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J.; Jampilek, J.; Sobczak-Kupiec, A.

Bioactive Hydrogel Based on Collagen

and Hyaluronic Acid Enriched with

Freeze-Dried Sheep Placenta for

Wound Healing Support. Int. J. Mol.

Sci. 2024, 25, 1687. https://doi.org/

10.3390/ijms25031687

Academic Editors: Elia Ranzato,

Deyanira Contartese and Francesca

Salamanna

Received: 27 November 2023

Revised: 8 January 2024

Accepted: 24 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Bioactive Hydrogel Based on Collagen and Hyaluronic Acid
Enriched with Freeze-Dried Sheep Placenta for Wound
Healing Support
Julia Sadlik 1,*, Edyta Kosińska 1, Dagmara Słota 1 , Karina Niziołek 1 , Agnieszka Tomala 1 ,
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Abstract: In an increasingly aging society, there is a growing demand for the development of
technology related to tissue regeneration. It involves the development of the appropriate biomaterials
whose properties will allow the desired biological response to be obtained. Bioactivity is strongly
affected by the proper selection of active ingredients. The aim of this study was to produce bioactive
hydrogel materials based on hyaluronic acid and collagen modified by the addition of placenta. These
materials were intended for use as dressings, and their physicochemical properties were investigated
under simulated biological environmental conditions. The materials were incubated in vitro in
different fluids simulating the environment of the human body (e.g., simulated body fluid) and then
stored at a temperature close to body temperature. Using an FT-IR spectrophotometer, the functional
groups present in the composites were identified. The materials with the added placenta showed
an increase in the swelling factor of more than 300%. The results obtained confirmed the potential
of using this material as an absorbent dressing. This was indicated by pH and conductometric
measurements, sorption, degradation, and surface analysis under an optical microscope. The results
of the in vitro biological evaluation confirmed the cytosafety of the tested biomaterials. The tested
composites activate monocytes, which may indicate their beneficial properties in the first phases of
wound healing. The material proved to be nontoxic and has potential for medical use.

Keywords: hydrogel; hyaluronic acid; placenta; collagen; composites; wound healing

1. Introduction

Despite significant advancements in medicine, the number of people suffering from
epidermal damage caused by burns, ulcers, and other traumatic accidents leading to chronic
wounds and infections is increasing every year [1]. The issues of our times have led us to
seek new solutions, including materials that can replace and heal organs and tissues.

The skin is regarded as the largest organ of the human body. It is important for us
to protect ourselves from outside forces [2]. The skin is a highly sensitive tissue, as it is
the organ that is most exposed to the external environment. Although many skin injuries
can be easily treated to restore the original appearance of the tissue, certain injuries take
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longer to heal and result in the formation of scar tissue [3,4]. Damage to the integrity of
the skin may result from various factors. Some wounds remain hard to heal, especially for
people with cancer, autoimmune conditions, the elderly, and bedridden individuals at risk
of bedsores or burns [5,6]. Wounds are often associated with inflammation, which is an
increasingly common problem in today’s world. Regardless of the type of inflammation, it
is defined as the body’s physiological response when trying to get rid of harmful agents and
restore tissue homeostasis. This can result in irreversible damage to infected tissues [7,8].
Therefore, the introduction of innovative new dressings that promote the healing of even
chronic wounds while reducing healthcare costs is an important issue [9].

In the presented situations, high-quality hydrogel biomaterials come to the rescue,
relieving the patient’s pain [10]. In recent years, scientists have been working on developing
bioengineered materials for wound healing purposes. For instance, they have been working
on creating chitosan/polyvinyl alcohol (PVA) honey hydrogel films that could be used for
treating wounds. Moreover, researchers have also developed lignin nanoparticle (LNP)
constructs that have potential applications in the field of medicine [1,9]. Materials of this
type contribute to keeping the wound moist, thus speeding up the healing process, and are
fully flexible, which allows them to be applied to hard-to-reach areas [6].

In this case, the desired feature is bioactivity, which would accelerate tissue regen-
eration and shorten the patient’s recovery. Bioactivity can be ensured by selecting the
right composition of such composites, including active ingredients, growth factors, or
antibiotics that stimulate the tissue [5]. When creating a material for wounds, i.e., for tissue
disruption and damage to the epidermis and deeper tissues, scientists are guided by the
selection of the appropriate materials that not only allow proper tissue fusion to prevent
scarring but also relieve pain and give comfort to the patient [11,12]. It is important to note
that monocyte activity plays a crucial role in the initial stage of wound healing. Hence, it
is necessary to assess the activation of the NF-κB factor in monocytes when developing
new dressings. This helps determine the biomaterials’ ability to stimulate immune cell
activation [5]. Nowadays, hydrogel materials are in high demand. They are widely used in
branches of medicine as drug carriers, cell scaffolds, or surgical fillers. The field of dressings
and transdermal systems is developing extensively. There are several criteria that such a
dressing must meet in order to be considered:

• Creates an optimal environment (thermoregulation, suitable humidity, gas exchange,
and pH);

• Facilitates the removal of exudate;
• Is nontoxic;
• Does not adhere to the traumatic wound;
• Is transparent and controls the healing process [13].

