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Abstract: The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk 
neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and 
chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell me-
tabolism remains unexplored. This study employs a multi-omics approach, integrating transcrip-
tome and metabolome data, to elucidate the global metabolic program associated with varying 
LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces 
a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-de-
pendent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA 
biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore 
the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential dis-
ruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the 
molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving 
the way for targeted therapeutic interventions. 

Keywords: LIN28B; neuroblastoma; transcriptome; metabolome; omics integration; glutathione 
metabolism 

 

1. Introduction 
Neuroblastoma is the most common extracranial solid tumor and the most enigmatic 

malignancy in childhood. The lethality rate of neuroblastoma ranks first in pediatric on-
cology [1]. More than 50% of patients affected by neuroblastoma are classified as high-
risk, and the prognosis for these patients is reserved due to the severe clinical, molecular, 
and histological parameters contributing to the limited efficacy of the currently available 
therapies [2]. The remaining patients belong to the very-low-, low-, or intermediate-risk 
groups, which have a better outcome [3]. A small percentage of neuroblastomas staged as 
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MS, according to the International Neuroblastoma Risk Group Staging System (INRGSS) 
[4], eventually regress spontaneously, although the biological mechanisms behind this 
phenomenon are still unknown. The tumors in high-risk patients are particularly aggres-
sive and refractory to chemotherapy. The survival rate after relapse drops dramatically 
below 20% [4], underscoring the imperative to identify new molecular markers that might 
anticipate disease progression or serve as a target for innovative and tailored (adjuvant) 
therapies. 

At the molecular level, aggressive neuroblastoma tumor phenotypes correlate with a 
definite number of oncogene drivers, such as MYCN, ALK, and LIN28B [5]. These onco-
genes have been linked with metabolic reprogramming in several solid tumors [6–8]. 
MYCN amplification is the most consistently observed independent genetic alteration 
linked to poor prognosis and treatment resistance in several pediatric malignancies, in-
cluding neuroblastoma [9]. For this reason, the metabolic profile of MYCN-amplified neu-
roblastomas has been widely studied, and its reprogramming has been defined as a pos-
sible vulnerability of this cancer [10,11]. 

LIN28B, an RNA-binding protein, regulates numerous cellular activities during em-
bryogenesis by regulating pluripotency and the metabolism of stem cells [12]. LIN28B 
plays a pivotal role in repressing the maturation and functionality of microRNAs (miR-
NAs) and messenger RNAs (mRNAs) in either physiological or pathological conditions. 
Indeed, its major function is to inhibit the processing of miRNA precursors, especially 
those belonging to the let-7 miRNA family, thereby preventing their accumulation during 
the early stages of development [13]. In addition, by inhibiting the maturation of let-7 
microRNA, LIN28B suppresses several components of the PI3K-mTOR pathway associ-
ated with the regulation of insulin metabolism, which has resulted in an increased glucose 
uptake in transgenic mice [14]. However, its overexpression, beyond the physiologically 
defined timeframe, has been linked to pro-tumorigenic features in various cancers [15]. 
One of the mechanisms through which LIN28B may exert its role is the regulation of gly-
colysis. In fact, enhanced aerobic glycolysis has been observed in hepatocellular carcino-
mas overexpressing LIN28B, where LIN28B acts by targeting the metabolic enzyme PDH 
kinase 1 (PDK1) [16]. Similarly, transgenic mice overexpressing LIN28B in the liver de-
velop hepatic cancer with higher glucose consumption compared to the surrounding nor-
mal tissue, mirroring the behavior of a subset of aggressive human hepatocellular carci-
nomas [17]. Increased aerobic glycolysis in cancer stem cells expressing LIN28B can also 
be regulated via the LIN28B/MYC/miRNA-34a-5p axis [7]. Finally, additional results re-
vealed a novel mechanism of metabolic regulation involving the LIN28B/let-7/IGF2BP1 
axis in acute myeloid leukemia [18]. In neuroblastoma, the overexpression of LIN28B cor-
relates with stemness characteristics and increased proliferative and migratory capacities 
in tumor cells [19,20]. However, LIN28B’s involvement in neuroblastoma cell metabolism 
has not been fully elucidated, but its broader impact on tumorigenesis suggests a complex 
interaction with metabolic pathways, similar to its role in other cancer types. 

Here, we performed integrated transcriptomics and metabolomics analyses on neu-
roblastoma cells with induced LIN28B (iLIN28B) protein expression to outline a LIN28B-
dependent metabolic profile. Compared to the controls, iLIN28B neuroblastoma cells 
showed a higher rate of metabolites involved in the production of nucleotides, amino ac-
ids, and especially glutathione. Glycolytic function in iLIN28B cells was compromised in 
time, whereas the release of the metabolites belonging to the glutathione pathway was the 
most abundant late event, implying an impaired redox balance in LIN28B-overexpressing 
neuroblastoma cells. 
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2. Results 
2.1. Exploratory Transcriptomics Data Analysis Highlights Potentially Relevant Transcripts for 
the Metabolic Diversity of iLIN28B Cells 

