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Abstract: The Kirsten rat sarcoma viral oncogene homolog (KRAS)G12C mutation is prevalent in lung
adenocarcinoma (LUAD), driving tumor progression and indicating a poor prognosis. While the FDA-
approved AMG510 (Sotorasib) initially demonstrated efficacy in treating KRASG12C-mutated LUAD,
resistance emerged within months. Data from AMG510 treatment-resistant LUAD (GSE204753) and
single-cell datasets (GSE149655) were analyzed. Gene set variation analysis (GSVA) and gene set
enrichment analysis (GSEA) were used to explore enriched signaling pathways, nomogram models
were constructed, and transcription factors predicting resistance biomarkers were predicted. CIBER-
SORT identified immune cell subpopulations, and their association with resistance biomarkers was
assessed through single-cell analysis. AMG510-resistant LUAD cells (H358-AR) were constructed,
and proliferative changes were evaluated using a CCK-8 assay. Key molecules for AMG510 resis-
tance, including SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and MTRNR2L12, were recognized.
These molecules impacted multiple signaling pathways and the tumor microenvironment and were
co-regulated by various transcription factors. Single-cell analysis revealed a dampening effect on
immune cell function, with associations with programmed cell death ligand 1 (PDL1) expression,
cytokine factors, and failure factors. The findings indicate that these newly identified biomarkers are
linked to the abnormal expression of PDL1 and have the potential to induce resistance through im-
munosuppression. These results highlight the need for further research and therapeutic intervention
to address this issue effectively.

Keywords: lung adenocarcinoma; AMG510 (Sotorasib); resistance; single-cell transcriptomics; biomarkers

1. Introduction

LUAD is one of the commonest malignancies [1–3]. Generally, conventional therapies
used for LUAD include chemotherapy, radiotherapy, or a combination of both, and resis-
tance to chemotherapy resulting in chemotherapy failure and death has become an ongoing
serious medical problem [4,5]. KRAS stands as the predominant oncogene mutation found
in humans, responsible for a quarter of all human cancers [6]. This oncogenic protein
functions as a delicately regulated molecular switch, commanding a multitude of signaling
cascades by binding either to its active (GTP) or inactive (GDP) state [7–9]. Mutations in this
protein primarily arise from single amino acid substitutions at specific codons, commonly
occurring at positions Q61, G12, or G13, with G12 mutations encompassing over 80% of
all KRAS mutation cases [10]. The mutant-activated KRAS promotes tumor proliferation,
metastasis, and invasion by stimulating multiple signaling routing pathways, such as the
RAF-MEK-ERK signaling pathway [11], PI3K-AKT signaling pathway [12,13], and other
signaling pathways [12,14].
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Recently, the Food and Drug Administration (FDA) approved AMG510 [15], devel-
oped by Amgen, for the treatment of patients with advanced LUAD harboring G12C
mutations in the KRAS gene [15]. AMG510 irreversibly binds to the substituted cysteine in
KRASG12C, locking KRAS in an inactive GDP-bound state and thus inhibiting downstream
signaling [16]. The CodeBreaK100 Phase II single-arm trial revealed an objective response
rate (ORR) of 37% and a median progression-free survival (PFS) of 6.7 months for sotorasib
in advanced LUAD [17]. However, despite these achievements, resistance to AMG510
inevitably develops, and the mechanisms underlying this resistance are complex and re-
main largely unexplored. Therefore, we suggest that patients with lung adenocarcinoma
being treated with AMG510 who develop resistance may have distinct gene expressions
showcasing significant biomarkers that contribute to resistance development and facilitate
tumor progression.

Although the KRASG12C mutation in LUAD has been targeted with AMG510, the
mechanisms underlying the development of resistance to this treatment remain unclear,
and the associated biomarkers have yet to be reported. In this study, we employed bioinfor-
matics to identify biomarkers associated with AMG510 resistance in LUAD. We integrated
data from multiple datasets and single-cell transcriptomics to thoroughly investigate the
roles of these biomarkers in tumor progression. Furthermore, we constructed AMG510-
resistant LUAD cell lines and experimentally validated the expression of these biomarkers
within these cell lines.

2. Results
2.1. Identification and Functional Enrichment Analysis of the DEGs in a PDX Model of AMG510
Resistance of LUAD

To investigate differentially expressed genes (DEGs) related to AMG510 resistance
in LUAD, the GSE204753 dataset was accessed via the GEO database, which is open to
the public. The criteria for considering DEGs included a low p-value (<0.05) and a signifi-
cant absolute fold change (|logFC| > 1). Through this stringent selection, we identified
834 DEGs, consisting of 431 up-regulated and 403 down-regulated genes (Figure 1 and
Table S2). Further exploration into the functional aspects of these 834 DEGs revealed con-
nections with hormone responses, Golgi membrane functions, and adverse regulatory
processes in the immune system (Figure S1).