A hydrogel is a substance whose gelling agent is a polymer, which can be either
synthetic or natural, and whose dispersed phase is water, which creates three-dimensional
networks. These materials have the ability to absorb large amounts of water; moreover, this
can be a reversible process. The structure of hydrogels gives them the characteristics of both
liquids and solids. Hydrogel materials can be divided according to various parameters—the
origin of the polymer used to build the network, the type of interaction between polymer
chains, or the type of substance used to build the network [14].

The basic property described for this type of material is the ability to absorb water or
biological fluids. The next important parameter is the determination of functional groups,
i.e., whether they are hydrophilic or hydrophobic. The structure of the hydrogel depends
on the method of its preparation. There are many ways to produce hydrogels; the main
division is between chemical and physical [15–17].

Hyaluronic acid (HA) is a natural polymer belonging to a group of heteropolysaccha-
rides named glycosaminoglycans [18]. It can bind large amounts of water due to its anionic
structure, which has an affinity for cations, and this amounts to about 250 water molecules
per molecule of HA [19]. It can be found in the human body, including in cartilage and
joint lubricant, ensuring that joints are properly lubricated. The compound can also be
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found in the eye, specifically the vitreous body, as well as in the brain. The presence of this
acid is important for the vocal cords and in otolaryngology in general. Topical preparations
accelerate the healing of fresh wounds, as well as burns and diabetic wounds. It has a
significant role due to its anti-inflammatory properties, stimulating cellular migration and
ensuring wound hydration [19–22].

Collagen (COL) makes up as much as 30% of human protein weight, making it one
of the most important proteins. It is found in many parts of the human body, including
the skin, tendons, and bone, as well as cartilage. Collagen is made of amino acids such as
glycine, proline, hydroxylysine, and hydroxyproline, and its structure varies depending on
its occurrence and role [23]. The most important function of COL is to provide structural
support, and cell-cell interactions. Other very important roles of COL include its partic-
ipation in system cell adherence and its ability to bindtoxins and microorganisms, thus
preventing their spread. Thanks to its ability to bind water, it keeps the skin hydrated,
contributing to the regeneration of connective tissue and thus wound healing. COL is also
known for its role as a drug carrier for interferon [24–26].

The placenta is an organ found in female mammals that enables the extension of
the species. Its primary function is to nourish the embryo with oxygen and nutrients
and remove metabolic products [27]. It also contains immune cells, antibodies, cytokines,
growth factors, and glycoproteins. Therefore, the statement that it is a natural treasure is
commonly circulated. We can find information about the use of the placenta by delving
into the Asian culture, where the consumption of the placenta was a common thing. It was
not just the Chinese culture that was enthralled with its valuable properties; the practice
of placenta consumption also reached North America in the 1970s [28]. It should also be
noted that the placenta, which is typically discarded as biological waste, is of interest in the
tissue bank, especially because of the amniotic membrane. It is rich in nutrients and not
highly immunogenic, which is often used as a substitute for the healing of the skin and eye
surface [29]. Until now, such use has been effective and popular in patients with shallow
wounds resulting from burns and toxic or mechanical injuries; amniotic transplantation
using the placenta is one of the primary surgical interventions [21,22]. Another important
feature in the context of the valuable properties of the placenta with an application to
wounds is its antioxidant properties [30,31]. Experimental studies in animal models have
proven that it reduces signs of fatigue and increases resistance to stress [32].

2. Results
2.1. Electrochemical Analysis
2.1.1. Potentiometry Analysis

During incubation, pH changes were studied to determine the stability of the fabricated
biomaterials under conditions similar to those of the human body. The results are shown in
Figure 1. They indicate slight variations in pH values. All samples behave in a relatively
similar manner, regardless of COL and placenta content. The results presented confirm the
buffering nature of the medium and the maintenance of the pH at a practically constant
level. Slight fluctuations in pH measurements may result from temperature differences
because the samples were incubated at 36.6 ◦C, whereas the measurement was made at a
laboratory station where the temperature was 25 ◦C.