The tetracycline-controlled (Tet-On) gene expression system has been adopted for 
the generation of the in vitro cell model with graded LIN28B transcript induction 
(iLIN28B; Figure 1A). Immunoblot analysis and evaluation of the corresponding tran-
scripts confirmed a time-dependent increase in iLIN28B level, defined as basal, medium, 
and high (Figure 1B,C). Next, we investigated the transcriptional dynamics of iLIN28B 
cells as a function of the induction time. A total of 21,448 gene expression variables were 
extracted. No outliers were detected by assuming a significance level of α = 0.05. As a 
result, a dataset composed of 21,448 features and 24 observations was obtained. A PCA 
model explaining 36.4% of the total variance was built, and the score scatter plot of the 
model is reported in Figure 1D. The samples belonging to CTRL cells showed negative 
values for the first score component PC1, whereas iLIN28B samples consistently exhib-
ited positive values across all time points. Moreover, the time of cell culture increased 
along the second component PC2, suggesting that the cluster structure underlying the 
observations mirrored the experimental design conditions. Consequently, the global 
gene expression was shown to be different in iLIN28B cells at basal levels of iLIN28B, 
remaining different in high iLIN28B, since the factor ‘time’ influenced the transcriptome. 
Furthermore, the technical replication of the experiment yielded a data variation that is 
negligible compared to that resulting from biological effects. Univariate data analysis 
based on MLR revealed 4834 transcripts significantly related to LIN28B overexpression 
(Supplementary Figure S1A). PLS modeling showed that the design factors ‘time’ and 
‘class’ were both significant. Specifically, one predictive score component was obtained 
to explain the factor ‘time’ (R2 = 0.965, p = 0.001), whereas the factor ‘class’ was associated 
with one predictive score component with MCC = 0.840 (p = 0.001; Supplementary Fig-
ure S1B). The observations were grouped based on the experimental condition, regard-
less of the experimental replicate, hence confirming the results of the exploratory data 
analysis. The analysis of Pearson’s correlation between the score components and meas-
ured gene expressions highlighted 3204 transcripts as relevant. Hence, merging the re-
sults of univariate and multivariate data analysis, a set of 4834 relevant transcripts, in-
tended for subsequent joint-pathway analysis, was obtained. The validation of the in 
silico data was then performed using quantitative real-time PCR (qPCR) for several ran-
domly selected genes, confirming that they were differentially expressed between those 
identified in CTRL neuroblastoma cells and those with a high expression of iLIN28B 
(Supplementary Figure S1C). 
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Figure 1. Expression analysis as a function of time in the LIN28B-inducible neuroblastoma cell 
model. (A) Schematic presentation of the doxycycline (DOXI)-inducible (Tet-On) in vitro cell model 
and the time-dependent regulation of the LIN28B level (basal vs. medium vs. high). (B) The total 
protein fraction has been analyzed to verify time-dependent LIN28B levels (basal, medium, and 
high). Vinculin is used as a loading control. kDa—molecular weight of the protein expressed in 
kiloDaltons. (C) LIN28B gene expression values are presented in the DOXI-induced cell system and 
respective CTRL cells. Y-values are shown in the log2 scale. (D) Score scatter plot of the PCA model 
obtained considering the transcriptomics data. Triangles are used to represent samples with basal 
iLIN28B, boxes are used for samples with medium iLIN28B, and circles are used for samples with 
high iLIN28B. Samples of cell lines ‘iLIN28B’ and ‘CTRL’ are colored in red and blue, respectively. 
The identifier of the experimental replicate is reported as a number near the symbol. 

2.2. iLIN28B Triggers Glycolysis in Neuroblastoma Cells 
LIN28B is a potent regulator of host cell metabolism and aerobic glycolysis [14]. To 

confirm this role in our cell model, we used the Agilent Seahorse XF glycolysis stress as-
say, which provides a measurement of the extracellular acidification rate (ECAR) and an 
assessment of the glycolytic function of cells, to evaluate the impact of iLIN28B overex-
pression on this metabolic process. As expected, iLIN28B cells exhibited higher ECAR 
compared with CTRL cells by reflecting significantly higher basal glycolysis rates and gly-
colytic capacities (Figure 2A,B). Interestingly, this effect was dependent on the factor 
‘time’ because we showed a glycolytic increase after basal growth in iLIN28B, but a de-
creased expression profile at a later ‘time’ corresponding to the highest level of iLIN28B. 
We found analogous behavior for the three critical glycolytic enzymes, GLUT-1, LDHA, 
and HK2 [21], for which an immediate peak in expression was detected, followed by less-
pronounced differences for cells with medium and high iLIN28B expression (Figure 2C). 
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Figure 2. Glycolysis rate measurements in LIN28B and CTRL cells. (A) Measurement of the extra-
cellular acidification rate (ECAR) was performed to assess the basal glycolysis and glycolytic capac-
ity as a function of the iLIN28B level (in time). (B) Glycolysis and glycolytic capacity were derived 
from ECAR measurements. (C) A simplified scheme of the glycolytic pathway is shown on the left. 
Gene expression of the metabolic enzymes GLUT-1, LDHA, and HK2 was determined in iLIN28B 
via qPCR and depicted as the fold change respective to CTRL neuroblastoma cells; 18S rRNA served 
as an internal control. The dashed line corresponds to the relative gene expression level of the CTRL 
sample (RQ = 1). Data are presented as mean (±s.d.); n = 3. * p < 0.05; ** p < 0.01; **** p < 0.0001 
compared to controls (Student’s t-test). 

