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Abstract: Current cytokine-based natural killer (NK) cell priming techniques have exhibited limi-
tations such as the deactivation of biological signaling molecules and subsequent insufficient mat-
uration of the cell population during mass cultivation processes. In this study, we developed an
amphiphilic trigonal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-polyethylene
glycol (PEG) material to assemble NK cell clusters via multiple hydrophobic lipid insertions into
cellular membranes. Our lipid conjugate-mediated ex vivo NK cell priming sufficiently augmented
the structural modulation of clusters, facilitated diffusional signal exchanges, and finally activated NK
cell population with the clusters. Without any inhibition in diffusional signal exchanges and intrinsic
proliferative efficacy of NK cells, effectively prime NK cell clusters produced increased interferon-
gamma, especially in the early culture periods. In conclusion, the present study demonstrates that
our novel lipid conjugates could serve as a promising alternative for future NK cell mass production.

Keywords: ex vivo NK cell priming; biomaterial-mediated clustering; membrane contact; lipid-polymer
conjugate; hydrophobic insertion

1. Introduction

Natural killer (NK) cells differentiated from lymphocyte precursor cells can eliminate
tumor cells or infected cells [1]. Unlike T cells, these are cytotoxic lymphocytes capable of
eliminating tumors without the need for prior antigen presentation [2,3]. When inhibitory
Major Histocompatibility Complex (MHC) receptors expressed on the surface of NK cells
combine with MHC class 1 located on target cell membranes, the activity of NK cells is
downregulated, and NK cells do not attack normal cells [4]. As MHC class 1 is reduced or
absent on the surface of tumor or infected cells, the activity of NK cells increases to attack
and eliminate tumor cells [5]. NK cells are able to detect antigens and secrete lytic granules,
which include perforin (i.e., pore-forming cytokine allowing granzyme to enter the target
cells) and granzyme (i.e., granules to activate intracellular substrates or proteins (Caspase-3,
-7, and Bid protein) that can induce apoptosis of target cells) [6,7]. These NK cell functions
are balanced by a variety of interactions between surface ligands/receptors. For instance,
the anticancer efficacy of NK cells and subsequent tumor apoptosis could be enhanced by
the interaction of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptors
and Fas ligands [8].

When our body is in a homeostatic state, NK cells account for 5–15% of all circulating
lymphocytes [9]. Among these, 10% are CD56bright/CD16− NK cells, which produce inter-
feron (IFN)-γ or TNF-α through cytokine stimulation. The other 90% are CD56dim/CD16+

NK cells, considered more mature than the former. They secrete cytotoxic granules when
a combination of NK cell-activating receptor-ligand occurs [10]. Given the limited innate
population of NK cells, it is important to elicit maximum activity by priming NK cells
during culturing processes.
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One of the conventional NK cell priming techniques is chemical priming with polyethylen-
imine, used for DNA complexation and transfection [11]. Another conventional method
for priming NK cells involves the treatment of cytokine cocktails during the expansion
process [12–14]. For instance, interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and IFN-αβ
are widely utilized to induce NK cell proliferation or enhance tumor cell cytotoxicity [15].
Exogenous cytokine delivery to NK cells could also provide sufficient effector functions [16].
Alternatively, people use tumor-induced cell priming, which involves the use of irradiated
tumor cells as a stimulator [17,18]. However, due to the short half-life of bolus cytokines,
continuous and repeated administration is required during NK cell expansion [19]. More-
over, frequent deactivation of applied cytokines in culture media often results in insufficient
activation of NK cells, posing a technical obstacle for large-scale priming in the further
production of autologous/allogenic cellular therapeutics [19]. Furthermore, previous stud-
ies have reported that the overexpression of immune checkpoint receptors is observed in
simultaneously primed NK cells with cytokines and glucocorticoids [20]. This phenomenon
could be occurred when the cytokine stimulation time is over 96 h or more [21]. Increased
expression of programmed cell death (PD)-1 facilitated the binding with PD-ligand 1 on
tumor surfaces and consequently reduced the therapeutic effectiveness of NK cells.