From the results obtained from the samples containing 0.15 g of placenta, it can be
concluded that, in their case, the addition of COL, regardless of the amount, does not affect
the changes in the pH values of the solution. After the first day of incubation, the pH
slightly decreased and then stabilized. The pH values of all samples only slightly changed,
fluctuating between 6.67 and 7.14. The highest pH values in every sample were observed
after the 14th day of incubation in PBS solution. The sample C3 with a COL content of
0.3 g had the highest value on this day, while the composite without added COL had the
lowest value. The slight pH fluctuations in PBS are probably due to the buffer capacity of
the physiological fluid.
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Figure 1. Measured pH values of composites containing (a) 0.15 g or (b) 0.30 g of placenta incubated
in PBS solution.

For the samples with increased placental content, the pH values were remarkably
similar regardless of the amount of COL biomaterials. After the initial day of incubation,
there was a minor decline in pH levels, which then achieved a state of stability. The highest
pH value of 7.05 was recorded for sample F, which did not have COL added. In contrast,
the composite with the addition of 0.03 g COL had the lowest pH value.

From the results, it can be concluded that the biomaterials produced are stable in PBS.
This is supported by the absence of notable pH changes during the incubation process.
Analogous pH relationships that indicate the stability of hydrogel materials were reported
by Slota et al. [33]. Similar findings were observed for the samples both with and without
COL; the curves of these materials were almost indistinguishable. However, minor pH
fluctuations were present in group F samples, which contained a greater amount of placenta.
Overall, all of the biomaterials tested exhibited comparable behaviors in PBS solution.

2.1.2. Conductivity Analysis

The obtained materials were subjected to electrolytic conductivity tests after the
incubation process. Figure 2 demonstrates the obtained results. The basis of the test is the
change in ion concentration in the PBS solution.

The stability of the synthesized composites was confirmed through the measurements
of C samples containing 0.15 g of placental content. The conductivity measurements
recorded for the samples did not fall below 140 mS/m or exceed 170 mS/m. The sample
without added COL showed an increase in conductivity on day 10 of incubation, while
the other materials peaked on day 7. On the last day of incubation, a slight decrease in
conductivity was observed for all samples.

The results were consistent when it came to F samples with heightened placental
content. The measured values fall within the same range. The graphs of materials without
COL and those incorporating 0.03 g of COL show almost identical behaviors. The samples
with 0.06 g of COL exhibited slightly lower ionic conductivity values during the entire
incubation period. The highest values of the tested parameter were achieved on day 7
of incubation.

The negligible changes in the conductivity of the PBS solution observed during the
test lead to the conclusion that the materials are stable in this physiological fluid. However,
a slight rise in sample conductivity could indicate material degradation.
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2.2. Determination of Sorption Capacity

The swelling rate of hydrogels is an important parameter because it controls the
release pattern of solvents or active ingredients such as antibiotics. Figure 3 displays the
swelling kinetics of the prepared materials containing 0.15 g of placenta (a) and 0.30 g of
placenta (b). From the results, it can be concluded that the investigated composites have
a significant swelling potential. Biomaterials carrying 0.15 g of placenta are identified by
the maximum swelling ratio of approximately 360% and 405% for composites containing
0.3 g of placenta. Increasing the amount of placenta has been found to improve sorption
properties. This study observed that the swelling capacity of each material increases as
the swelling time increases. In a recent study, a similar phenomenon was reported in
polyacrylamide–cellulose nanocrystal hydrogels [34].
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The results showed that the inclusion of COL had an effect on the sorption capacity of
the material. Despite the amount of placenta present in the composite, the samples with
lower COL content have a higher swelling ability compared to matrices containing 0.06 g
of COL. Additionally, samples lacking COL and those containing 0.03 g of COL exhibit
analogous sorption properties. Biomaterials with the highest COL content display the
poorest sorption properties for both types of samples.

The composites doubled in volume after 14 days of incubation. This suggests that the
resulting materials have potential for use as absorbent dressings.

2.3. Degradation

Degradation analysis was performed on the basis of the weight loss of the samples
after 14 days of incubation in three physiological fluids: SBF, Ringer’s fluid, and PBS. The
degree of degradation helps determine the durability of the material and its usefulness
for biomedical applications. The exact results are presented in Table 1. It was found that
samples with less placenta, i.e., sample C, had less weight loss after incubation in each of
the incubation fluids compared to composites containing more placenta. It was also noted
that the presence of COL as well as increases in the amount of this component had an effect
on reducing the weight loss of the biomaterials. In general, the lower the mass loss of the
material, the greater the chances of obtaining a better durability of these samples. The most
satisfactory results for the samples were obtained in SBF solution.