2.2. Key Molecular Screening of AMG510 Resistance in LUAD

To identify key molecules associated with resistance to AMG510 treatment in LUAD,
we retrieved the mRNA expression data for LUAD patients from the TCGA database. After
identifying 834 DEGs, we performed a random survival forest analysis and selected genes
with a significance difference above 0.5 as key candidates. The analysis highlighted the
importance of FAM83A, EFNB2, SMIM4, TLE1, MTRNR2L12, TNNT1, FBXO44, HMGA2,
and SLC2A1 (Figure 2A,B).

Next, we examined the association of these nine key candidate molecules with over-
all survival in LUAD. High expression levels of SLC2A1, TLE1, FAM83A, HMGA2, and
MTRNR2L12 were significantly correlated with reduced overall survival (p < 0.00012,
p < 0.00038, p < 0.0073, p < 0.018, and p < 0.037, respectively). On the other hand, lower
expression of FBXO44 was also significantly associated with decreased survival (p < 0.037)
(Figure 2C–H). However, the expression levels of EFNB2, SMIM4, and TNNT1 did not show
a significant relationship with patient outcomes (Figure S2).

2.3. Key Molecules in AMG510 Resistance in LUAD Associated with Tumor Immune Cell Infiltration

To investigate the impact of key molecules associated with AMG510 resistance on im-
mune infiltration in LUAD, we quantified immune cell populations in tumor and matched
normal lung tissues of patients. The results showed significant differences in immune
cell abundance between the tumor and normal groups (Figure 3A,B). Specifically, CD4
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memory-activated T cells, naïve B cells, and plasma cells were found to be substantially
elevated in tumor samples compared to normal samples (Figure 3C).
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Figure 1. Heatmap visualization is presented, showing variations in gene expression between tissue
samples from the control group (depicted in blue) and the drug-resistant group (demonstrated in
pink) of LUAD patients. Elevated expression levels are represented in yellow, while a decline in
expression levels is indicated by the color purple.
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Figure 2. TCGA-LUAD cohort—DEGs were analyzed using a random survival forest approach.
(A) This method was applied to scrutinize DEGs. (B) Within this set, nine genes stood out with
variable relative importance markers exceeding 0.5. Kaplan–Meier survival plots revealed that
(C) SLC2A1 (p = 0.0012), (D) TLE1 (p = 0.00038), (E) FAM83A (p = 0.0073), (F) HMGA2 (p = 0.018),
and (H) MTRNR2L12 (p = 0.037) had high expression levels significantly linked to adverse overall
survival outcomes. Conversely, a low expression level of (G) FBXO44 (p = 0.037) was also determined
to be significantly detrimental to overall survival.
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correlations in the levels of immune cell infiltration between the normal control and the LUAD 
group. (C) A thorough analysis revealed variations in the expression levels of diverse immune cells 
across the normal control and LUAD groups. In addition, the study scrutinized the interplay be-
tween key drug resistance genes and immune cells. The genes under consideration were (D) 
SLC2A1, (E) TLE1, (F) FAM83A, (G) HMGA2, (H) FBXO44, and (I) MTRNR2L12. 

Figure 3. The composition of immune cells in normal control and LUAD group samples. (A) The
immune cell makeup of the normal control group (shown on the left) was juxtaposed with that of
the LUAD group (shown on the right). (B) During the pairwise comparison, we noticed significant
correlations in the levels of immune cell infiltration between the normal control and the LUAD group.
(C) A thorough analysis revealed variations in the expression levels of diverse immune cells across
the normal control and LUAD groups. In addition, the study scrutinized the interplay between key
drug resistance genes and immune cells. The genes under consideration were (D) SLC2A1, (E) TLE1,
(F) FAM83A, (G) HMGA2, (H) FBXO44, and (I) MTRNR2L12.
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Furthermore, we conducted correlation analyses between immune infiltrating cells
and key AMG510 resistance molecules. The findings revealed significant positive corre-
lations between SLC2A1 and CD4 memory-activated T cells, as well as M1 macrophages.
Conversely, SLC2A1 exhibited significant negative correlations with resting mast cells and
monocytes (Figure 3D). TLE1 showed significant positive correlations with M1 macrophages
and M0 macrophages, while displaying negative correlations with resting mast cells and
resting dendritic cells (Figure 3E). FAM83A exhibited significant positive correlations
with CD4 memory-activated T cells and regulatory T cells (Tregs), along with negative
correlations with resting mast cells and monocytes (Figure 3F). HMGA2 demonstrated
significant positive correlations with M1 macrophages and CD4 memory-activated T cells,
and negative correlations with resting mast cells and monocytes (Figure 3G). FBXO44
showed significant positive correlations with Tregs and follicular helper T cells, while
exhibiting negative correlations with neutrophils and resting NK cells (Figure 3H). Finally,
MTRNR2L12 displayed a significant negative correlation with M2 macrophages (Figure 3I).

