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Abstract: Charcot–Marie–Tooth disease (CMT) rarely presents with painful symptoms, which mainly
occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize
the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old
woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination
showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic
examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic
testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT pa-
tients in the literature who presented with neuropathic pain as a main feature in association with MPZ
mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset
(14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It
is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain.
However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear,
as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically
misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.

Keywords: Charcot–Marie–Tooth disease; myelin protein zero; neuropathic pain; skin biopsy

1. Introduction

Charcot–Marie–Tooth disease (CMT) encompasses a genetically heterogeneous constel-
lation of hereditary sensorimotor polyneuropathies, with a classical, distinctive phenotype
of distal-muscle wasting and weakness with foot deformities [1,2]. Pain is probably not
uncommon (including nociceptive pain related to osteoarticular disorders) [3,4]; however,
CMT patients with predominating painful manifestations have rarely been reported and
mainly occur in association with mutations in the myelin protein zero (MPZ) gene [5],
which are classified as CMT1B-CMT2I/J subtypes.

Here, we report on a CMT patient with a p.Trp101Ter MPZ mutation presenting with
neuropathic pain likely related to small-fiber damage demonstrated by skin biopsy.

2. Materials and Methods
2.1. Case Study

Besides a neurological examination, the clinical assessment included the CMT Neu-
ropathy Score version 2 (CMTNS2) [6]. CMTNS2 is a nine-item scale based on the assess-
ment of sensory and motor symptoms and signs in the legs and arms (CMT Examination
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Score—CMTES; maximum 28 points for 7 items), the ulnar/median compound motor-
action potential (CMAP), and the radial sensory-action potential (SNAP) (electrophysiology
score; maximum 8 points for 2 items).

Two neuroalgologic questionnaires, Douleur Neuropathique en 4 questions (DN4) [7]
and the Neuropathic Pain Symptom Inventory (NPSI) [8,9], and a screening tool for small-
fiber neuropathy (SFN), the Small-Fiber Neuropathy Symptoms Inventory Questionnaire
(SFN-SIQ) [10], were also administered.

An electroneurographic (ENG) study with standard methods was performed using
the Nicolet EDX System with Viking Software version 22.0.2.146 (Viking EDX, Natus,
WI, USA). Motor-nerve-conduction studies were performed with surface electrodes. The
CMAP latency, amplitude, area, duration, and motor-conduction velocities were recorded.
Minimal, mean, and maximal F responses, latency, and persistence were obtained. Sensory-
nerve-conduction studies for upper limbs were performed with the orthodromic method,
stimulating at the fingers with ring electrodes and recording with surface electrodes at the
wrist. For lower limbs, sural-nerve antidromic-conduction studies were performed with
surface electrodes. The SNAP peak latency, amplitude, duration, and conduction velocity
were calculated. All findings were compared with normal values from our laboratory.

Three mm punch skin biopsies were performed at the distal leg and proximal thigh
after the appropriate consent was obtained. Biopsy specimens were processed and im-
munostained using the PGP9.5 antibody for intraepidermal nerve-fiber density (IENFD)
evaluation according to published guidelines [11].

Written informed consent for genetic testing was obtained from the patient. Next-
generation sequencing (NGS) analysis was performed using a custom gene panel that
included 80 genes for inherited neuropathies (NEUROMIO panel—the list of genes is avail-
able upon request) by Illumina technology (Nextera Rapid capture-Illumina, San Diego, CA,
USA) on a MiSeq-dx sequencer (Illumina, San Diego, CA, USA). Data were analyzed and
filtered using Variant Interpreter version 2.16.0.235 (https://variantinterpreter.informatics.
illumina.com (accessed on 11 November 2021), Illumina, San Diego, CA, USA). The Exome
Variant Server (ESP; https://bio.tools/exome_variant_server, accessed on 11 November
2021), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org/, ac-
cessed on 11 November 2021) and the gnomAD database (https://gnomad.broadinstitute.
org/, accessed on 11 November 2021) with a frequency greater than 0.1% were used to filter
out common variants. Molecular confirmation of the identified variant was performed by
standard Sanger sequencing on an automated analyzer (ABI PRISM 3500DX, ThermoFisher,
Waltham, MA USA).