Table 1. Weight loss [g] of samples after 14 days of incubation.

Medium SBF [g] Ringer Solution [g] PBS [g]

C 0.0188 0.0152 0.0173
F 0.0204 0.0226 0.0198

C3 0.0135 0.0151 0.0330
F3 0.0211 0.0192 0.0206

C6 0.0112 0.0124 0.0139
F6 0.0182 0.0239 0.0203

2.4. Fourier Transform Infrared Spectroscopy Analysis

After analyzing the measurements, composite matrices C6 and F6 were taken up for fur-
ther testing because they displayed the most beneficial parameters. FT-IR spectrophotometric
analysis was used to determine the chemical composition of the resulting biomaterials.

FT-IR examination was carried out as a part of the qualitative assessment and confir-
mation of the presence of pure components in the resulting coatings. The graph in Figure 4
presents the absorption spectra of both the pure components and the composite materials
C6 and F6. The spectra of all samples (coating compositions, which were selected as carry-
ing the highest potential) are very similar, and their spectra match the characteristic peaks
of the substances in question. The composition of the composite coatings showed that all of
the components present were pure. The FT-IR spectra display the characteristic vibrations
(stretching and bending) of functional groups. The visible absorption band at 2860 cm−1

belongs to the crosslinking agent PEGDA 700, representing C–H stretching vibrations [5].
Characteristic peaks originating from COL were also visible and were classified as amide
peaks; we observe a peak for amide I at 1740 cm−1 and a peak for amide II at 1640 cm−1,
while two weaker vibrations for amide III are centered at 1230 cm−1 [35]. The characteristic
spectrum at 1108 cm−1 can be attributed to C–N stretching vibrations belonging to aliphatic
amides originating from the placenta [36].
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2.5. Morphology Analysis

The biomaterials were incubated in physiological fluid at 36.6 ◦C for 14 days, which
corresponds to human body temperature. After the incubation period, a microscopic
analysis was conducted to assess the composite surface for any abnormalities. The surface
of the composites was analyzed before and after the incubation period to determine the
changes that occurred on the surface due to the interaction between the sample and the
incubation fluid. These observations can help determine the bioactivity of the material.

Figure 5 compares the surfaces of biomaterials C6 and F6 before and after incubation
in SBF solution.
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Figure 5. Microscopic images of C6 (a,b) and F6 (c,d) samples before (a,c) and after (b,d) incubation
in SBF solution.

The morphology of the surface layer of the fabricated composites was visualized using
a 3D reconstruction tool on an optical microscope. Figure 5 depicts images of the surface of
the samples before and after incubation in SBF liquid. Three-dimensional reconstructions
were made on the basis of the 2D images in Figure 6.

The surface roughness was determined according to ISO 21920-2:2021 [37] using a
line distance of 60 um. The roughness profile, including parameters Ra (roughness), Rq
(kurtosis), and Rsk (skewness), numerically describes the topography of the measured
surfaces. Ra characterizes the departures of the roughness profile from the mean line, and
Rq is the rms (root mean square) parameter corresponding to Ra. The skewness (Rsk),
which describes the asymmetry of the profile about the mean line, shows a tendency to
have positive or negative values. The mean value and deviation were determined from at
least three repetitions of measurement at different spots on the sample.

An analysis of the surface of the samples with 0.06 g of COL after incubation in
SBF did not reveal any unfavorable structures, cavities, or other defects. The absence
of such defects qualifies the biomaterials as potential dressings. Fragments of COL and
placenta are observed in the surface images of both C6 and F6 materials; however, no major
agglomerations of these components were observed. The surfaces of samples C6 and F6
are rough and wavy, with a similar roughness ranging from 12.28 to 12.68 µm and a similar
root mean square ranging from 14.09 to 14.67 µm. Only skewness is dissimilar in describing
the asymmetry, which is positive in sample C6, consisting predominately of peak asperities
visible in Figure 6a. The skewness of sample F6 is negative, representing surfaces that
consist primarily of valleys, which can be clearly observed in Figure 6c.

The surfaces of both samples after incubation become smoother and less wavy; the
roughness parameter is reduced by one order of magnitude, which is followed by Rq. The
skewness of sample C6 after incubation is negative, which is consistent with valleys, while
for sample F6, the skewness is positive. It can be concluded that the smoothening of the
surface may be related to the nature of the physiological fluid in which the incubation
took place. It should be emphasized that this structure is not related to material loss, since
degradation analysis indicates minimal degradation in this physiological fluid.
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Figure 6. Three-dimensional reconstructions of the surface of C6 (a,b) and F6 (c,d) samples before
(a,c) and after (b,d) incubation in SBF solution. Topography was obtained using reconstruction mode
of optical microscope based on pictures taken with 500× magnification.