2.3. LIN28B Defines a Metabolic Rewiring in Neuroblastoma Cells 
To further dissect the global metabolic changes in iLIN28B neuroblastoma cells over 

‘time’, we performed a non-targeted metabolomics analysis using ultra-high liquid chro-
matography coupled with high-definition mass spectrometry. Both types of samples, cell 
pellets, and the corresponding supernatants were analyzed. While no significant hits were 
discovered in the intracellular content, the metabolite profiling of the supernatant re-
vealed potential LIN28B-associated candidates that required further investigation (Figure 
3A). After data pre-processing, 1306 time mass variables were extracted. No outliers were 
detected, assuming a significance level of α = 0.05. As a result, a dataset composed of 1306 
features and 72 observations was obtained. Exploratory data analysis based on PCA dis-
covered a relevant effect of ‘time’ and of the ‘experimental replicate’ on the metabolic con-
tent of the supernatant, while the effect of the cell type was not highlighted (Supplemen-
tary Figure S2). MLR-based analysis and PLS modeling led to the same conclusions, 
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proving that only the design factor ‘time’ and the blocking factor ‘experimental replicate’ 
were significantly associated with the metabolome. 

By examining each time point independently, we discovered a significant difference 
between the metabolic content of iLIN28B cell supernatants compared to the CTRL coun-
terparts in the samples with the highest iLIN28B level. Specifically, univariate data analy-
sis based on a Mann–Whitney test controlling FDR highlighted that 74 metabolites were 
significantly different (Supplementary Figure S3A). An orthogonally constrained PLS for 
the classification model, where the blocking factor ‘experimental replicate’ was used as a 
constraint, with one predictive and one non-predictive score component, showed MCC = 
1.000 (p = 0.046) and an MCC in cross-validation equal to 0.753 (p = 0.005) (Supplementary 
Figure S3B) by proving a significant effect of the cell type on the metabolome. Stability 
selection discovered 76 relevant metabolites. By merging the results of the univariate and 
multivariate data analysis, a set of 123 relevant metabolites was obtained. Among these, 
19 metabolites were annotated at level 1 (Supplementary Table S1). The distributions of 
the annotated metabolites are represented as boxplots in Figure 3B. Within this list, 15 
metabolites (L-carnitine, L-glutamic acid, L-phenylalanine, norepinephrine, pyroglutamic 
acid, uric acid, tryptamine, DL-dopa, L-glutamine, L-methionine, propionylcarnitine, L-
tryptophan, 3-hydroxyanthranilic acid, N-acetylserine, and valerylcarnitine) were shown 
to be downregulated and 4 (L-isoleucine, tyramine, butyrylcarnitine, and L-leucine) were 
upregulated in the supernatants of high-iLIN28B samples compared to the CTRL (Sup-
plementary Table S1). 
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Figure 3. Metabolomics data. (A) Experimental design and sample collection for metabolomics anal-
ysis. Supernatants and cell pellets were collected from the CTRL and iLIN28B cells at basal, medium, 
and high iLIN28B levels. All the samples were subjected to mass spectrometry (MS) analyses. (B) 
Boxplots representing the distributions of the 19 annotated metabolites at basal, medium, and high 
iLIN28B levels. Significantly different levels were found in the case of high-iLIN28B samples, for 
which red and blue are used for ‘iLIN28B’ and ‘CTRL’, respectively. 
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2.4. Omics Data Integration Potentiates the Discovery of LIN28B-Dependent  
Regulatory Pathways 

To seek insights into the metabolic pathways that occur in neuroblastoma cells car-
rying LIN28B overexpression, transcriptomics and metabolomics data have been inte-
grated. In doing so, our aim was to obtain a deeper and more robust annotation of the 
metabolic pathways regulated specifically by iLIN28B. Indeed, the discovery process of 
the perturbed metabolic pathways under the condition of high iLIN28B expression can be 
improved if the information related to the gene expression is combined with that of the 
metabolic arrangement. Since the information arising from the transcripts can drive the 
analysis toward the real perturbed pathways, this may either confirm or contradict the 
results obtained when considering only the metabolites. We combined the 19 annotated 
relevant metabolites and the 4834 relevant transcripts at the metabolic pathway level by 
applying joint pathway analysis (Supplementary Table S2). In particular, by considering 
the pathways with a p-value inferior to 0.10, a subset of 8 metabolites (L-glutamic acid, L-
glutamine, L-isoleucine, L-leucine, L-methionine, L-phenylalanine, L-tryptophan, and py-
roglutamic acid) were shown to be associated with pathways related to glutathione me-
tabolism, aminoacyl-tRNA biosynthesis, valine, leucine, and isoleucine biosynthesis, bu-
tanoate metabolism, D-glutamine, and D-glutamate metabolism, and nitrogen metabo-
lism (Figure 4). Interestingly, glutathione metabolism was the most perturbed pathway 
represented (20 out of 56 features). Specifically, 2 metabolites (L-glutamic acid and py-
roglutamic acid) and 18 transcripts significantly enriched this metabolic pathway (p-value 
< 0.001, adjusted-p-value = 0.016). All the other perturbed pathways showed adjusted p-
values greater than 0.15, except for aminoacyl-tRNA biosynthesis with an adjusted p-value 
of 0.10. These findings indicated possible new therapeutic vulnerabilities in neuroblas-
toma tumor cells carrying the LIN28B oncogene. In particular, the glutathione pathway is 
the most appealing, since different druggable targets can be exploited for therapeutic pur-
poses [22]. Further functional and pharmacological analyses are needed to answer the 
question of whether glutathione pathway inhibition may trigger therapy-related hyper-
sensitivity in LIN28B-overexpressing neuroblastomas. 
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Figure 4. Joint pathway analysis. The negative logarithm of p is reported as −log10(p), while the sym-
bol size is proportional to the statistical impact of the pathway calculated via topological analysis. 
Source: KEGG pathway database for Homo sapiens. 