2.2. Review of the Literature

Reports about patients with MPZ mutations and pain were collected from a search on
PubMed, using the search terms Charcot–Marie–Tooth disease/MPZ mutations/CMT1B/
CMT2I/CMT2L, and pain. Relevant information included clinical data, with a focus on
the features of pain and motor impairment, ENG findings, and molecular CMT diag-
nosis. When adequate clinical data were available, pain was classified as neuropathic
based on the plausible neuroanatomical distribution and suggestive reported features
(“descriptors”). Furthermore, we evaluated the clinical reports in order to state whether the
phenotype was predominantly characterized by neuropathic pain or by motor symptoms
and signs (including sensory ataxia). ENG patterns were classified based on the ulnar-
nerve motor-nerve-conduction velocities (MNCVs) (or other upper limb MNCVs), as either
demyelinating (substantially slowed MNCV) or axonal (normal, or near-normal MNCVs);
an MNCV between 35 and 45 m/s was defined as intermediate [12].

3. Results
3.1. Case Report

A 58-year-old woman had a longstanding history of intermittent migrant pain and
dysesthesias, mainly in the feet and legs but also in the thighs and arms. Mild to moderate

https://variantinterpreter.informatics.illumina.com
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symptoms of tenderness or myalgias were chronically present, but exacerbations character-
ized by burning pain and shock-like sensations, lasting some days or weeks, periodically
occurred, with the pain intensity peaking at 8 in the numerical rating scale (NRS). One
such exacerbation episode, at age 57, occurred after a second dose of the mRNA-based
SARS-CoV2 vaccine (Pfizer-BioNTech BNT162b2, Pfizer, New York, NY, USA). Nocturnal
cramps and/or the urge to move the legs when in bed were cyclically present, with features
consistent with restless legs syndrome (RLS).

The definite onset of symptoms occurred at age 46, with an initial diagnosis of fi-
bromyalgia; however, nocturnal myalgias in the calves were occasionally reported in the
previous years, as well as “rheumatic pains” during infancy. The subject past medical
history was otherwise unremarkable; in particular, there were no neuropathy risk factors
such as diabetes, obesity, malnutrition, alcohol abuse, or neurotoxic medications.

Family history was also unremarkable, except for a deceased paternal uncle reportedly
affected with polyneuropathy. The proband’s mother had mild cognitive impairment but
no neuromuscular symptoms and signs, and the ENG was normal. A 61-year-old brother
was affected with Parkinson’s disease, while her 26-year-old son was asymptomatic. At
the time of genetic counselling, there were no close family members available for genetic
testing; thus, no segregation study was performed.

On examination, there was no muscle wasting or weakness, but some hypertrophy of
the calves and slight pes cavus were seen and deep tendon reflexes in the lower limbs were
evoked after facilitation maneuvers.

The subject scored 4/10 in the DN4 questionnaire, which was consistent with neuro-
pathic pain. The NPSI questionnaire revealed a predominance of paroxysmal (7/10) and
superficial burning (5/10) qualities of pain, with a total NPSI score of 24/100. The SFN-SIQ
was 26/39, more than the proposed cut-off value of 6.5 [13], and the CMTNS2 was 4/36,
consistent with a mild form of CMT. Laboratory tests for the following were normal or
negative: the comprehensive metabolic profile; complete blood count, thyroid-stimulating
hormone, hemoglobin A1C, vitamin B12 and folate levels, homocysteine, serum protein
electrophoresis with immunofixation, rheumatoid factor, antinuclear antibody, double-
stranded DNA, HCV antibody, Lyme antibody, and C-reactive protein.

The ENG showed reduced MNCVs of 38 m/s (left) and 37 m/s (right) in the per-
oneal nerves (normal > 45 m/s), 34 m/s (left) and 36 m/s (right) in the tibial nerves
(normal > 45 m/s), 35 m/s in the left median nerve (normal > 50 m/s), and 48 m/s in
the left ulnar nerve (normal > 50 m/s), with normal compound motor-action potential
(CMAP) amplitudes. Sensory nerve-conduction velocities (SNCV) were reduced in the
sural nerves (28 m/s left; 25 m/s right; normal > 38 m/s), in the left median nerve (27 m/s;
normal > 40 m/s), and the left ulnar nerve (26 m/s; normal > 40 m/s), with normal sensory-
nerve action potentials (SNAPs). The ENG pattern was classified as intermediate, although
the ulnar MNCV was near-normal, as the other MNCVs were in the intermediate range.

The skin biopsy, performed at age 56, revealed a reduced IENF density (Figure 1)
at the ankle (3.5 IENF/mm; normal > 4.03 [11]) and at the thigh (2.2 IENF/mm; normal
value of our laboratory > 9.6). The findings were deemed to be consistent with non-length-
dependent SFN; the case was classified as predominant SFN, considering that mild clinical
and ENG signs of large-fiber involvement were additionally present.