2.6. Biological Evaluation of Cells Exposed to Biomaterials

The materials with the most optimal physicochemical properties (C6, F6, HA (hyaluronic
acid), HA + COL (hyaluronic acid and collagen)) were selected for cellular in vitro studies.
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2.6.1. Viability and Morphology of L929 Fibroblasts

To assess the cytocompatibility of HA, HA + COL, C6, and F6, the MTT reduction
assay was performed using L929 fibroblasts in the milieu of fabricated biomaterials. As
shown in Figure 7, the viability of murine L929 fibroblasts exposed to HA, HA + COL, C6,
and F6 biomaterials reached 109.34 ± 1.18%, 105.27 ± 1.9%, 100.9 ± 2.5%, and 90.02 ± 2.2%,
respectively. Thus, all tested composites do not negatively affect cell activity. However,
the HA composite significantly enhanced the metabolic activity of L929 cells compared
to control cells (K1, 99.98 ± 2.6, p = 0.01). On the contrary, we observed a statistically
significant reduction in the metabolic activity of fibroblasts cultured with the F6 biomaterial
(p = 0.01) compared to K1.
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Figure 7. (a) The metabolic activity of L929 fibroblasts was assessed using MTT reduction assay
after 24 h of incubation with biomaterials. Data are presented as mean viability + SD compared to
control (cells in medium); assays were performed in triplicate. L929: K1 is the viability control (cells
in culture medium without the test sample) and K2 is the cytotoxicity control (cells were treated
with 2% saponin). The commercially available biomaterial, which consisted of tubing samples from
the blood collection set, was used as a reference (R). The dotted line represents the ISO criterion
for cell viability (70%). * p < 0.05 indicates statistically significant differences between biomaterials,
and K1 was based on the one-way ANOVA (Dunnett’s) evaluation results. (b) The colonization of
composites (HA, HA + COL, C6, and F6) by L929 cells after 24 h incubation. Cells were stained with
Texas Red-phalloidin (red, F-actin) and 40,6-diamidino-2-phenylindole (DAPI) (blue, nuclei). Leica
Application Suite X (LAS X; Leica Microsystems) was used for cell imaging. Each panel represents
2D pictures of biomaterials.

The adhesion of L929 fibroblasts and their expansion on the surface of composites
after 24 h in culture was also investigated. The composites were effectively colonized by
fibroblasts, as demonstrated in Figure 7. We noticed no differences in the number or condi-
tion of cells that colonized the modified biomaterials (C6 and F6) and control composites
(HA and HA + COL). Moreover, morphological alterations were not observed either.
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2.6.2. Interaction with THP1-Blue NF-κB Human Monocytes

The stimulatory effects of the composites (HA, HA + COL, C6, and F6) were deter-
mined via activation of the NF-κB pathway in THP1-Blue monocytes. As shown in Figure 8,
after a 24 h incubation of monocytes in the milieu of biomaterials, stimulation above the
cut-off value (determined for NC) was achieved for all tested composites. Compared to
the untreated cells (0.114 ± 0.057), HA, HA + COL, C6, and F6 significantly induced the
activation of monocytes (0.401 ± 0.139, p = 0.002; 0.326 ± 0.124, p = 0.01; 0.661 ± 0.228,
p < 0.0001; and 0.398 ± 0.239, p = 0.002, respectively).
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Figure 8. The NF-κB induction measured in THP1-Blue™ NF-κB monocytes exposed to biomaterials
for 24 h. The negative control (NC) of the monocyte’s activation (cut-off line) consisted of cells
incubated without composites. The positive control (PC) of the monocyte’s activation consisted of
monocytes stimulated with LPS from E. coli (100 ng/mL). Data are presented as mean and SD of
assays performed in triplicate. The differences (in comparison to NC) that are considered significant
(p < 0.05) are marked with * (* p = 0.01, *** p = 0.002, **** p < 0.001), based on the one-way ANOVA
(Dunnett’s) results.

3. Discussion

We conducted a 14-day in vitro study to determine how the composites interacted
with the solutions used for incubation. The presented studies confirm the potential use
of the fabricated biomaterials as dressings. The study also confirmed that the addition of
components, i.e., COL and placenta, promotes cytocompatibility, immune cell stimulation,
and cell adhesion to the biomaterial.