2.4. Pathway Enrichment Analysis of Key Molecules for AMG510 Resistance in LUAD

To understand the molecular mechanisms underlying the resistance to AMG510 treat-
ment in LUAD, our study focused on the signaling pathways associated with key molecules.
The GSVA results revealed significant associations of SLC2A1 with pathways such as E2F
targets, glycolysis, and the G2M checkpoint (Figures 4A and S3). TLE1 was predominantly
linked to pathways like glycolysis, the G2M checkpoint, and mitotic spindle assembly
(Figure 4B). FAM83A showed a strong association with pathways including myc targets,
the unfolded protein response, and mTORC1 signaling (Figure 4C). HMGA2 was notable
for its involvement in pathways related to the G2M checkpoint, E2F targets, and glycolysis
(Figure 4D). FBXO44 was predominantly active in pathways such as xenobiotic metabolism,
the P53 pathway, and DNA repair (Figure 4E). MTRNR2L12 was linked to signaling path-
ways such as PI3K-AKT-mTOR signaling, UV response, and apical junction formation
(Figure 4F).

Furthermore, GSEA data demonstrated that elevated SLC2A1 expression primarily
influenced cell cycle regulation, ubiquitin-mediated protein degradation, and P53 sig-
naling pathways (Figure 4G). High levels of TLE1 expression were associated with the
reinforcement of cell-cycle-related signaling, the maintenance of adherens junctions, the
ubiquitin–proteasome system, and pathways characteristic of LUAD (Figure 4H). Increased
FAM83A expression was correlated with pathways governing aminoacyl-tRNA biosyn-
thesis, base excision repair, proteasome activity, and pyrimidine metabolism (Figure 4I).
Similarly, higher HMGA2 expression was linked to the activation of the P53 signaling path-
way, the enhancement of homologous recombination, the acceleration of cell cycle processes,
and efficiency in nucleotide excision repair (Figure 4J). FBXO44 expression specifically
amplified pathways involved in arachidonic and α-linolenic acid metabolism, as well as
glycerophospholipid metabolism and peroxisomal functions (Figure 4K). Lastly, a marked
expression of MTRNR2L12 was connected with improvements in cardiac muscle contrac-
tion, processes implicated in Parkinson’s disease, and mechanisms of taste transduction
(Figure 4L).

2.5. Construction of Nomogram and Exploitation of Calibration Curves for Prediction of Prognosis
of LUAD Patients by Key Molecules in AMG510 Resistance

To assess the value of AMG510-resistant pivotal molecules in LUAD prognosis, we
developed a nomogram model to predict patient prognosis. In this model, logistic regres-
sion analyses demonstrated that clinical parameters (age, gender, and tumor stage) and
core molecules (SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and MTRNR2L12) contributed
differently to LUAD scores at different stages. Higher total scores predicted lower 3- and
5-year survival probabilities (Figures 5A and S4). We then further developed calibration
curves to validate the predictive accuracy of the nomogram model, and the results showed
that it had a good predictive effect (Figure 5B).
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Figure 4. Key molecules of AMG510 resistance are associated with specific signaling pathways.
(A) Signaling pathways enriched by SLC2A1, (B) TLE1, (C) FAM83A, (D) HMGA2, (E) FBXO44, and
(F) MTRNR2L12. The results from gene set enrichment analysis (GSEA) indicate: (G) signaling
pathways associated with SLC2A1, (H) TLE1, (I) FAM83A, and (J) pathways enriched through a high
expression of HMGA2. Additionally, (K) FBXO44 and (L) MTRNR2L12 are associated with distinctive
signaling pathways, as per GSEA results.
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Figure 5. Nomogram and calibration curves for the prediction of the prognosis of LUAD patients.
(A) The graph construction utilized the expression levels of SLC2A1, TLE1, FAM83A, HMGA2,
FBXO44, and MTRNR2L12 in conjunction with clinical parameters. (B) Calibration curves for the
column line graph forecasts of 3-year and 5-year OS within the TCGA LUAD dataset.

2.6. Analysis of the Regulatory Network of Transcription Factors (TFs) Involved in Key Molecules
of AMG510 Resistance

In this study, we examined the potential involvement of TFs in tumor progression
by regulating specific molecules. Focusing on key molecules associated with AMG510
resistance, including SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and MTRNR2L12, we
found they were regulated by multiple transcription factors. To delve deeper, we analyzed
the enrichment of these TFs using cumulative recovery curves. The results revealed the
motif with the highest normalized enrichment score (NES) was cisbp__M4772 (NES: 6.41)
(Figure 6A–D), with SLC2A1 and HMGA2 being two of the genes enriched in this motif.
Additionally, we analyzed the key molecules across all enriched motifs and identified
the corresponding TFs (Figure 6E). Lastly, we used the mircode database for the reverse
prediction of the key molecules, uncovering a total of 82 miRNAs and 201 mRNA–miRNA
relationships, which we visualized using cytoscape (Figure 6F).