Accordingly, conventional NK cell priming techniques have exhibited a series of limi-
tations, especially when cytokine cocktails are treated in culture media. A new priming
approach is needed without any side effects, such as the deactivation of cytokines or
increased immune checkpoint expression during NK cell expansion. One of the morpho-
logical characteristics of NK cells during the initial expansion is the formation of clusters.
NK cells have a single-cell form when they migrate into blood vessels in the body. Whereas,
during the ex vivo/in vitro expansion, the suspended NK cell population forms clusters
via the development of an extracellular matrix (ECM). These architectural changes often
initiate the exchange of diffusional paracrine signaling molecules and membrane-contact
signal transduction within NK cells. Therefore, facilitated interaction further activates the
production of cytokine activators such as IL-2. Subsequently, activated NK cells possess
augmented anticancer efficacies [22].

Collectively, the enhanced guidance for the formation of NK cell clusters without
cytokine or growth factor cocktails could be an ideal and beneficial alternative approach for
NK cell priming. Therefore, in the present study, we suggest a biomaterial-mediated NK
cell priming technique by modifying NK cell membranes with the aid of a novel trigonal-
linker (TL) module (Figure 1). We attempted to form NK cell clusters by connecting
NK membranes with trigonal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE)
lipid-polyethylene glycol (PEG) material (Figure 1A). The DSPE lipid anchor could be
inserted into NK cell membranes via hydrophobic interaction between DSPE lipid and
the lipid-bilayers of NK cell surfaces. In previous studies, comparative analyses with
other lipid anchor moieties were performed, revealing that modification of the NK cell
surface using DSPE imparts greater stability and prolonged maintenance [23,24]. Hence,
utilizing the DSPE-lipid-based biomaterial could enhance the interconnection of the NK
cell population stably and accelerate their joining to form spheroids.

Rather than stimulating NK cells with cytokines or growth factors, this biomaterial-
mediated NK cell cluster formation could effectively control their interactions and regulate
the signaling cascades of the NK cell population within the formed clusters. Our previ-
ous investigations [23,25–30] have proved that (1) DSPE lipid-based polymeric conjugate
materials were successfully immobilized onto various cellular membranes, (2) there were
no inhibitory responses in the intrinsic signaling properties of surface-modulated cells,
indicating no toxicity, and (3) this biomaterial-mediated ex vivo cell surface modification
could augment multiple cellular functionalities by presenting additional ligands/receptors
for further cell-to-cell contacts. Furthermore, such lipid anchoring could be completed by
mixing NK cell suspension and soluble TL modules at room temperature (RT) for 30 min
without any additional supplements. To this end, TL-mediated NK (TLNK) cells were suffi-
ciently primed by rapid aggregation through lipid-anchor module-dependent membrane
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interaction between NK cells, and augmented IFN-γ release from activated NK cell clusters
was evaluated.
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Figure 1. Schematic illustration of trigonal-linker (TL)-mediated NK cell clustering for ex vivo
priming. (A) The synthesis route and complete structure of the TL module involved the conjugation
of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-
PEG-NH2) with trimesic acid (TMA), resulting in the formation of (DSPE-PEG-NH)3-T. (B) The
process of TL module-mediated NK cell clustering and priming. The upregulation of cytokine
secretion, a crucial indicator of cell priming, was successfully achieved through the promotion of
spheroid formation by (DSPE-PEG-NH)3-T.

2. Results
2.1. Synthesis and Characterization of Trigonal-Linker Module for NK Cell Priming

To construct the TL module for NK cell clusters, DSPE-PEG-NH2 was conjugated
with trimesic acid (TMA), resulting in (DSPE-PEG-NH)3-T (Figure 1A). The successful
branching was verified through Fourier transform infrared (FTIR) and proton nuclear
magnetic resonance (1H-NMR) analyses. FTIR spectra were employed to confirm the
conjugation of DSPE-PEG-NH2 with TMA. The FTIR peak of (DSPE-PEG-NH)3-T observed
at 3347 cm−1 was assigned to the N–H stretching of the newly formed amides, while the
peaks at 2916, 2882, and 2850 cm−1 originated from C–H stretching belonging to CH2
groups of DSPE lipid, PEG, and CH groups of TMA. After the conjugation of DSPE-PEG-
NH2 with TMA, the disappearance of the 1716 cm−1 COOH groups of TMA and the
3384 cm−1 terminal NH2 stretching of DSPE-PEG-NH2 indicated successful conjugation
(Figure 2). Additionally, IR frequencies at 1722 cm−1 (ester bond >C=O stretching of
DSPE-PEG), 1661 cm−1 (>C=O stretching of newly formed amides), 1539 cm−1 (C–H and
C=C stretching frequencies), 1466–1343 cm−1 (O–H and C–H bending frequencies), 1102,
962, and 841 cm−1 (C–O–C stretching belonging to both DSPE-PEG and TMA) further
confirmed the successful construction of the TL module.