The prepared composites reacted with the incubation liquid, which was confirmed
by the change of the values of such parameters as pH and electrolytic conductivity. The
pH and conductivity analyses indicate the stable behavior of the samples in PBS. All the
tested samples showed similar degradation rates and only a slight change in pH during
the incubation process, indicating their stability. The study of conductivity shows a slight
increase in the values of this parameter during the initial phase of the incubation. However,
these differences are so insignificant that they do not affect the stability of the materials
that were produced.

The tests of the sorption properties of the composites clearly show that the addition
of COL affects their swelling capacity. In fact, the addition of COL reduces the sorption
capacity of the samples compared to those without this component. In addition, samples
containing 0.06 g of COL have a significantly lower swelling ratio than those containing
0.03 g of COL. These relationships are probably due to the type of COL used to synthesize
the materials in question. We decided to use solid COL, which fills the spaces between
the polymer chains, resulting in reduced fluid sorption. Fibrous COL, a natural polymer
that is insoluble in water, was used in the present study. It is soluble in acetic acid, but the
addition of COL in acid could affect the biocompatibility of the synthesized composites.
The swelling parameters showed favorable changes during the incubation process. They
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provide information about the release of active substances into the body, which in turn
indicates the possibility of using the material as a carrier of active substances. The highest
swelling coefficients were obtained by composites that did not contain COL as well as
composites that contained 0.03 g of this component. The weight of the samples almost
doubled after the incubation process. This result indicates the potential use of biomaterials
as absorbent dressings.

The results of the in vitro biological evaluation confirmed the in vitro cytosafety of the
tested biomaterials. The murine fibroblasts maintained in vitro viability of at least 70% after
exposure to each composite, which means all composites met this ISO criterion (ISO 10993-
5:2009 [38]). No significant differences were observed in the number or condition of the
cells after exposure to the different biomaterials. Furthermore, morphological alterations
were not observed, indicating that the surface properties of the composites support cell
adhesion and growth. L929 fibroblasts can effectively adhere to and even proliferate on the
composite surfaces, which is critical in the early stages of the wound healing process [39].

The healing process can be divided into four main phases: coagulation and hemostasis,
inflammation, proliferation, and wound remodeling with scar tissue formation [40]. It
was shown that high molecular weight HA displays anti-inflammatory and immunosup-
pressive properties. In contrast, low molecular weight HA is a potent pro-inflammatory
molecule [41]. Therefore, we have studied whether HA, placenta, or COL biomaterials
cause the activation of monocytes, which are innate immune cells that are recruited to
the site of tissue injury and, after translocation to the injured tissue, become macrophages
ready to phagocytose microorganisms and remove damaged cells. We used THP1-Blue™
cells, which, upon activation of the NF-κB transcription factor, produced secreted embry-
onic alkaline phosphatase (SEAP), which is an indicator of monocyte activation. We have
shown that the tested composites activate monocytes, which may indicate their beneficial
properties in the first phases of wound healing. Because of these properties, it is possible to
reduce the risk of contamination with microorganisms and enable the effective initiation of
the early inflammatory phase, which is crucial for wound healing.

Further studies are needed to explore the underlying mechanisms of these observed
effects and assess the long-term activity of monocytes and fibroblasts when they come into
contact with these biomaterials.

4. Materials and Methods
4.1. Reagents

Polymer matrices were prepared using bovine collagen (COL) from Sigma-Aldrich
(CAS: 9067-32-70); hyaluronic acid (HA) (CAS: 9007-34-5); sheep placenta; 2-hydroxy-2-
methylpropionate, used as a photoinitiator from Sigma-Aldrich; and poly(ethylene glycol)
(PEGDA) Mn 700, used as a crosslinking agent from Sigma-Aldrich (Darmstadt, Germany).

4.2. Preparation of Composite

The first step was to prepare a 1% HA solution, and then every 10 mL was mixed
with the ingredients, which were added one by one according to the proportions shown in
Table 2. After adding the crosslinking agent and photoinitiator, the ingredients were mixed
thoroughly using a magnetic stirrer IKA model RCT ST (IKA-Werke, Staufen, Germany).
The resulting mixture was poured into 10 cm petri dishes, which were then placed under
a UV lamp for 4 min (Medilux lamp type UV 436 HF, Medilux, Korntal-Münchingen,
Germany, 220 V, 60 Hz) to allow the photocrosslinking process to take place. The matrices
were left to dry [16]. This technology enables the production of flexible materials. An
example of the crosslinked composite is presented in Figure 9.
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Table 2. Sample composition.