2.7. Correlation Analysis of Key Molecules in AMG510 Resistance with LUAD Oncogenes

We obtained LUAD-related oncogenes through the GeneCards database (https://
www.genecards.org/, accessed on 22 July 2023). The inter-group expression difference anal-
yses for tumor genes implied that APC, ATM, BARD1, BRAF, and BRCA1 gene expression
varied among patients in these two groups (Figure 7A). These core molecules, as well as
the top 20 mRNA gene expression levels, were analyzed as per the relevance scores. These
critical molecule expression levels were observed to have obvious correlations with dif-
ferent tumor-associated genes’ expression levels, showing obviously positive correlations
between SLC2A1 and BRCA1 (r = 0.33), as well as obviously negative correlations between
FBXO44 and PIK3CA (r = −0.32) (Figure 7B).

https://www.genecards.org/
https://www.genecards.org/
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Figure 6. A Regulatory network analysis focused on key molecules of AMG510 resistance. (A) Enrich-
ment analysis was performed to identify transcription factors associated with SLC2A1, TLE1, FAM83A,
HMGA2, FBXO44, and MTRNR2L12. (B) We investigated the motifs attributed to cisbp_M4772, (C) the
motifs linked to cisbp_M0548, and (D) the motifs related to cisbp_M2125. (E) We analyzed the enrich-
ment of these motifs and their connection with resistance genes and their corresponding transcription
factors. (F) A reverse prediction approach was used to identify 82 miRNAs and 201 mRNA–miRNA
relationship pairs associated with biomarker resistance.

2.8. Single-Cell Analysis Revealed Correlations between Key Molecules in AMG510 Resistance and
PD-L1, Cytokines, and Factors

Single-cell analysis unveiled the distribution of key molecules linked to AMG510
resistance in different cell types. Using the UMAP algorithm, we clustered single-cell data
from lung adenocarcinoma into 25 subtypes (Figure 8A). Employing the SingleR package,
we annotated these clusters into nine cell classes: endothelial cells, T cells, epithelial cells,
NK cells, macrophages, fibroblasts, B cells, tissue stem cells, and monocytes (Figure 8B). The
distribution of crucial genes within these classes was documented (Figures 8C–H and S5).
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Figure 7. The relationship between key molecules in AMG510 resistance and LUAD-associated
tumor genes. (A) The expression of tumor-related genes was compared between control subjects and
LUAD patients. (B) Bubble plots illustrate the Pearson correlation between SLC2A1, TLE1, FAM83A,
HMGA2, FBXO44, and MTRNR2L12 and tumor-related genes, where the size of the circle indicates
the proximity to a p-value of zero, a redder hue indicates a stronger positive correlation, and a darker
purple signifies a stronger negative correlation. Asterisks denote significance levels (ns p > 0.05;
* p < 0.05; ** p < 0.01; *** p < 0.001).



Int. J. Mol. Sci. 2024, 25, 1555 11 of 22

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 22 
 

 

2.8. Single-Cell Analysis Revealed Correlations between Key Molecules in AMG510 Resistance 

and PD-L1, Cytokines, and Factors 

Single-cell analysis unveiled the distribution of key molecules linked to AMG510 re-

sistance in different cell types. Using the UMAP algorithm, we clustered single-cell data 

from lung adenocarcinoma into 25 subtypes (Figure 8A). Employing the SingleR package, 

we annotated these clusters into nine cell classes: endothelial cells, T cells, epithelial cells, 

NK cells, macrophages, fibroblasts, B cells, tissue stem cells, and monocytes (Figure 8B). 

The distribution of crucial genes within these classes was documented (Figures 8C–H and 

S5). 

 

Figure 8. Single-cell analysis of key molecules in AMG510 resistance. (A) The UMAP algorithm was 

utilized for cell clustering, resulting in the identification of 25 distinct isoforms. (B) These 25 sub-

types were categorized into the following cell types: epithelial cells, T cells, endothelial cells, mac-

rophages, fibroblasts, NK cells, B cells, monocytes, and tissue stem cells. Key gene expressions in 

these nine cell types were examined: (C) SLC2A1, (D) TLE1, (E) FAM83A, (F) HMGA2, (G) FBXO44, 

and (H) MTRNR2L12. 