3. Discussion 
In this study, we exploited the effects of two LIN28B-dependent score components, 

one explaining the factor ‘time’ and one the factor ‘class’, in regulating neuroblastoma 
cells’ metabolic status. In particular, we reconstructed the global metabolic pathway 
changes after time-dependent LIN28B overexpression by crossing two different layers of 
biological information: the transcriptome and the metabolome. Moreover, the experi-
mental design adopted in this study enabled us to follow the biological effects dependent 
on LIN28B levels as a function of time regardless of the MYCN expression, which remains 
not significantly modulated in our system. Indeed, unlike the traditional capturing of the 
metabolome data at a fixed-frame snapshot, the time-based analysis has enormous poten-
tial to unveil transient metabolites, both qualitatively and quantitatively. The metabolic 
phenotype of cancer cells carrying the LIN28B oncogene has been the subject of intense 
investigation over the years, since the induced metabolic changes provide the energy and 
biomacromolecules necessary for tumor cell growth [23]. LIN28B is linked with cancer 
stemness and, due to genomic amplification, it is occasionally found overexpressed in a 
subset of high-risk patients with neuroblastoma. Clinically, LIN28B defines poor progno-
sis and adverse outcomes [19]. Through the doxycyclin-inducible cell system, we achieved 
different levels of LIN28B protein in vitro, thus mimicking the diversity found in human 
neuroblastoma specimens [19]. We confirmed the known role of LIN28B in boosting the 
glycolytic rate [7] as an early event in neuroblastoma cells. However, over time, the meta-
bolic preference for this pathway appears to be replaced by other biological processes, 
such as glutathione metabolism. The investigation of the secreted metabolites in the cell 
medium highlights significant differences between high-level iLIN28B cells and the cor-
responding controls. In total, 19 differentially expressed metabolites were identified, 7 of 
them directly involved in the aminoacyl-tRNA biosynthesis pathway, which regulates 
protein synthesis and is involved in cancer progression [24]. Among these metabolites, 4 
were upregulated and 15 were downregulated in iLIN28B supernatants. Among the up-
regulated metabolites, Tyramine is an essential regulator of catecholamine release from 
the adrenal glands. Through its cellular internalization, Tyramine stimulates the secretion 
of norepinephrine, a mechanism usually activated in response to stress [25]. Considering 
the tissue of origin of neuroblastoma, its extracellular downregulation may be associated 
with increased norepinephrine synthesis, a phenotype commonly used to detect and di-
agnose neuroblastoma in patients through an MIBG scan. L-Leucine and Isoleucine are 
essential amino acids produced during the pyruvic acid pathway that is involved in many 
biological processes, such as protein synthesis and energy production. The extracellular 
downregulation of Isoleucine might be the result of an increased intracellular consump-
tion as an anaplerotic substrate [26]. Butyrylcarnitine is a product derived from the deg-
radation of isoleucine that is found to be overexpressed in different types of human ma-
lignancies [27,28]. Its overexpression correlates to better overall survival, and its extracel-
lular downregulation has been associated with decreased B-oxidation [29]. Our study re-
vealed 19 metabolites significantly dysregulated in LIN28B cells that could potentially be 
useful in cancer diagnosis. Although the potential of cell cultures has been exploited as a 
model system for metabolomics studies [30], additional in vitro investigations on primary 
cells and samples from human malignant tissue and plasma are needed to further define 
the biological impact of the metabolites reported in this study. Among the 15 extracellu-
larly downregulated metabolites, 5 (L-Phenylalanine, L-Glutamine, L-Methionine, L-
Tryptophan, and L-Glutamate) are directly involved in the aminoacyl-tRNA biosynthesis 
pathway, the most significantly enriched pathway at this time point in iLIN28B overex-
pression. 
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Our integrative approach allowed the investigation of the overlap between impaired 
transcriptional and metabolic pathways in neuroblastoma cells carrying different 
amounts of intracellular LIN28B. By merging the identified metabolites with the tran-
scripts that were found to be linked with iLIN28B, we identified six metabolic pathways 
of potential interest in neuroblastoma: glutathione metabolism, aminoacyl-tRNA biosyn-
thesis, valine, leucine and isoleucine biosynthesis, butanoate metabolism, D-glutamine 
and D-glutamate metabolism, and nitrogen metabolism. The correlation between metab-
olome and transcriptome revealed the activation of central metabolic pathways involved 
in the fast proliferation of neuroblastoma cells and in the response to nutrient limitation 
and stress hints, such as glutathione (GSH). In particular, two metabolites and eighteen 
genes involved in the glutathione pathway are significantly enriched in iLIN28B cells. 
Maintaining proper levels of GSH is crucial, as dysregulation can lead to the manifestation 
of pathogenic functions. Through its role as an intracellular antioxidant, GSH protects 
cells from increased oxidative stress [31], and in a subset of MYCN-amplified neuroblas-
toma cells, its disruption was reported to determine cell hypersensitivity to drugs [32]. 
Another significantly enriched pathway obtained from both the analysis of the secreted 
metabolites and from the integration of transcriptomics and metabolomics data is the ami-
noacyl-tRNA-biosynthesis pathway. LIN28B plays an important role as a post-transcrip-
tional regulator, influencing either the promotion or repression of translation. A recent 
result obtained by Tan and colleagues showed the formation of two discrete translational 
subpopulations based on the different levels of LIN28B protein induced in HEK293A hu-
man cells [33]. In agreement with this, it is reasonable to speculate that different levels of 
LIN28B might have a differential impact on protein translation in neuroblastoma cells and 
this could reflect the different metabolic phenotypes observed in response to a different 
‘time’ of LIN28B induction. 