Subsequently, the conjugation of the DSPE-PEG moieties with the TMA core was fur-
ther confirmed by proton NMR analysis. TMA exhibited NMR signals as follows: phenyl
ring CH protons (δ 8.66 ppm) and carboxylic group protons (δ 13.59 ppm). Similarly, DSPE-
PEG-NH2 showed typical NMR signals of terminal methyl groups (δ 0.85 ppm), lipid chain
methyl protons (δ 1.06–2.37 ppm), PEG repeating unit protons (δ 3.51 ppm), and available
amide bond protons (δ 7.57–7.72 ppm). The synthesized (DSPE-PEG-NH)3-T revealed
major NMR signals for terminal methyl groups (δ 0.85 ppm), lipid chain methyl protons
(δ 0.98–2.25 ppm), PEG repeating unit (δ 3.51 ppm), amide protons of DSPE-PEG
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(δ 7.51–7.93 ppm), and core phenyl ring protons (δ 8.64 ppm). Furthermore, signals cor-
responding to the newly formed amide linker protons were observed at δ 8.43–8.57 and
δ 8.75–8.97 ppm (Figure S1). These observed NMR signals confirm the successful synthe-
sis of (DSPE-PEG-NH)3-T (Figure 3). Peak integration at δ 8.64 ppm (3H) relative to the
terminal CH3 groups’ peak observed at δ 0.85 ppm (19H) and repeating units of ethylene
glycol of PEG at δ 3.51 ppm (628H) further confirmed the successful conjugation of three
DSPE-PEG molecules with the TMA core, resulting in the formation of the TL module
(Figure S1). Additionally, by gel permeation chromatography (GPC) analysis, the average
molecular weight of the (DSPE-PEG-NH)3-T linker was determined to be 9464 g/mol. These
observations further confirmed the successful synthesis of the (DSPE-PEG-NH)3-T linker.
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Figure 2. Fourier-transform infrared (FTIR) spectroscopic analysis of trimesic acid (TMA), 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG-NH2), and synthe-
sized trigonal-linker module, DSPE-PEG-NH branching with TMA ((DSPE-PEG-NH)3-T).
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Figure 3. Proton nuclear magnetic resonance (1H-NMR) spectra of trimesic acid (TMA), 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG-NH2), and
DSPE-PEG-NH branching with TMA ((DSPE-PEG-NH)3-T). The NMR spectrum results were recorded
in dimethyl sulfoxide (DMSO)-d6 solvent.
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2.2. Viability of Surface Engineered Cells

To evaluate the activity of TLNK cells, 2 × 104 NK cells suspended in media were
treated with a module solution ranging from 0 to 200 µg/mL. After incubation for 6 h to
form clusters, the viability of NK cells was quantified. Treatment with TL modules indicated
no cytotoxicity, and subsequently, a reduced viability of NK cells was not observed, up to
200 µg/mL of TL modules (Figure 4).
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Figure 4. NK cell viability with the module (DSPE-PEG-NH)3-T for 6 h. Cell viability was evaluated
in NK cells with a 0~200 µg/mL concentration of the module. In the subsequent experiment, cells
were treated with (DSPE-PEG-NH)3-T at a 40 µg/mL concentration. The data were expressed as
mean ± standard deviation (SD) based on a triplicate measurement. (ns: not significant).