Figure 8. Single-cell analysis of key molecules in AMG510 resistance. (A) The UMAP algorithm
was utilized for cell clustering, resulting in the identification of 25 distinct isoforms. (B) These
25 subtypes were categorized into the following cell types: epithelial cells, T cells, endothelial cells,
macrophages, fibroblasts, NK cells, B cells, monocytes, and tissue stem cells. Key gene expressions in
these nine cell types were examined: (C) SLC2A1, (D) TLE1, (E) FAM83A, (F) HMGA2, (G) FBXO44,
and (H) MTRNR2L12.

To investigate the correlation between AMG510 resistance molecules and CD274
(PDL1) in tumor immune escape, we analyzed their co-expression patterns within these
clusters. Our findings unveiled several significant correlations: SLC2A1 showed a negative
correlation with CD274 (R = −0.55), as did TLE1 (R = −0.48), FAM83A (R = −0.47), HMGA2
(R = −0.56), and FBXO44 (R = −0.57). Notably, SLC2A1 showed a positive correlation with
CD274 (R = 0.43) (Figure 9A–F).
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with a correlation R of −0.55; (B) expression of TLE1 with CD274 in the single-cell set of LUAD,
with a correlation R of −0.48; (C) expression of FAM83A with CD274 in the single-cell set of LUAD,
with a correlation R of −0.47; (D) expression of HMGA2 with CD274 in LUAD single-cell sets with
a correlation R of −0.28; (E) FBXO44 with CD274 in lung adenocarcinoma single-cell sets with a
correlation R of −0.57; and (F) MTRNR2L12 with CD274 in LUAD single-cell sets with a correlation R
of 0.43.
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At the single-cell level, we measured cytokine and exhaustion factor scores and analyzed
their associations with important AMG510 resistance molecules. The analysis revealed signifi-
cant positive correlations between cytokines and SLC2A1, TLE1, FBXO44, and MTRNR2L12
(correlation values of 0.179, 0.118, 0.105, and 0.086, respectively) (Figure 10A,B,E,F). Con-
versely, FAM83A and HMGA2 showed significant negative correlations with cytokines
(correlation values of −0.233 and −0.016, respectively) (Figure 10C,D). In terms of the
failure factor, SLC2A1, FAM83A, and FBXO44 exhibited significant negative correlations
(correlation values of −0.048, −0.216, and −0.025, respectively), while TLE1, HMGA2, and
MTRNR2L12 had significant positive correlations (correlation values of 0.136, 0.13, and
0.112, respectively) (Figure 11A–F).
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Figure 10. Single-cell analysis of the correlation between key molecules in AMG510 resistance and
cytokine scores. (A) In LUAD single-cell set SLC2A1 with a cytokine score R-value of 0.179; (B) single-
cell set TLE1 with a cytokine score R-value of 0.118; (C) single-cell set FAM83A with a cytokine score
R-value of −0.223; (D) single-cell set HMGA2 with a cytokine score R-value of −0.016; (E) the R-value
of FBXO44 versus cytokine fraction in the LUAD monoclonal cell set is 0.105; (F) the R-value of
MTRNR2L12 versus cytokine fraction in the LUAD monoclonal cell set is −0.066.
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Figure 11. Single-cell analysis of the correlation between key molecules in AMG510 resistance and
failure factor scores. (A) In the LUAD single-cell set SLC2A1 with a failure factor score R-value of
−0.048; (B) single-cell set TLE1 with a failure factor score R-value of 0.138; (C) single-cell set FAM83A
with a failure factor score R-value of −0.218; (D) single-cell set HMGA2 with a failure factor score
R-value of 0.13; (E) the R-value of FBXO44 vs. failure factor score in the LUAD single-cell set is
−0.025; (F) the R-value of MTRNR2L12 vs. failure factor score in the LUAD single-cell set is 0.112.

2.9. Construction and Experimental Validation of the AMG510 Treatment-Resistant LUAD
Cell Line

To explore AMG510 resistance biomarkers and their relationship with PDL1 in LUAD,
we created an AMG510-resistant cell line (H358-R). Wild-type H358 cells exposed to pro-
longed AMG510 treatment transformed into a spindle shape (Figure 12A,B). A CCK-8 assay
showed an enhanced tolerance in resistant cells (H358-R) compared to wild-type (H358)
cells across different AMG510 concentrations (Figure 12C). qRT-PCR analysis revealed the
downregulation of SLC2A1, FAM83A, HMGA2, and FBXO44, while TLE1 was upregulated
post resistance acquisition (Figure 12D).
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Figure 12. Construction and validation of resistant cell lines for LUAD bearing the AMG510 biomarker.
(A) H358 and (B) H358-AR cell morphological differences. Scale bar: 100 µm. (C) Successful AMG510-
resistant cell construction determined by comparing the IC50. (D) mRNA expression of drug resis-
tance biomarker. p-value significant differences are indicated. (** p < 0.01; *** p < 0.001).