Sample Symbol Placenta
[g]

COL
[g]

PEGDA 700
[mL]

HA 1%
[mL]

C 0.15 -

1.8 10

C3 0.15 0.03
C6 0.15 0.06
F 0.3 -
F3 0.3 0.03
F6 0.3 0.06
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4.3. Electrochemical Analysis

The experiment was carried out using completely cross-linked, disc-shaped samples
of mass 1 g. They were placed in sterile containers containing 100 mL of the following
incubation fluid: PBS (phosphate-buffered saline). The resulting composite materials
were incubated in vitro in a POL-EKO incubator (model ST 5B SMART, Wodzisław Śląski,
Poland) at 36.6 ◦C for 14 days. To evaluate the bioactivity of the composites, changes in pH
values of the fluid were monitored. The measurements were taken at room temperature
(24 ◦C) on a laboratory bench. Potentiometric measurements were carried out at 1, 3,
7, 10, and 14 days of incubation. Additionally, conductometric analysis was performed
to evaluate the interaction between the samples and the incubation fluid. The pH and
electrical conductivity values were measured using an Elmetron CX-701 multifunctional
device (Zabrze, Poland).

4.4. Determination of Sorption Capacity

The composites were subjected to a sorption study to determine the ability of the
resulting material to absorb various substances [16]. It is possible to evaluate the material’s
swelling using this method. The experiment involved 1 g samples, which were placed in
sterile containers, and then each sample was immersed in 100 mL of physiological fluid.
The samples were incubated at 36.6 ◦C for 14 days. After the specified incubation time, the
materials were taken out, drained of excess liquid, and then weighed. The swelling factor
was calculated based on the following formula:

Swelling ability =
m1 − m0

m0
· 100% (1)
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where m0 is the dry sample mass and m1 is the mass of the specimen at a specified time
of incubation.

4.5. Degradation

The level of degradation was estimated based on the loss of the initial mass of the
sample after a 14-day incubation in the physiological fluids.

4.6. Fourier Transform Infrared Spectroscopy Analysis

The FT-IR (Fourier transform infrared spectroscopy) method enables the identification
of substances and the analysis of complex mixtures without the need to separate them
first by detecting characteristic functional groups. Spectrometers detect infrared radiation
absorbed by molecules, which excites electrons [42,43]. In this study, measurements of the
infrared spectrum were carried out in the wavelength range from 400 to 4000 cm−1 (32 scans
at 4.0 cm−1 resolution) for pure samples, such as HA, placenta, COL, and cross-linking
agent, as well as composites; for this purpose, a Thermo Scientific Nicolet iS5 spectropho-
tometer was used (Thermo Scientific, Loughborough, UK) with an iD7 ATR accessory.

4.7. Morphology Analysis

Optical microscopy enables precise assessments of composite surface quality, including
structural analysis and defect detection. A VHX Series Digital Microscope (Keyence, Osaka,
Japan) was used to obtain images of surface morphologies. It was possible to achieve a
total image resolution of 4000 pixels (H) × 3000 pixels (V) in 4 K mode using the high-
performance camera that was provided. Observations at magnifications from 20× to 2500×
were possible with the high-resolution HDR function. Additionally, depth composition of
low-contrasting parts or parts with significant height variations was performed. The multi-
lighting function was used to detect the morphology of the coatings presented in Figure 3.
Measurements of the roughness profile were taken using a 4K CMOS sensor of VHZ-7000
series (Keyence, Osaka, Japan), which performed the 2D and 3D measurements. Tests were
conducted on both samples pre- and post-incubation for 14 days in physiological fluid.

4.8. Cell Culture Conditions

The cytocompatibility of the resulting biomaterials was evaluated according to the
ISO 10993-5:2009 [38] guidelines. The L929 mouse skin fibroblasts were obtained from
the American Type Culture Collection (ATCC, Manassas, VA, USA). Before the experi-
ments, fibroblasts were cultivated in Roswell Park Memorial Institute (RPMI)-1640 medium
supplemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone Cytiva, Marl-
borough, MA, USA), penicillin (100 U/mL), and streptomycin (100µg/mL) (Sigma-Aldrich,
Darmstadt, Germany) in a humidified 5% CO2 atmosphere at 37 ◦C within the cell culture
incubator. Confluent cell monolayers were detached from the culture vessel with 0.05%
trypsin–EDTA solution (Gibco, Waltham, MA, USA) for subculturing and suspended in
the culture medium. Cell viability and density were determined using a Burker chamber
(Blaubrand, Wertheim, Germany) and the trypan blue exclusion assay. Cells were included
in the experiments only if their viability exceeded 95%.