A well-known function of LIN28B is the regulation of let-7 microRNA (miRNA) bio-
genesis [14–16]. MiRNAs play a pivotal role as master regulators of gene expression. Sev-
eral studies highlight their involvement in the metabolic reprogramming of tumor cells, 
where various miRNAs exert both positive and negative regulation on multiple metabolic 
genes [34]. In particular, different miRNAs such as miR-433 and miR-214 have been doc-
umented as important regulators of the redox state in cancer [35]. We could not exclude a 
parallel role for direct miRNA targets of LIN28B in altered neuroblastoma metabolism. 
However, further studies are required to unravel the intricate relationships and pathways 
that may mediate the impact of LIN28B on neuroblastoma metabolism through its inter-
action with specific miRNAs. 

Our data confirmed that the short induction of LIN28B, which led to the basal level 
of the protein, maintained cellular metabolism in a state of increased glycolysis and rela-
tively low oxidative phosphorylation (OxPhos) [12]. We therefore deduced that glucose 
was the main carbon source for the de novo synthesis of glutamate, glutamine, and gluta-
thione through the TCA cycle. However, a prolonged overexpression of LIN28B was not 
accompanied by a significant increase in glucose metabolism, suggesting that iLIN28B-
level diversity enabled the formation of two distinct metabolic phenotypes in neuroblas-
toma cells. Overall, our data extended the metabolic role of LIN28B in regulating glucose 
homeostasis in neuroblastoma cells. Nevertheless, the functional and clinical significance 
of the observed metabolic alterations induced by LIN28B requires further experimental 
evaluation incorporating functional assays, analyses of patient-derived material, and in 
vivo studies. Establishing the clinical translatability of these findings could enhance their 
relevance for developing targeted therapeutic interventions in neuroblastoma patients 
with elevated LIN28B expression. Finally, we demonstrated that the multi-omics integra-
tion approach further facilitates the discovery of metabolic pathways in cancer cells by 
uncovering the dynamic temporal patterns of metabolites in human neuroblastoma cells. 
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4. Material and Methods 
4.1. Experimental Design 

Doxycycline-inducible SH-SY5Y control (CTRL) and induced LIN28B (iLIN28B) cell 
lines were obtained via a lentiviral infection following the protocol described previously 
[20]. The study design was longitudinal: both cell types were investigated by administer-
ing doxycycline for 0 h (basal LIN28B level), 48 h (medium LIN28B level), or 7 days (high 
LIN28B level) of in vitro culture, for a total of 6 experimental conditions. In the case of 
metabolomics investigation, 3 biological replicates were obtained for each condition, and 
the experiment was repeated 4 times, for a total of 12 independent samples in each exper-
imental condition. For the transcriptomics investigation, 2 biological replicates for each 
condition and 2 experimental replicates were performed, for a total of 4 independent sam-
ples in each experimental condition. 

4.2. Glycolysis Function Assays 
The glycolytic function was measured through the Agilent Seahorse XF Glycolysis 

Stress Test (Agilent Technologies, Santa Clara, CA, USA. In brief, 30,000 CTRL or iLIN28B 
cells per well were seeded in an XF96 plate left overnight at 37 °C, in a 5% CO2 incubator 
in complete medium. The day after, medium was replaced with DMEM without glucose, 
L-glutamine, phenol red, sodium pyruvate, and sodium bicarbonate (Sigma-Aldrich, St. 
Louis, MO, USA) enriched with 2mM of L-glutamine (pH 7.4) and after 1 h of incubation 
in a 37 °C non-CO2 incubator, the plate was transferred to the Seahorse XFe96 Extracellular 
Flux Analyzer to quantify the extracellular acidification rate (ECAR, in [mpH/min]) and 
the oxygen consumption rate (OCR, in [pmol/min]). The following final concentrations of 
compounds were used: glucose 10 mM (Sigma-Aldrich, St. Louis, MO, USA), Oligomycin 
1 µM (Sigma-Aldrich, St. Louis, MO, USA), and 2-DG 50 mM (TCI EUROPE, Zwijndrecht, 
Belgium). The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 
were normalized using total protein amount in each well obtained using BCA assays 
(Thermo Fisher Scientific, Waltham, MA, USA). 