The single-cell study indicated significant correlations between AMG510 resistance
biomarkers and PDL1 in LUAD. Immunofluorescent staining showed decreased PDL1
expression in AMG510-treated H358 cells, while the resistant cell line had higher PDL1
expression than treated H358 cells (Figure 13A,B). Western blot analysis confirmed this pat-
tern, with reduced PDL1 expression post AMG510 treatment and increased expression after
acquiring resistance (Figure 13C); the changes were statistically significant (Figure 13D). In
summary, we established the AMG510-resistant cell line (H358-R) and observed significant
differences in key resistance biomarker expression between wild-type and resistant cells.
PDL1 expression, linked to resistance biomarkers, also showed distinct differences between
the two cell types.
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Figure 13. Experimental validation of key molecules in AMG510 resistance and PD-L1 expression
in AMG510-resistant cells. (A) PD-L1 expression rose after AMG510 resistance. Cells were stained
with anti-PD-L1 (green) and DAPI (blue). Scale bar: 10 µm. (B) Fluorescence intensity analysis of
immunofluorescence. (C) PD-L1 protein expression was detected via WB in H358 cells and H358-AR
cells treated with AMG510 or DMSO. (D) Grayscale analysis of PD-L1 relative protein expression in
H358 and H358-AR cells (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3. Discussions

AMG510, a recently approved inhibitor for KRASG12C-mutated LUAD treatment,
offers improved outcomes for patients with the KRASG12C mutation. However, only a
small portion of patients benefit from AMG510 due to inherent and acquired resistance,
limiting its clinical utility [15,16,18]. Our study identifies biomarkers (SLC2A1, TLE1,
FAM83A, HMGA2, FBXO44, and MTRNR2L12) associated with AMG510 resistance in
KRASG12C-mutated LUAD. These biomarkers exhibit significant expression changes re-
lated to AMG510 resistance and play crucial roles in tumor immunity, signaling pathways,
and transcriptional regulation.

We found that multiple transcription factors may contribute to LUAD’s resistance to
AMG510 treatment by jointly regulating the expression of genes such as SLC2A1, TLE1,
FAM83A, HMGA2, FBXO44, and MTRNR2L12. This regulation reduces LUAD’s sensitivity
and promotes resistance to AMG510 treatment. These crucial resistance biomarkers are pri-
marily associated with signaling pathways like glycolysis and mTORC1. Previous research
into cancer metabolism has established that abnormal cell proliferation in tumors relies on
aerobic glycolysis, a trait shared by drug-resistant tumor cells. Furthermore, drug-resistant
cells have elevated levels of byproducts of glycolysis, such as lactic acid, which aligns with
the functions of our identified key biomarkers of drug resistance [19]. Another example is
AT406, an antagonist of apoptotic proteins (IAPs), which effectively inhibits apoptosis in
hepatocellular carcinoma cell lines. However, when mTOR is activated, it decreases the
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sensitivity of AT406 and leads to drug resistance in hepatocellular carcinoma [20,21]. The
activation of mTOR signaling in drug-resistant cells is frequently reported [22,23], which is
in line with the function of our essential resistance biomarker.

Transcription factors can drive resistance by modulating gene expression [24]. Among
these, TLE refers to a member of the transcriptional co-repressor family, which includes
TLE1-7 and is described as comprising the human homologs of Drosophila Groucho
proteins [25]. It is of particular note that the level of TLE expression is critical for deter-
mining the sensitivity of tumor therapy. Shixiong Hu et al. found that the overexpression
of TLE2 increased the proportion of cells in the S-phase, and experimental verification
showed that upregulated TLE2 expression was correlated with increased sensitivity to
gemcitabine [26,27]. In this study, TLE1 was found to be highly expressed in AMG510-
resistant PDX model mice. Furthermore, increased TLE1 mRNA expression was detected
in AMG510-resistant H358 LUAD cells. This is the first evidence demonstrating that
TLE1-induced resistance to AMG510 occurs.

As single-cell technology platforms advance, we increasingly uncover the complexity
of intra- and inter-tumor heterogeneity [28]. This heterogeneity arises from the reshaping
of the tumor microenvironment, which induces changes in immune cell function and inter-
cellular communication [29]. Ultimately, these alterations contribute to the development
of drug resistance in tumors [30,31]. Although the prevailing view is that immune cells
such as CD8+ T cells, CD4+ T cells, and NK cells perform anti-tumor functions in tumor
therapy, due to tumor heterogeneity, these immune cells may be resistant to tumor therapy
by regulating core immune checkpoint proteins and chemokines [32,33]. In the present
study, we speculated that the biomarkers SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and
MTRNR2L12, which are resistant to AMG510 treatment for LUAD due to tumor hetero-
geneity, significantly correlate with CD4 memory-activated T cells, M1 macrophages, Tregs,
etc. Significant correlations affect the development of tumor therapy resistance, but the
specific mechanisms need to be further demonstrated.