2.3. Structural Analysis of the TLNK Cell Cluster

Typically, NK cells develop a spheroid shape starting at 24 h during initial proliferative
periods. Therefore, the circularity of clustered NK spheroids at 6 h was measured to
evaluate the degree of cluster formation assisted by TL modules. Each spheroid was
formed with 5 × 103 NK cells. Circularity is the simplest way to calculate and visualize the
convex hull perimeter, which represents the roughness of the particle surface. The closer
the convex hull perimeter is to 1, the smoother the surface is, and it can be interpreted that
the cells form a more uniform and denser spheroid. Therefore, as a result of calculating
circularity from the representative image of NK cell clusters, naïve NK spheroid without
any material treatment exhibited 0.45 (Figure 5A), whereas TLNK spheroid formed by
using TL modules showed 0.52 (Figure 5B). The increased circularity aided by our materials
demonstrated that (1) the distance between NK cells in the spheroid is relatively close
and uniform (Figure 5C), and (2) thereby the exchange of signaling molecules, as well
as membrane-contact signal induction within the NK population, could be activated.
Moreover, the quantification of NK spheroid volumes was performed at both 24 and 48 h
(Figure 5D). Interestingly, the volumes observed in both NK spheroids and TLNK spheroids
were comparable over an extended period. These results provided robust evidence that the
TL module facilitates uniform cell aggregation without disrupting the intrinsic clustering
function of native NK cells or influencing the physical distance between cells. Additionally,
the spherical arrangement of NK cell aggregates increases the likelihood of individual
constituent cells making contact with neighboring cells. Although our TL module did not
have a direct impact on the macroscopic dimensions of NK cell clusters, it is conceivable
that substance-mediated cluster formation could induce changes in cell-to-cell contacts,
thereby potentially influencing the internal core structure of the clusters.
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Figure 5. NK spheroid volume and morphology analysis. NK spheroid formation image at 6 h in (A)
the NK cell group and (B) the TLNK cell group. (C) Cell circularity with (DSPE-PEG-NH)3-T for 6 h.
(D) Volume quantification with (DSPE-PEG-NH)3-T for 24 h and 48 h. A single spheroid was made
up of 5 × 103 NK cells. The area, perimeter, length, and width of spheroids were measured by ImageJ
software 1.53e. Also, the spheroid circularity and volume were calculated with Formulas (2) and (3).
The data were expressed as mean ± standard deviation (SD) based on a triplicate measurement.
(* p < 0.05, ns: not significant).

2.4. Enhanced Cytokine Release of TL-Mediated Primed Cells

NK cells activate an immune response and secrete cytokines upon the recognition of
an external stimulus such as an inflammatory action [19,31,32]. As a result, the activation
of NK cells can be determined by the level of cytokine (i.e., IFN-γ) secretion after treatment
with inflammation-inducing substances such as lipopolysaccharides (LPS). The binding
of such antigen molecules with NK cell membrane receptors (especially Toll-like receptor
4) initiates intracellular signaling pathways, upregulates the expression of IFN-γ, and
thereby facilitates the exocytosis of the produced IFN-γ. When compared with naturally
formed naïve NK spheroid, TLNK spheroid exhibited enhanced levels of IFN-γ secretion
at both 6 and 24 h of cluster formation (Figure 6). The results demonstrated that our TL
modules did not inhibit the sequential signaling mechanisms of NK cells during the priming
process, including (1) membrane receptor binding with extracellularly available antigen
molecules, (2) initiation of signal transduction into intracellular pathways, (3) regulation of
stepwise signaling to express cytokines, and (4) secretion of produced cytokines through
NK cell membranes. Moreover, a significantly increased amount of secreted IFN-γ in
TLNK spheroid demonstrated that our NK cell clustering strategy using (DSPE-PEG-NH)3-
T subsequently improved inter-membrane contacts within the NK cell population and
frequent signal exchange could be obtained, as compared with natural ECM formation in
naïve NK spheroid without any aid of biomaterials.
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3. Discussion

Among a series of NK cell priming techniques, biomaterial-mediated NK cell cluster
formation via accelerated membrane interaction can be a novel and effective engineering
tool. This approach enables the augmented NK cell activation without the requirement
of additional supplementary cytokine cocktails. Our results demonstrated that (1) TL
modules could be effectively immobilized into the lipid bilayers of NK cell membranes,
specifically via hydrophobic interaction [33,34], and (2) they could strengthen the mem-
brane connections of NK cells through material-mediated physical links. In consequence,
as compared with naturally-driven NK clustering, which is mediated by ECM production
(without the aid of biomaterials), a significant induction of multiple membrane interactions
occurred, leading to rapid and tight formation of NK cell clusters, and effective cell prim-
ing ultimately took place, resulting in enhanced IFN-γ secretion in TLNK spheroids. In
addition, NK cell clusters induced by TL modules did not exhibit any cytotoxic responses
or downregulation of intrinsic properties of NK cells after the administration of membrane-
incorporated materials.