The MLPA (multiplex ligation-dependent probe amplification) method for PMP22
analysis indicated a normal copy number for the gene, excluding CMT1A. The NGS analysis
using the NEUROMIO panel identified the heterozygous variant NM_000530.8:c.302G>A
(p.Trp101Ter) in MPZ. The variant was rated as pathogenic according to the American
College of Medical Genetics and Genomics (ACMG) criteria [14] by attributing PVS1 (a null
variant in a gene whose loss of function is a known mechanism of disease), PP5 (a variant
recently reported by a reputable source as pathogenic), and PM2 (absent from control). In
the ClinVar database, this variant is classified as pathogenic (one star), and it has been cited
in the literature as being associated with CMT [5].
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Figure 1. Bright-field immunohistochemistry of 50 µm thick sections of the skin biopsy immunos-
tained with protein gene product 9.5 (PGP 9.5). There are long epidermal areas devoid of intraepider-
mal nerve fibers at the thigh (upper) and at the ankle (lower). The few remaining PGP 9.5-positive
nerve fibers crossing the dermal–epidermal junction are indicated by arrowheads.

3.2. Cases in the Literature

We found 23 articles reporting on 42 CMT patients with MPZ mutations and pain
symptoms. In 20 patients (13 women, 6 men, 1 non-specified) from 11 families [5,15–24],
painful symptoms of neuropathic pain predominated (Table 1), with absent or mild motor
signs; severe motor impairment or sensory ataxia was the main clinical feature in the
remaining cases, which were not included. The majority of patients had adult onset (range
8–47 years; median 30 years), although onset was within the second decade in six patients.
The ENG findings were classified as intermediate in 12 patients (including the present
case), demyelinating in 5, and axonal in 2. The localization of variants in the MPZ gene is
illustrated in Figure 2. Different mutations were found in each family, with the exception of
the p.Trp101Ter mutation that was found in our patient and in the Ramirez family [5] and
the p.Thr124Met mutation found in another two families [15,17].
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Table 1. Patients with painful neuropathy and MPZ mutations.

Ref Patient Age at Onset Pain Features Distribution Motor Signs Associated
Features NCV Nerve/Skin *

Biopsy Treatment Family History MPZ Mutation

[15] PN-54 III.1 M 4th dec Pains and
paraesthesias Lower limbs

Slight weakness
of peroneal

muscles
No Axon ND NR

AD
variable severity,

hearing loss

Thr124Met
c.371C>T

[16] W 36 y 36 y Burning—
recurrent

Soles to lower
legs No weakness No Interm

De/remyelination,
axonal loss,

uncompacted
myelin lamellae

NR AD
Father asymptomatic

Glu71ter
c.211G>T

[17] Index M 48 y 39 y Dysesthesia Feet Normal Unreactive
pupils Axon Marked fiber

loss, clusters NR
AD

Dysesthesia in 3, motor
impairment variable

Thr124Met
c.371C>T

[18] Pt2 W 26 y 18 y Pain Feet and legs No weakness No Interm ND NR
AD

marked phenotypic
variations in 5 members

Leu48Pro
c.143T>C

[19] M 47 y 47 y
Acute

lancinating pain,
recurrent

Arms and dorsal
forearms, thighs

and legs, to
buttocks and

face.

Normal strength No Interm ND IVIG ineffective
AD

Mother
paucisymptomatic

Arg36Trp
c.106A>T

[20] IV-103
W 30 y 30 y

Acute onset,
severe burning
and shock-like

pain

More in the
distal feet than

in the hands
No No Interm

Normal
myelinated fibre

density

Pain
management NS

AD-
RLS in 8 of 10, hearing
loss 7; asymptomatic 4

His39Pro
c.116A>C

[21]

II-1 M 50 y 28 y
Severe cramps

and painful
paresthesia

NR Mild weakness No Dem ND NR

AD
family 2, all patients

with cramps and
painful paresthesia

Ser78Leu
c.233C>T

II-4 M 46 y 26 y
Severe cramps

and painful
paresthesia

NR Moderate
weakness No Dem ND NR Ser78Leu

c.233C>T

III-3 M 11 y 8 y
Severe cramps

and painful
paresthesia

NR Mild weakness No Dem ND NR Ser78Leu
c.233C>T

[22]

III-1 W 62 y 45 y Painful
sensations Legs Mild distal

weakness RLS Interm

Mild large fiber
loss,

regeneration
clusters

IVIg, gabapentin,
pregabalin-

improvement AD
RLS without pain in 1

Asp224Tyr
c.670G>T

IV-1 W 41 y 30 y Cramps and
pain Legs Mild distal

weakness No Interm ND NR Asp195Tyr
c.670G>T

IV-2 W 35 y 35 y Cramps and
burning pain Legs and arms Mild distal

weakness RLS Interm ND NR Asp195Tyr
c.670G>T
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Table 1. Cont.