4.3. RNA Isolation, cDNA Synthesis, and a Real-Time Quantitative PCR (qPCR) Assay 
RNA extraction was performed using TRIzol reagent (Invitrogen, Thermo Fisher Sci-

entific, Waltham, MA, USA) and Zymo Direct-zol (Zymo Research, Freiburg im Breisgau, 
Germany) columns as described previously [20], and the concentration was measured us-
ing Qubit (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). RNA quality and 
integrity were monitored using the RNA Nano Assay on the Agilent 2100 Bioanalyzer 
instrument (Agilent Technologies, Santa Clara, CA, USA). For cDNA synthesis, 1 µg of 
RNA was used following Superscript II (Invitrogen, Thermo Fisher Scientific, Waltham, 
MA, USA) protocol. Subsequently, qPCR was performed on an Applied Biosystems 7900 
HT Sequence Detection System using SYBR Green PCR Master Mixture reagents (Invitro-
gen, Thermo Fisher Scientific, Waltham, MA, USA). Experiments were performed in trip-
licate. The primers used in the study were GLUT-1 (Forward 5′-GCG-
GAATTCAATGCTGATGAT-3′, Reverse 5′-CAGTTTCGAGAAGCCCATGAG-3′); LDHA 
(Forward 5′-AGCCCGATTCCGTTACCT-3′, Reverse 5′-CACCAGCAACATTCATTCCA-
3′); 18S (Forward 5′-AAACGGCTACCACATCCAAG-3′, Reverse 5′-
CAATTACAGGGCCTCGAAAG-3′); NRP1 (Forward 5′-ATGCGAATGGCTGATTCAGG-
3′, Reverse 5′-TCCATCGAAGACTTCCACGTAG-3′); COL6A1 (Forward 5′-
CCTCTGCCCGGACCCTCA-3′, Reverse 5′-CACGGACCCCGAGAAAACCT-3′); HK2 
(Forward 5′-CCTGGTCTCATGGACCAAGGG-3′; Reverse 5′- 
ACACAGCCACAATGTCGAT-3′); GAPDH (Forward 5′-AAGGTGAAGGTCGGAG-
TCAA-3′; Reverse 5′-TGAAGGGGTCATTGATGGCA-3′). Relative expression levels were 
determined via normalization using expression of the 18S or GAPDH as endogenous con-
trol genes, and results were interpreted using the comparative ΔΔCt method. Statistical 
analyses were performed using GraphPad Prism 7 (GraphPad, La Jolla, CA, USA). 
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4.4. Immunoblot Assay 
For total protein extraction, iLIN28B and CTRL cells were trypsinized (PAN Biotech, 

Aidenbach, Germany), washed with cold PBS once, and resuspended in cold lysis buffer 
(Biosource International, Camarillo, CA, USA) supplemented with protease and phospha-
tase inhibitors (Sigma-Aldrich). Immunoblotting was performed with 20 µg of the pro-
teins quantified with Pierce BCA protein assay kit (Thermo Fisher Scientific, Waltham, 
MA, USA) following the manufacturer’s recommendations. Proteins were loaded on 4–
20% gradient gel and SDS-PAGE (Bio-Rad, Hercules, CA, USA) was performed as de-
scribed elsewhere [36]. Primary antibodies used in the study were anti-LIN28B (Cell Sig-
naling, Danvers, CA, USA; 4196S) and anti-Vinculin (Santa Cruz, Dallas, TX, USA; sc-
73264). For protein visualization, secondary horseradish-peroxidase (HRP)–conjugated 
antibodies (Sigma-Aldrich) were used. Enhanced chemiluminescence (ECL) Western blot-
ting detection reagents (ECLTM Select, Merck Life Science S.r.l., Milan, Italy) were used for 
protein band acquisition with the iBright Imaging Systems (Life Technologies, Thermo 
Fisher Scientific, Waltham, MA, USA). 

4.5. Gene Expression Analysis and Data Interpretation 
For gene expression analysis, 100 ng of total RNA was prepared for the transcription, 

hybridization, and biotin labeling according to the array protocol for the GeneChip™ 
Whole Transcript PLUS Reagent Kit Manual Target Preparation (Affymetrix, Thermo 
Fisher Scientific, Waltham, MA, USA). Samples were hybridized using the Human Clar-
iom™ S Gene Chip Cartridge Array (Thermo Fisher Scientific, Waltham, MA, USA). CEL 
files were normalized using the robust multiarray averaging expression measure with 
Transcriptome Analysis Console (TAC Software v. 4.0.2.15, Thermo Fisher Scientific, Wal-
tham, MA, USA). Differentially expressed genes between iLIN28B and CTRL were identi-
fied using the Significance Analysis of Microarray (SAM) algorithm coded in the samr R 
package (https://www.metaboanalyst.ca, accessed on 28 April 2023) [37] for any time 
points (i.e., 0 hours, 48 h, and 7 days). The estimated percentage of false-positive predic-
tions (i.e., false discovery rate, FDR) was obtained with 1000 permutations, and genes with 
an FDR < 0.01 were considered significant. The data supporting the findings of this study 
are available in GEO, reference number GSE252806. 