Such architectural characteristics of NK cell cluster formation are associated with their
physiological signaling performances. Kim et al., previously compared a single NK cell
culture condition, in which cells are unable to interact with adjacent neighboring cells,
and a social condition that allows interactions [22]. The single-NK cell condition exhibited
different downstream signaling compared to cells in the social condition. Significantly,
increased interactions between NK cells improved IL-2 expression, one of the polypeptide
family that mediates interactions between leukocytes. When IL-2 binds to the IL-2 receptor
CD25, an intracellular signal transducer/activator of transcription (STAT) 5 is phosphory-
lated (i.e., pSTAT5) and further activates the expression of genes that produce perforin and
granzyme B. Furthermore, pSTAT5 activation sequentially improves the expression level of
CD25, activating positive feedback involved in IL-2 expression.

Additional interactions between NK cell membrane compartments also positively
influence further activation of the NK cell population in clustering. For instance, several
CD2 family receptors on NK cell membranes, including CD2, 2B4, CD48, CD58, and CD84,
are involved in the interplay of receptors/ligands of the same one or the same family on the
NK cell surface, and cells function through this interaction [35]. Particularly among these,
the 2B4(CD244)/CD48 linkage plays a powerful role in the momentous effector function of
NK cells, specifically IFN-γ secretion [36,37].

The secretion of IFN-γ is fatally reduced, when the absence of any one of these
receptors occurs, which presumably corresponds to the decreased tumor-specific lysis
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function. Another study has provided evidence that the inhibition of NK cell clustering
could downregulate the IFN-γ secretion ability of NK cells [38]. Furthermore, the defects in
2B4 (CD244)/CD48 led to a decrease in intracellular calcium release, which could impede
perforin assembly and the exocytosis of soluble granules [35,39,40]. As such, IFN-γ is a
representative indicator to evaluate the activation and priming of NK cells. In our study,
as a result of TL module-mediated NK cell priming, TLNK clusters secreted more IFN-γ
upon facilitated activation. The enhanced secretion level of IFN-γ is involved in activating
intercellular signaling, NK cell accumulation, activation, and cytotoxicity [41]. In the
process of proceeding with this signaling pathway, our TL module could avoid side effects
that occur in existing conventional priming methods, such as cytokine-mediated expression
of immune checkpoint receptors (e.g., PD-1), and improve the problem of high costs.

Collectively, NK cell clustering is a critical initial step of the NK cell activation and
priming process through frequent and sufficient signaling with the aid of various membrane
compartments. Subsequently, intracellular signal transduction and sequential gene expres-
sion are also facilitated, and the secretion of IFN-γ is enhanced in a properly primed NK
cell population. To maximize the priming efficiency without the side effects of conventional
priming methods, our biomaterial-mediated ex vivo NK cell priming could (1) facilitate the
formation of NK clusters by connecting with surrounding NK cells through hydrophobic
lipid-lipid affinity and (2) boost the rate of initial clustering by membrane-lipid interac-
tions. Efficiently primed NK cells in TLNK clusters were examined by increased secretion
of IFN-γ.

4. Materials and Methods
4.1. Chemicals

DSPE-PEG-NH2 (with a molecular weight (MW) of 2850 g/mol and 95% purity by
GPC) was purchased from Nanosoft Polymers. Inc. (Winston Salem, NC, USA). 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC, >98.0% purity) was obtained from the
Tokyo Chemical Industry (Tokyo, Japan). N-hydroxy succinimide (NHS, 98% purity),
di-methyl formamide (DMF, 99.8% purity) (anhydrous), 4-dimethylaminopyridine (DMAP,
≥99% purity), and TMA (95%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Synthesis of (DSPE-PEG-NH)3-T for NK Cell Clustering

TL module ((DSPE-PEG-NH)3-T) was synthesized using the EDC/NHS branching re-
action method [29]. Briefly, 0.1 mmol of the TMA linker (20 mg) was reacted with 0.29 mmol
EDC (54.5 mg) and 0.48 mmol of NHS (54.7 mg) for carboxylic group activation (Figure 1A).
The activated linker was then reacted with 0.32 mmol of DSPE-PEG-NH2 (849.9 mg) in
anhydrous DMF, with the addition of 0.3 mmol of DMAP (37.2 mg). The reaction was
stirred in the presence of N2 for 48 h at RT. The product was dialyzed using a dialysis
tube (MWCO 6–8 kDa) against distilled water (DW) for 3 days to remove unconjugated
DSPE-PEG-NH2, TMA, EDC, NHS, and mono/di-connected DSPE-PEG-NH with TMA.
After dialysis, (DSPE-PEG-NH)3-T was lyophilized, yielding a final material as a white
powder with a quantitative yield of 64%. The >95% purity was confirmed by the absence
of intermediate signals present in NMR spectra. The compound was characterized by FTIR
(PerkinElmer FTIR Spectrum Two, PerkinElmer, Shelton, CT, USA) and 1H-NMR (500 MHz
FT-NMR spectroscopy, Bruker, Billerica, MA, US).

