions results in
an influx of water into the cytosolic space via AQP due to an increase in cytosolic osmolarity [22].
The movement of Cl−, Na+, K+ and water causes an increase in cell volume accompanied by [Cl−]c

elevation, which promotes tubulin polymerization (elongation) [27] by inhibiting GTPase activity [21].
Like tubulin polymerization, actin monomers are enhanced to be polymerized. Then, cells migrate
via these processes. On the one hand, K+-Cl− cotransporter (KCC), volume-regulated anion channel
(VRAC), Ca2+-activated K+ channel (K+

Ca3.1) and AQP are expressed on the tail-end membrane
during cell migration and Cl− with K+ are excreted to the extracellular space via KCC, VRAC and
K+

Ca3.1 [22,26]. AQP-mediated water efflux to the extracellular space is caused by diminution in
cytosolic osmolarity due to excretion of these ions. The movement of Cl−, K+ and water results in a
decrease in cell volume accompanied by [Cl−]c diminution, which leads to tubulin depolymerization
(shortening) during the tail-end of the cell migration [27] by activating GTPase [21]. WNK activated
by lowered [Cl−]c induces phosphorylation (activation) of OSR1/SPACK, which increases NKCC1
activity by phosphorylating NKCC1 [23]. Thus, WNK is crucial within cell migration [23]. This figure
has been published in an article by Marunaka [21] and is described under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) on
16 January 2024.

Epithelial Na+ reabsorption in the renal collecting ducts contributes to blood pressure
regulation by controlling the volume of bodily fluids [28]. Amiloride-sensitive epithelial
Na+ channels in the renal epithelia contribute to Na+ reabsorption, and the mutation of
amiloride epithelial Na+ channels causes disorders which affect blood pressure control.
The amiloride-sensitive epithelial Na+ channel (ENaC) has been cloned by a research
group in Lausanne, Switzerland, as it has been recognized as a causative gene for Liddle
syndrome [29,30]. Each ENaC subunit consists of two transmembrane domains with intra-
cellular N and C termini, and a large extracellular domain. The ion selectivity filter can
specifically discriminate Na+, and the filter is located in the middle of the transmembrane
domains [31]. The extracellular domain contains protease cleavage sites that enable its
inhibitory effects on ENaC to be eliminated; it plays a key role in regulating ENaC activa-
tion [32,33]. The N-terminal ubiquitylation of the α and γ subunits has been implicated in
the endocytosis and degradation of ENaC [34]; both the HGxxR sequence in the N-terminal
and the PPPxY sequence in the C-terminal participate in regulating the ENaC. Mutations in
the HGxxR sequence or the PPPxY sequence lead to the ENaC functioning abnormally, and
are associated with the occurrence of Liddle syndrome [35] and pseudohypoaldosteronism
(PHA) [36], i.e., the truncation of β or γ ENaC causes Liddle syndrome by elevating the
amount of Na+ reabsorption in the kidney by increasing the number of functional ENaC
located at the plasma membrane [36–41].

http://creativecommons.org/licenses/by/4.0/


Int. J. Mol. Sci. 2024, 25, 1726 4 of 9

In addition to hypertension, ENaC plays important roles in human diseases [28]
(Figure 4). In recent years, the ENaC has been found to contribute to immune cell ac-
tivation, cystic fibrosis, endothelial cell dysfunction, pseudohypoaldosteronism (PHA),
aggravated inflammation involved in high salt-induced hypertension, tumors and taste dys-
function [42]. ENaC hyperfunction elevates the concentration of intracellular Na+ ([Na+]i),
leading to an intracellular-Ca2+ overload due to the activation of the Na+/Ca2+ exchanger;
the overloaded intracellular Ca2+ is a key factor in ENaC-related inflammation [28].
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The pH of interstitial fluid also plays an important role in various bodily and cellular
functions [43–47]; lowering the pH of the interstitial fluid causes insulin resistance, and
increases the accumulation of amyloid β, a candidate causative factor in Alzheimer’s
Disease. The interstitial fluid’s pH is controlled by various types of ion transporters [48]
(Figure 5), e.g., anion exchanger (AE), monocarboxylate transporter (MCT), Na+-HCO3