4.9. Cell Viability Assay

To determine the viability of L929 fibroblasts after 24 h of incubation with each
biomaterial (HA, HA + COL, C6, F6), a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reduction assay was performed as described in the previous paper [44].
Shortly, after overnight incubation of the cells with the tested biomaterials, 20 µL of
MTT (5 mg/mL) was added to each well. After 4 h incubation (5% CO2, 37 ◦C, >90%
humidity) supernatants were replaced with 100µL of DMSO (dimethyl sulfoxide). After a
brief incubation at room temperature with constant delicate shaking, the absorbance was
measured at 570 nm using a Multiskan EX reader (Thermo Scientific, Waltham, MA, USA).
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4.10. Visualization of Cell Morphology and Expansion on Composites

To visualize the ability of the fibroblasts to adhere to and expand on the surface of the
tested biomaterials, L929 cells were seeded on the composites as described previously [45].
Briefly, cells (5 × 105 L929 cells) were placed on every composite and incubated for 24 h in a
humidified 5% CO2 atmosphere at 37 ◦C. Next, biomaterials were washed with phosphate-
buffered saline (PBS) and fixed with 3.7% paraformaldehyde (Sigma-Aldrich, Saint Louis,
MO, USA) for 20 min at room temperature. The nuclei were stained with 300 nM 2-(4-
amidinophenyl)-1H-indole-6-carboxamidine (DAPI) and the actin filaments with phalloidin
conjugated with iFluor 594 (Cayman Chemical, Ann Arbor, MI, USA). The confocal laser
scanning microscopy platform TCS LSI (Leica Microsystems, Frankfurt, Germany) was
used for microscopic imaging. Samples were imaged with the following wavelength values
of excitation and emission: 405 and 430–480 nm for DAPI and 590 and 615–630 nm for
iFluor 594 conjugated antibody. Leica Application Suite X (LAS X; Leica Microsystems) was
used for cell imaging. Confocal analysis was performed in the Laboratory of Microscopic
Imaging and Specialized Biological Techniques at the Faculty of Biology and Environmental
Protection at the University of Lodz, Poland.

4.11. NF-κB Activation

The THP1-Blue™ NF-κB human monocytes (containing the NF-κB-inducible SEAP
reporter construct) obtained from InvivoGen (San Diego, CA, USA) were used to assess the
activation of the NF-κB signal transduction pathway in the tested samples, as described
previously [46]. Briefly, human monocytes were cultured in RPMI medium supplemented
with 10% heat-inactivated FBS, 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM glutamine, and
selective agents (100 µg/mL normocin and 10 µg/mL blasticidin) in a humidified 5% CO2
atmosphere at 37 ◦C. A total of 200 µL of cell suspension (1 × 106 cells/mL) was added to
a 96-well cell culture plate and stimulated with all tested biomaterials for 24 h (5% CO2,
37 ◦C, >90% humidity). Next, SEAP production was quantified after combining 20 µL
of cell-free supernatant with 180 µL of QUANTI-Blue™ buffer (InvivoGen, San Diego,
CA, USA) and incubating the mixture at 37 ◦C with 5% CO2 for 4 h. The absorbance was
measured at 650 nm using a Multiskan EX reader (Thermo Scientific, Waltham, MA, USA).

5. Conclusions

The present study describes the synthesis of dressings that can potentially promote
epidermal regeneration. The developed technique was based on the use of UV light
and enabled us to obtain hydrogel composite coatings under UV light. The selected
parameters, such as crosslinking time and types of crosslinking agents and photoinitiators,
made it possible to obtain finished materials with satisfactory organoleptic properties
(without roughness or holes, fully continuous, and crosslinked). Physicochemical analysis,
incubation studies, and cytotoxicity testing of the proposed solution were performed. Films
based on HA and COL with placental material showed significant swelling, moisture
absorption, and mechanical properties, which are ideally required for a good wound
dressing preparation. The changes in swelling parameters observed during the incubation
process suggest that the material could be used as a carrier for active substances. In vitro
studies indicate that biomaterials interact appropriately with artificial incubation fluids,
and the addition of COL and placenta increases their biocompatibility and cell adhesion.
The in vitro biological evaluation confirmed the cytological safety of the tested biomaterials.
L929 fibroblasts adhered and proliferated effectively on the surfaces of the composites,
which is crucial in the early stages of the wound-healing process. Furthermore, the study
has demonstrated that biomaterials that contain placenta and collagen compositions have
a significant contribution towards the activation of monocytes. Overall, the prepared
hydrogels with placenta additives represent a new idea that could be a promising medical
material for accelerating wound healing. Therefore, the obtained results, considering the
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potential of the presented biomaterials, suggest the necessity of further research, especially
in vivo.
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29. Klama-baryła, A.; Smętek, W.; Łabuś, W.; Kitala, D. Przygotowanie przeszczepów z błon płodowych i możliwości ich klinicznego
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