Ref Patient Age at Onset Pain Features Distribution Motor Signs Associated
Features NCV Nerve/Skin *

Biopsy Treatment Family History MPZ Mutation

[5]

Pt 1 W 18 y 1st dec

Deep, burning,
aching, shooting,
throbbing pain

NRS 7–10

Feet, ankles

No No ND ND
tricyclic

antidepressants,
gabapentinoids,

opiates,
lidocaine
plaster—
partially
effective

AD
Similar features in all

Trp101ter

Pt 2 W 23 y 1st dec Mild distal
weakness No Interm ND Trp101ter

c.302G>A

Pt 3 W 25 y 2nd dec No No Interm ND Trp101ter

Pt 4 W 40 y 3rd dec No No ND ND Trp101ter

Pt 5 W 42y 3rd dec No No Interm Normal * Trp101ter

Pt 6 W 44 y 4th dec No No Interm ND Trp101ter

[23] F1-III.1
W 53 y 15 y Burning Lower

extremities Normal strength No Dem ND NR
AD

Mild symptoms and
signs in other 2

Val10Cysfs11 *
c.309G >T

[24] NA Adult Pain Distal No motor
symptoms No Dem ND NR NR Arg98Cys

c.292C>T

CR W 57 y 46 y

Burning pain,
shock-like
sensations,

NRS 8.

Mainly distal,
occasionally

proximal

No motor
symptoms and

signs
RLS Interm Abnormal *

Paracetamol,
clonazepam—

partial
improvement

Sporadic Trp101ter
c.302G>A

Abbreviations: Ref—reference; CR—present case report; M—man; W—woman; dec—decade; y—years; Pt—patient; NR—not reported; ND—not done; NCV—nerve-conduction velocity;
Axon—axonal; Interm—intermediate; Dem—demyelinating; NRS—numerical rating scale; AD—autosomal dominant; NA not available; *—skin biopsy; RLS—restless legs syndrome;
IVIG—intravenous immunoglobulins.
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4. Discussion

CMT associated with MPZ mutations is phenotypically and genotypically heteroge-
neous, as the MPZ protein is involved in various aspects of Schwann-cell biology [25,26].
Studies of phenotype–genotype correlations in MPZ variants showed that patients and
mutations were separated into three subtypes: infantile onset with extremely slow MNCVs
and severe motor impairment; gradual onset within the first two decades of life and
slow MNCVs in the 20–25 m/s range; and adult onset, with normal or near normal
MNCVs [27,28]. The phenotypes are almost completely mutation-specific, and MPZ mu-
tations act in different ways to cause infantile, childhood, or adult-onset neuropathy,
respectively resulting in the developmental disruption of myelination processes in early
phases, the formation of mature myelin sheaths with abnormal structure and function, or
defective Schwann-cell–axon signaling leading to axonal damage with preserved myelin
sheaths [27,29].

The adult-onset phenotype has been characterized as classical CMT with axonopathic
ENG features (CMT2I/J) [27,29]. However, the broader use of genetic testing in recent years,
leading to the identification of an increasing number of MPZ mutations causing a late-onset
phenotype, has revealed the occurrence of atypical presentations, such as neuropathy with
liability to pressure palsies [30,31], sensory ataxia [32], predominance of positive sensory
symptoms [33], and cranial nerve involvement [34], often with MNCVs in the intermediate
range [28].

The painful phenotype of MPZ mutations is seemingly rare; however, this point has
not been specifically addressed in large studies investigating genotype–phenotype corre-
lations [27,29,34,35], and only a few cases from the literature are mentioned by Callegari
et al. [28] in the setting of atypical MPZ phenotypes. In the literature, we found 20 cases
from 11 families that harbored a total of 10 different mutations, with features similar to
those of our patient (Table 1). Our patient’s mutation has been previously described in an
English relation who also presented with neuropathic pain [5]. The truncating p.Trp101Ter
variant is predicted to result in a loss of function, primarily attributed to its association with
nonsense-mediated decay (NMD). This prediction is based on the variant’s characteristics;
specifically, being a premature termination codon (PTC) located within a small exon that
leads to the degradation of the transcript, preventing the synthesis of the corresponding
protein. According to Lindeboom et al. (2019) [36], such a configuration, involving a PTC
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in a small exon (within exon 3 of 216 bp) situated more than 55 nucleotides away from a
splicing site, is supportive of nonsense-mediated decay.