4.3. Characterizations of (DSPE-PEG-NH)3-T

The final synthesized TL modules for NK cell clusters were successfully characterized
by FTIR and 1H-NMR analysis. The degree of branching was confirmed by the integrating
1H-NMR peaks into the core phenyl protons and terminal methyl protons of DSPE lipid. The
molecular weight of the synthesized linker was confirmed by the GPC instrument (Waters,
Milford, MA, USA) equipped with a Styragel GPC column using Agilent Polystyrene as
the GPC standard. Tetrahydrofuran was used as the solvent, and 100 µL of the TL module
solution was injected into the GPC instrument. The analysis ran at a flow rate of 1 mL/min
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at 35 ◦C for 50 min. FTIR peaks: TMA, 3087 cm−1 (NH stretching), 2995 and 2824 cm−1

(CH stretching), 1716 cm−1 (CO stretching), 1607 cm−1 (C=C stretching), 1452 cm−1 (C-H
bending), 1407, 1272 cm−1 (O-H bending), and 913 cm−1 (C-O stretching). DSPE-PEG-
NH2, 3384 cm−1 (NH stretching), 2918, 2882, 2844 cm−1 (CH stretching), 1733 cm−1 (C=O
stretching), 1641 cm−1 (amide stretching), 1469 cm−1 (C-H bending), 1343 cm−1 (N-H
bending), 1104 cm−1 (C-O-C stretching). (DSPE-PEG-NH)3-T, 3347 cm−1 (NH stretching
of newly formed amide bond), 2916, 2882, 2850 cm−1 (CH stretching of both lipid and
TMA), 1722 cm−1 (CO stretching of DSPE-PEG chain), 1661 cm−1 (newly amide stretching),
1539 cm−1 (C=C stretching), 1466 cm−1 (CH bending), 1343 cm−1 (N-H bending), 1102,
962 and 841 cm−1 (C-O-C stretching). NMR signals: TMA, 1H-NMR (500 MHz, dimethyl
sulfoxide (DMSO)-d6) δ 13.59 ppm and 8.66 ppm. DSPE-PEG-NH2, 1H-NMR (500 MHz,
DMSO-d6) δ 7.72 and 7.57, 3.51, 2.37, 2.26, 1.49, 1.23, 1.06, and 0.85 ppm. (DSPE-PEG-NH)3-
T, 1H-NMR (500 MHz, DMSO-d6) δ 8.97, 8.87, 8.64, 8.57, 8.56, 8.54, 8.43, 7.93, 7.51, 3.51, 2.25,
1.49, 1.23, 1.17, 0.98, and 0.85 ppm.

4.4. Cell Culture

NK-92mi cells (gift from Doh’s lab (Seoul National University, Seoul, Republic of
Korea)) were cultured with a complete growth medium consisting of Minimum Essential
Medium Alpha (Gibco, Grand Island, NY, USA), 12.5% fetal bovine serum (Gibco), 12.5%
horse serum (Gibco), 1% penicillin−streptomycin solution (Corning, Corning, NY, USA),
0.2 mM inositol (Sigma-Aldrich), 0.1 mM β-mercaptoethanol (Sigma-Aldrich), and 0.02 mM
folic acid (Sigma-Aldrich). The cells were incubated at 37 ◦C (5% CO2, 95% humidity).

4.5. Ex-Vivo NK Cell Surface Engineering

NK cells were treated with (DSPE-PEG-NH)3-T which was dissolved in a complete
growth medium at a concentration of 1 mg/mL. Specifically, 5 × 105 NK cells were incu-
bated with 100 µL of (DSPE-PEG-NH)3-T solution at RT for 30 min. Subsequently, the cells
were washed twice with 500 µL of Dulbecco’s phosphate-buffered saline. Cells were then
resuspended at a concentration of 5 × 103 cells per 100 µL complete growth medium. The
engineered cells were used for further experiments.