4.6. Metabolomics Investigation 
4.6.1. Sample Preparation 

The CTRL and LIN28B cells were grown in flasks and harvested after administering 
doxycycline at the indicated time points. Four pellets of about 1 × 106 cells were harvested 
for each time point analyzed. The entire harvesting and extraction process was performed 
on ice. Eight ceramic beads of 1.4 mm in diameter (MagNa Lyser Green Beads, Roche, 
Basel, Switzerland), previously washed in MeOH, were added to each sample pellet to-
gether with 250 µL of extraction solvent (2:2:1, MeOH:EtOH:H2O). Samples were then 
lysed in the pre-cooled Homogenizer Tissue Lyser (Roche, Basel, Switzerland), through 
two cycles of 1 min at 25 Hz with 30 s pause between the two cycles. Then, lysates were 
transferred to dry ice for 15 min to favor protein precipitation. The samples were centri-
fuged at 1600× g for 3 min, and the lysis procedure was repeated two more times with 100 
µL of extraction solvent at a time. 

Cell supernatants were thawed on ice and mixed using a Vortex mixer for 10 s. Then, 
350 µL of cold CH3OH were added to 50 µL of cell supernatant, left at −20 °C for 30 min, 
and centrifuged at 16,000× g for 15 min at 4 °C. Then, 100 µL of supernatant was trans-
ferred into a 200 µL well plate and evaporated to dryness under nitrogen flow, and re-
dissolved in 150 µL of H2O:CH3CN (0.1% v/v HCOOH) as 80:20 ratio. 
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4.6.2. Untargeted Metabolomics Analysis 
Untargeted metabolic profiling was performed in positive and negative electrospray 

ionization mode on an Acquity Ultra Performance Liquid Chromatography system (Wa-
ters MS Technologies, Milford, MA, USA) coupled to a Quadrupole Time-of-Flight Synapt 
G2 HDMS mass spectrometer (Waters MS Technologies, Milford, MA, USA). Data were 
collected in IM-MSE, in a scanning range of 20-1200 m/z. Chromatography was performed 
using an Acquity HSS T3 (1.7 µm, 2.1 × 100 mm) column (Waters Corporation, Milford, 
MA, USA) kept at 50 °C. The flow rate of the mobile phase was set at 0.5 mL/min, and each 
sample run lasted 12 min, with 5 µL of the sample injected for each run. The gradient 
mobile phase consisted of H2O (0.1% v/v HCOOH) (phase A), and CH3OH: CH3CN (0.1 % 
v/v HCOOH) 90:10 (phase B). Each sample run lasted 11 min, comprising an isocratic 
phase of 5% B for 1 min, a linear increase to 30% B for 2.5 min, a linear increase to 95% B 
for 3 min, an isocratic phase of 95% B for 1.5 min, and a washout phase of 5% B for 3 min. 
Quality control samples (QCs) and standard solution samples (Mixes) were used to assess 
reproducibility and accuracy during the analysis and examine the metabolite content of 
the samples. The QCs were prepared from an aliquot (25 µL) of each re-dissolved sample, 
pooled together, and diluted to three different dilution factors (1:2, 1:3, 1:5). Blank extracts 
were prepared by replacing cell supernatant with 50 µL of H2O and processed as de-
scribed for samples. The Mixes consisted of nine compounds of known exact mass and 
retention time. The QCs and Mixes were injected at regular intervals into 12 samples dur-
ing the sequence, together with blank samples, to evaluate mass accuracy, retention time 
shift, and contamination throughout the analytical sequence. The run order of the injec-
tions was randomized to prevent any spurious classification derived from the position of 
the sample in the sequence. 

4.6.3. Data Pre-processing 
Raw data were extracted using Progenesis QI software v2.4 (Waters Corporation, 

Milford, MA, USA), and two datasets were generated, one for the positive ionization mode 
and one for the negative ionization mode. The parameters used for data extraction were 
optimized through the preliminary processing of the QCs. We set a filter strength of 0.025 
and 0.2 to import the raw data, respectively, for positive and negative ionization mode, 
and a QC in the middle of the sequence as a reference for the automatic alignment of all 
runs in the sequence. The sensitivity of the automatic algorithm for the peak picking was 
set equal to 5, in a chromatographic range from 0.4 to 8.0 min. The so-called time mass 
variables (where time is the retention time and mass is the mass-to-charge ratio m/z of the 
chemical compound) were generated. Only variables with no missing data in the QCs and 
with intensity in the blank samples less than 1/5 of the 5th percentile of the QCs were 
considered. Missing data were imputed by generating a random number between zero 
and the minimum value recorded for that variable. Thus, linear regression models ex-
plaining the behavior of the variables in the QCs at different dilutions with the run order 
were calculated. The models were used to estimate local calibration curves at each run of 
the sequence, which were useful to calibrate the recorded variables in the samples [38]. 
Probabilistic quotient normalization was applied to remove dilution effects due to differ-
ent sample concentrations. Finally, variables with a coefficient of variation greater than 
30% in the QCs were excluded. Data obtained in positive and negative ionization modes 
were merged and mean-centered prior to performing data analysis. 