Recently, it was reported that nonsense-mediated decay mutations caused milder
forms of CMT1B, and the underlying mechanism was haplo-insufficiency of MPZ and loss
of function [32].

Considering that more than 200 MPZ mutations have been identified [34], it could be
that nerve-fiber changes generating pain symptoms are associated only with definite variants.

In the majority of these patients, there was adult onset, with moderately slowed or
near-normal MNCVs and minor CMT clinical signs, such as pes cavus and mild distal
weakness. However, most reported patients with a painful phenotype harbored an MPZ
mutation in the extracellular domain, which, in general, is more frequently involved.
The only exception was a family with a missense mutation, c.700G>T p.Asp234Tyr [22];
the proband had clinical features consistent with a superimposed chronic inflammatory
demyelinating polyneuropathy (CIDP).

Additional information can be inferred from the few neuropathological studies avail-
able. In our patient, the skin biopsy demonstrated small-fiber damage that likely under-
pinned the pain symptoms. This is a novel finding, as the IENF density was normal in
another patient with the same mutation [5]. In this patient, doubtful aspects of dermal
nerve-fiber demyelination were described as possibly related to the pain symptoms. In
other patients, sural-nerve biopsy showed clusters of regenerating fibers, possibly acting as
irritable nociceptors [17,22]. These findings, however, are not specific for MPZ mutations,
nor obligatorily associated with pain symptoms [37].

On the other hand, it has been observed that phenotypic variations occur in the same
MPZ mutation [21,38], even with intrafamilial clinical heterogeneity [38,39]. Interestingly,
in the family described by Kilfoyle et al. [20], only the index case had neuropathic pain,
whereas several other family members had RLS, a putative equivalent of neuropathic
pain [40]. In our patient, manifestations of neuropathic pain and RLS coexisted, as well as
in two patients reported by Schneider-Gold et al. [22].

The clinical expression of MPZ mutations might be influenced by modifier genes
and acquired or environmental factors [29]. In particular, it has been suggested that the
manifestations and the course of the disease in some patients are modified by a super-
imposed autoimmune/inflammatory response, possibly driven by the changed immuno-
genicity of an abnormal MPZ protein, in keeping with the experimental observations
of secondary autoimmunity and CIDP-like manifestations in P0 knockout mice [41,42].
In some patients, consistent features of an acute/subacute onset [20], rapidly progres-
sive [43] or stepwise-fluctuating course [19,44,45], elevation of cerebrospinal fluid pro-
tein [19,20,22,44–46], and response to immunotherapies [22,44–46] were described, in-
cluding cases with painful neuropathy. Other comorbidities potentially influencing the
neuropathy expression, such as diabetes or B12 deficiency that are often associated with
painful neuropathy, are not mentioned in the case studies. A comprehensive view might
be that the potential painfulness of nerve-fiber changes related to specific MPZ mutations
can be unmasked or amplified by concomitant autoimmunity and/or inflammation. In our
case, there was no evidence of superimposed acquired conditions, but the exacerbation
of symptoms after vaccination might reflect a susceptibility to inflammatory/immune
factors. The SFN following SARS-CoV2 vaccination [47,48] and an immuno-mediated
disease flare [49] have been previously reported. In our patient, the painful symptoms and
biopsy findings of small-fiber changes antedated vaccination, and we cannot exclude that
recurrence of symptoms after vaccination was coincidental.

The features of this CMT presentation may be misleading, as the clinical picture is
reminiscent of other painful conditions, such as SFN and fibromyalgia, and only minor
signs are seen upon neurological examination and ENG study. In the absence of obvious
motor signs and of a suggestive family history, the differential diagnosis of SFN may be
difficult on clinical grounds. Abnormalities in nerve-conduction studies, though mild,
should not be overlooked as a possible clue to the CMT diagnosis.
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In summary, the painful phenotype associated with MPZ mutations, though rare,
is noteworthy for its possible diagnostic relevance in the context of neuropathic pain
syndromes. As for the pathophysiology, it is unclear whether neuropathic pain is driven by
definite nerve-fiber changes specifically related to definite MPZ mutations. Further studies
of phenotype–genotype correlations should involve a larger number of neuropathic-pain
patients harboring MPZ mutations, combining molecular studies with a comprehensive
assessment of neuropathic pain. Patients with these features are probably under-recognized,
and it is expected that they will be more frequently diagnosed in the future given the rise in
genetic testing that is extended to patients with non-classical CMT features and a late onset.
Along these lines, a painful CMT subtype associated with MPZ mutations was able to be
more specifically characterized, which also contributes to the knowledge of neuropathic
pain mechanisms in general, with a unique genetic model of peripheral neuropathic pain.
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