4.6. NK Spheroid Formation

The agarose-coated well plate was prepared by adding 50 µL of 1.5% (w/v) agarose
(E&S Bioelectronics Company, Daejeon-si, Republic of Korea), which can be melted in DW
using an electro microwave into a flat bottom 96-well cell culture plate (SPL Life Science,
Pocheon-si, Republic of Korea) [42]; 5 × 103 cells of NK or TLNK cells were then prepared
according to Section 4.5 and seeded in an agarose-coated well plate. Each plate was
incubated for 6, 24, and 48 h to analyze the spheroid size and quantify cytokine secretion
from the NK cell cluster. The cells were incubated at 37 ◦C (5% CO2, 95% humidity).

4.7. Cell Cytotoxicity Analysis of (DSPE-PEG-NH)3-T

To analyze the cytotoxicity of (DSPE-PEG-NH)3-T on NK cells, (DSPE-PEG-NH)3-T
was dissolved in complete growth medium at concentrations ranging from 0 to 200 µg/mL.
2 × 106 NK cells were suspended in 200 µL of the (DSPE-PEG-NH)3-T solution. The
suspended cells were poured into a U-bottom 96-well cell culture plate (SPL Life Science).
The plate was then incubated at RT for 30 min, followed by incubation at 37 ◦C for 6 h.
40 µL of CellTiter-Blue® (Promega, Madison, WI, USA) was added into each well for cell
viability assessment. Treated cells were further incubated at 37 ◦C for 3 h and subsequently
centrifuged at 400× g for 5 min to transfer the supernatant into a new flat-bottom 96-well
cell culture plate. The fluorescent intensity (FI) of the supernatant was measured with a
microplate spectrophotometer (Ex/Em = 560/590 nm wavelength). The percentage of cell
viability was then analyzed using Formula (1):

Cell viability(%) =
FI of experimental group

Average FI of control group
× 100 (1)
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4.8. Spheroid Size Analysis

NK cell and TLNK spheroid images were obtained using an optical microscope (Ti-E
System, Nikon, Tokyo, Japan). To assess clustering efficiency (i.e., spheroid volume and
circularity), characterization was conducted using ImageJ software 1.53e. The spheroid
volume was calculated using Formula (2):

V = 0.5 × Length × Width2 (2)

and circularity was calculated using Formula (3):

Circularity = 4π × Area
Perimeter2 (3)

4.9. Quantification of Cytokine Secretion from the NK Cell Cluster

To assess the IFN-γ released from NK cells upon inflammatory stimulation, NK
spheroids were prepared following the described method in Section 4.5 and cultured for 0,
6, and 24 h. Subsequently, 1 µg/mL of LPS (from Escherichia coli O26:B6, Sigma-Aldrich)
was administered to these cell spheroids, and the plates were incubated at 37 ◦C for 24 h.
The IFN-γ secretion response was analyzed using an Enzyme-Linked ImmunoSorbent
Assay kit (PeproTech, Cranbury, NJ, USA) following the manufacturer’s instructions.

4.10. Statistical Analysis

Statistical analyses were conducted for data quantification, and quantitative exper-
iments were performed in triplicate. The results were then analyzed using a one-way
analysis of variance (ANOVA) and Tukey’s multiple-comparison test on GraphPad Prism
8.0.2 (GraphPad Software Inc., La Jolla, CA, USA).

5. Conclusions

In this study, a biomaterial-mediated ex vivo NK cell priming technique was suc-
cessfully developed, specifically via enhanced inter-membrane interactions within the
NK cell population during cluster formation processes. Newly synthesized TL modules
effectively initiated NK cell clustering without any inhibition in proliferation and other in-
trinsic cellular properties. Hydrophobic lipid insertion assembled NK cells into the clusters,
which exhibited augmented activation and thereby enhanced IFN-γ production. Therefore,
our material-based NK cell priming approaches and subsequently engineered TLNK cell
clusters could overcome the limitations of current cytokine-based NK cell priming methods.
Consequently, our result demonstrated that material-induced structural modulation in the
NK cell population could be an alternative method to facilitate NK cell activation without
any supplementary cytokines or growth factors.
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