PD-L1 upregulation in tumor cells is a recognized mechanism for evading immune
surveillance, contributing to tumor progression and therapy resistance [34]. Our single-cell
analysis of lung adenocarcinoma found that the biomarkers of AMG510 resistance were
present in immune cells and significantly correlated with PDL1 expression, suggesting an
important role for these biomarkers in tumor progression and immune evasion. Moreover,
these findings are reinforced by our study relating cytokine and exhaustion factor scores to
the AMG510 resistance biomarkers, where specific biomarkers may serve as key immune
response regulators or triggers of immune recovery. This study demonstrates a close
correlation between the expression of key molecules associated with AMG510 resistance
and PDL1, cytokines, and exhaustion factors within the monocytic populations of LUAD.

By establishing an AMG510-resistant LUAD cell line, we validated bioinformatic
findings to confirm the differential expression of SLC2A1, TLE1, FAM83A, HMGA2, and
FBXO44 in wild-type and resistant cell lines. However, due to the pseudogene nature of
MTRNR2L12, its expression was not detectable via RT-qPCR. While the work identified
correlations between AMG510 resistance and PDL1, it did not delve into the biomarkers’
specific biological functions within LUAD nor the intrinsic mechanisms of regulation.
Future investigations will aim to explore these aspects, potentially uncovering new insights
into the coupling between these biomarkers and PDL1.

4. Materials and Methods
4.1. Data Downloads and Analyses

From the Gene Expression Omnibus (GEO) public database, we obtained a series
matrix file (GSE204753) that is relevant to LUAD resistance. This file, named GPL21697,
contains transcriptomic data for nine cases, which are divided into control (n = 3) and
drug-resistant (n = 6) groups. To differentiate gene expression differences between these
groups, we utilized the limma package with specific thresholds: p-values less than 0.05 and
absolute log change (|logFC|) greater than 1. For the analysis of LUAD, we obtained both
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raw and processed mRNA expression data from the TCGA database (https://portal.gdc.
cancer.gov/, accessed on 11 July 2023), which consisted of samples from the normal (n = 59)
and tumor (n = 541) groups. Additionally, we acquired the single-cell dataset GSE149655
from the GEO public database, which includes four sets of single-cell data.

4.2. Randomized Survival Forest Analyses

The feature selection was conducted using the randomForestSRC package, and for
ranking prognosis-related genes by importance, we applied the random survival forest
algorithm, iterating it through a Monte Carlo simulation 1000 times (nrep = 1000). Further-
more, we identified genes exhibiting a relative importance exceeding 0.5 as final marker
genes [35].

4.3. Immune Cell Infiltration Analyses

Patient information was processed using the CIBERSORT algorithm [36]. This tool
was instrumental in estimating the relative proportions of 22 different types of immune
cells infiltrating the tissue, and in executing Pearson correlation analyses linking gene
expression and the contents of these immune cells [37].

4.4. GSVA Analyses

GSVA, a non-parametric and unsupervised method, is used to assess gene set enrich-
ment in transcriptomic datasets [38]. By computing integrated scores for gene sets, GSVA
transforms changes at the gene level into alterations at the pathway level, aiding in the
identification of the biological functions of the samples.

4.5. GSEA Analyses

We conducted GSEA to categorize genes based on their differential expression between
two sample types, utilizing a specific gene set [39]. This analysis assessed whether the
predetermined gene set showed enrichment at either the top or bottom of our ranked list. In
this study, by employing GSEA, we compared differences in Kyoto Encyclopedia of Genes
and Genomes (KEGG) signaling pathways between groups with high and low expression
to investigate the molecular mechanisms of biomarkers in patients from these groups.

4.6. Nomogram Modeling

A nomogram model is constructed based on regression analysis, incorporating clinical
symptoms and the expression of key genes [40]. The predictive value is calculated by
constructing a multifactorial regression model, assigning scores to each level of every
influential factor according to their corresponding contribution to the outcome variable
(size of the regression coefficient), and then summing the individual scores to obtain a
total score.

4.7. miRNA Analyses

MicroRNAs (miRNAs) have a recognized role in controlling gene expression, whether
through mRNA translation inhibition or mRNA degradation facilitation [41]. Our addi-
tional analysis sought to determine whether some miRNAs present within biomarkers
could influence the degradation or transcription of specific genes associated with risk. Iden-
tification of miRNAs linked to biomarkers was accomplished by leveraging the miRcode
database. Subsequently, we utilized Cytoscape (Version 3.8.2) software to visualize the
networks between miRNAs and genes.

4.8. Regulatory Network Analyses of Biomarkers

The R package “RcisTarget” has been utilized to predict transcription factors [42].
Motifs serve as the foundation for all calculations executed using RcisTarget. In addition
to motifs annotated by the source data, further annotations have been inferred based on
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gene sequences and motif similarity. The gene-motif ranking database “RcisTarget.hg19.
motifdb.cisbp.500bp” has been utilized.