−

cotransporter (NBC), Na+-driven Cl−/HCO3
− exchanger (NDCBE), Na+/H+ exchanger

(NHE), H+-ATPase (H+ pump). Variations in the interstitial fluid’s pH are primarily
affected by glucose metabolism performed via the anaerobic process mediated through
the glycolytic pathway followed by the aerobic one through the Krebs (TCA) cycle [49–51].
The interstitial fluid’s pH-buffer capacity is very low compared with that of blood and/or
the intracellular space [52–60] (Figure 5A). Therefore, the interstitial fluid’s pH changes
more easily compared with the pH of blood and/or the intracellular space under metabolic
disordered conditions [52–60] (Figure 5B). The pH of the fluid around enzymes and their
substrates (proteins) can affect the binding affinity of enzymes to their substrates (proteins),
influencing the activity of the enzyme by altering the protein tertiary structure [61]. For
example, a lowered interstitial fluid pH diminishes the insulin’s binding affinity to its
receptor, leading to insulin resistance [62] (Figure 5B).
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(A) Metabolic cells with normal mitochondrial function. (B) Metabolic cells with mitochondrial
dysfunction. AE, anion exchanger; CA, carbonic anhydrase; MCT, monocarboxylate transporter;
NBC, Na+-HCO3

− cotransporter; NDCBE, Na+-driven Cl−/HCO3
− exchanger; NHE, Na+/H+

exchanger. This figure has been published in an article by Marunaka [48], and is described under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/) on 16 January 2024.

The lowered interstitial fluid pH enhances the accumulation of amyloid-β which is
observed in patients suffering with Alzheimer’s disease, and leads to hyperphosphorylation
of the tau protein causing neural loss, neural inflammation and synaptic impairment, which
are associated with behavioral abnormalities and cognitive decline [63–70]. Patients with
type 2 diabetes are at high risk of developing Alzheimer’s disease [71–76]. Lowered
interstitial fluid pH, an acidic condition, activates the β- and γ-secretases involved in
the formation of amyloid-β from the amyloid precursor protein [77–84]. Thus, the acidic
conditions which occur in type 2 diabetes patients increases the production of amyloid-β
by activating the β- and γ-secretases [68–70,77]. Therefore, the interstitial fluid’s pH should
be maintained within the normal range by various ion transporting proteins and elevating
the pH-buffer capacity to ensure the maintenance of healthy body conditions [48,85,86]
(Figure 5).

Thus, ion-transporting proteins’ dysfunction play important roles in human diseases.
This Special Issue aims to provide insights into recent advances in the function and structure
of ion-transporting proteins as they relate to human disease and the molecular mecha-
nisms that cause ion-transporting-protein dysfunction. Finally, I would like to conclude
my editorial by presenting the essence of the content of the articles in this Special Issue.
Characteristics of the lysosomal cation channel TMEM175, a Parkinson’s disease-related
protein and a promising drug target, is reported using a modified whole-cell patch clamp
technique applied to lysosome [87]. The advantages of this new technique are described in
this article [87]. NHE plays an important role in extrusion of H+ produced in the intracellu-
lar space [48] (Figure 5). Salari et al. [88] have provided a detailed report of the expression
sites of NHE in the colon, indicating the significance of NHE expression. Connexins,
unique hemichannels, are transmembrane proteins which form gap junctions in vertebrates,
and allow cell–cell or/and paracrine communication by releasing ATP, glutamate and
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NAD+, thus regulating processes such as synaptic transmission and cell migration [89]. The
Na+,K+-ATPase (Na+,K+-pump) maintains critical cellular functions by creating fundamen-
tal Na+ and K+ environments in the intracellular space. For example, the Na+,K+-ATPase
creates ionic environments for the maintenance of voltage-dependent excitatory membrane
function in nerve and muscle cells, the secondary active transport of Na+-coupled glu-
cose and amino acids into epithelial cells and the intracellular concentration of Ca2+ in
heart myocardia [90]. The review by Baloglu [90] focuses on the regulation of Na+,K+-
ATPases in ischemic heart disease and discusses the regulation of Na+,K+-ATPases under
conditions of myocardial stress and their therapeutic potential based on the perspective of
hypoxia-inducible factors. A review about ENaC is also published in this Special Issue [91].
The significance of ENaC has been described above in the early sections of this editorial.
This review [91] focuses on discussing some recent developments in the search for novel
therapeutic agents. I hope the articles published in this Special Issue provide researchers
with new insights into the roles of ion-transporting proteins in human diseases and their
potential as therapeutics for human diseases.
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