4.6.4. Variable Annotation 
Variable annotation was performed by searching the Human Metabolome Database, 

the METLIN metabolite database, and our in-house database. The fragmentation pattern 
was studied by injecting, in MS/MS mode, the samples with the higher ion intensity. An-
notation level was defined according to Sumner et al. [39], using 4 different levels of accu-
racy. Specifically, level 1 (corresponding to identified metabolite) was assigned to 
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compounds with fragmentation patterns consistent with those of standards analyzed un-
der identical conditions, and with MS1 signals showing differences in m/z less than 10 
ppm and in retention time less than 0.2 min with respect to the standards; level 2 was 
attributed to metabolites with m/z less than 10 ppm with respect to compounds recorded 
in online databases with similar fragmentation patterns; level 3 was assigned to com-
pounds with m/z less than 10 ppm with respect to the compounds in online databases; 
and level 4 was utilized for repeatable signals of the mass spectrum, with no correspond-
ence in the databases used. 

4.7. Statistical Analysis of Metabolomics and Transcriptomics Data 
Data were investigated by applying a hierarchical strategy. As the first step, explora-

tory data analysis was performed. Principal component analysis (PCA) [40], which sum-
marizes the data variation in a large dataset using a small number of score components, 
called principal components, built via a linear combination of the measured variables, was 
applied to discover cluster structures, trends, and relationships between observations and 
variables. Moreover, outlier detection was performed by applying the T2 test and Q-dis-
tance test based on PCA. Secondly, metabolites and transcripts were independently inves-
tigated to select the relevant features to be integrated into the final step of data analysis. 
The experimental design was explicitly considered. The experimental factors were the 
time of cell culture (factor ‘time’) and the type of cell line (factor ‘class’), whereas the re-
sponses were the gene expression (transcripts) and the metabolite concentration. The ex-
perimental replicate was considered a blocking factor (factor ‘experimental replicate’). The 
design matrix was calculated using the coding introduced in PLS for designed experi-
ments [41]. Specifically, the continuous quantitative factor ‘time’ was mean-centered, 
whereas the factor ‘class’, whose levels were indicated as ‘CTRL’ and ‘iLIN28B’, and ‘ex-
perimental replicate’, were codified as nominal categorical factors. After coding, each 
block of the design matrix was scaled to unit variance. As a result, an orthogonal design 
matrix was obtained. Both univariate and multivariate data analysis tools were applied. 
Specifically, a regression model based on multivariate linear regression (MLR) was built 
for each measured response considering the design matrix as a matrix of the predictors. 
False discovery rate (FDR) was controlled by the Benjamini–Hochberg procedure [42]. 
Multivariate data modeling was based on projection to latent structures (PLS) regression. 
Specifically, the design matrix was regressed on the measured responses using suitable 
orthogonal constraints to guarantee that each PLS score component was related to a single 
factor and orthogonal to the other [41]. As a result, two score components, one explaining 
the factor ‘time’ and the other explaining the factor ‘class’, were calculated. A randomiza-
tion test working on the residuals was implemented to assess the significance of the ei-
genvalue calculated at each iteration of the PLS algorithm to evaluate the significance of 
the score component. Only score components with significant eigenvalues were consid-
ered. Relevant features were discovered by calculating Pearson’s correlation between 
score components and measured responses. The significance of Pearson’s correlation co-
efficient was assessed via a randomization test. 

In the case of single time point analysis, univariate data analysis was performed us-
ing the Mann–Whitney test, controlling FDR via the Benjamini–Hochberg procedure, 
whereas multivariate data analysis was based on PLS for classification with stability se-
lection [41–43]. The number of score components to use was determined based on the first 
maximum of Matthew’s correlation coefficient (MCC) calculated via 20 repeated 5-fold 
cross-validations under the condition of passing the randomization test on the class re-
sponse. A significance level of α = 0.05 and a control level of δ = 0.05 were assumed in PLS 
modeling and in FDR, respectively. In the last step of data analysis, the discovered rele-
vant metabolites and transcripts were integrated at the pathway level by applying joint-
pathway analysis. Considering the pathways of Homo sapiens included in the KEGG path-
way database, transcripts and metabolites were directly concatenated into a single query, 
followed by over-representation analysis [44]. Data analysis was performed using in-



Int. J. Mol. Sci. 2024, 25, 1602 15 of 17 
 

 

house R-functions implemented via the R 4.0.4 platform (R Foundation for Statistical 
Computing) and joint-pathway analysis using Metaboanalyst 5.0 (www.metaboanalyst.ca 
accessed on 28 April 2023). 

Supplementary Materials: The supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/ijms25031602/s1. 
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