4.9. Single-Cell Analyses (SCAs)

The data were processed using the Seurat package, and the UMAP algorithm was
applied to analyze the positional relationships between clusters [43]. The celldex pack-
age was used for annotations, with specific cells that have significant associations with
tumorigenesis annotated accordingly. For each cell subtype, marker genes were extracted
from single-cell expression profiles by setting the log-fold change threshold parameter
(logfc.threshold) of the “FindAllMarkers” function to 1.

4.10. Cell Cultures and Reagents

H358-AR denotes an AMG510-resistant LUAD cell line, while H358 represents a
specific type of LUAD cell line. H358 cell lines used in this study were obtained from our
laboratory’s cell bank and have been previously utilized in this experiment. For culturing,
we used RPMI 1640 medium enriched with 1% penicillin/streptomycin (Basic Medium)
and 10% fetal bovine serum (supplied by Excell Bio), maintaining the cells at 37 ◦C in a 5%
CO2 environment. AMG510 was prepared in DMSO. Both H358 and H358-AR cells were
independently plated in six-well plates and subsequently photographed post attachment,
using an enzyme marker for clear identification.

4.11. CCK-8 Assay

H358 and H358-AR cells were cultured in 96-well plates, with an initial density of
5000 cells per well, and left to incubate overnight. The subsequent day saw the treatment
of both cell types with varying concentrations of AMG510 (0, 0.1, 1.0, 3.0, 10.0, 30.0 µM) for
a span of 24 h. Following this, the cells were subjected to an additional 3 h incubation, after
which we measured the absorbance at 460 nm using a CCK-8 assay kit from TargetMol
(Shanghai, China, topscience, Catalog #C0005).

4.12. Quantitative Reverse Transcription PCR (qRT-PCR)

Following the guidelines of the PrimeScript RT Reagent Kit (Osaka, Japan, TaKaRa,
9109), RNA extraction was carried out utilizing Trizol, succeeded by the process of reverse
transcription. The PCR reactions were performed with the SYBR Premix Ex Taq Kit (Japan,
TaKaRa, 9109), adhering strictly to the instructions provided by the manufacturer. The
sequences of all primers used can be found in Table S1.

4.13. Immunofluorescence

We initiated our experiment by seeding H358 and H358-AR cells on slides, maintaining
a density of 3000 cells in 100 µL of growth medium. After a period of 24 h, we treated
the H358 cells with AMG510 at a concentration of 1 µM, followed by an additional 24 h
incubation. The H358-AR cells, conversely, received only AMG510 treatment. Post fixation
and membrane permeabilization, the cells underwent overnight incubation at 4 ◦C with
PD-L1 (Guangzhou, China, CST, D8T4X) Rabbit mAb (Alexa Fluor 488 Conjugate, CST
#25048) at a 1:100 dilution in PBS. The following day, the cells were cleansed and stained
with 4′,6-diamidino-2-phenylindole (DAPI) for 15 min to enable nuclear visualization.
Imaging was performed using a Leica SP8 STED 3X confocal microscope (Berlin, Germany,
Leica), employing a 63× oil immersion objective for detailed observation.

4.14. Western Blotting

We initiated the experiment by culturing H358 and H358-AR cells overnight in 6-well
plates, maintaining a density of 10,000 cells per well. The H358 cells were treated with both
DMSO and AMG510 for a span of 24 h, while the H358-AR cells received only AMG510
treatment. Utilizing RIPA Lysis Buffer (Shandong, China, SparkJade, EA0002), we extracted
the total protein and subjected it to analysis following standard Western blotting protocols.
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The antibodies incorporated in this procedure were PD-L1 (1:1000, Centennial, CO, USA,
NOVUSBIO, 80490), and GAPDH (1:10,000, Woburn, MA, USA, ABclonal, AC002).

4.15. Statistical Analyses

All statistical analyses were conducted utilizing the R language. We performed every
statistical test as a two-sided test, defining statistical significance as a p-value below 0.05.

5. Conclusions

We have identified SLC2A1, TLE1, FAM83A, HMGA2, FBXO44, and MTRNR2L12 as
biomarkers contributing to resistance in LUAD patients receiving AMG510 treatment. Ad-
ditionally, we observed a correlation between AMG510 resistance and immunosuppression
markers such as PDL1, reinforcing the significance of the immune microenvironment in
tumor therapy. However, our study did not delve into the mechanistic aspects, such as
elucidating the interactions between key molecules and the immune microenvironment
that influence resistance. Exploring these mechanisms will be a crucial focus for future
investigations. In summary, our findings offer promising targets for further research and
drug development (e.g., antagonists and activators) in the treatment of LUAD.
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