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Abstract: ‘Beta’ is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to
adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present,
the most extensively studied MYB TFs are R2R3-type, which have been found to be involved in
plant growth, development, and stress response processes. In the present research, VhMYB15, a key
transcription factor for abiotic stress tolerance, was screened by bioinformatics in ‘Beta’ rootstock, and
its function under salinity and drought stresses was investigated. VhMYB15 was highly expressed in
roots and mature leave under salinity and drought stresses. Observing the phenotype and calculating
the survival rate of plants, it was found that VhMYB15-overexpressing plants exhibited relatively
less yellowing and wilting of leaves and a higher survival rate under salinity and drought stresses.
Consistent with the above results, through the determination of stress-related physiological indicators
and the expression analysis of stress-related genes (AtSOS2, AtSOS3, AtSOS1, AtNHX1, AtSnRK2.6,
AtNCED3, AtP5CS1, and AtCAT1), it was found that transgenic Arabidopsis showed better stress
tolerance and stronger adaptability under salinity and drought stresses. Based on the above data, it
was preliminarily indicated that VhMYB15 may be a key factor in salinity and drought regulation
networks, enhancing the adaptability of ‘Beta’ to adverse environments.

Keywords: grape; VhMYB15; salinity stress; drought stress

1. Introduction

Plants in the natural environment are constantly challenged by changes in the envi-
ronment, including abiotic and biotic stresses [1]. Salinity and drought are major threats to
ecosystems, food security, and fruit quality [2]. Plants have evolved a series of regulatory
mechanisms to cope with stress in the process of adapting to abiotic stress [3]. Studying the
regulatory mechanisms of plant resistance to adversity is beneficial in selecting excellent
resistant varieties [4]. In recent years, the function of transcription factors (TFs) in adversity
has become a research hotspot [5].

The MYB family is divided into four subfamilies: 1R-MYB, 2R-MYB, 3R-MYB, and
4R-MYB according to the number of repeated R structures [6]. Different subfamily members
perform different functions, among which, the 2R-MYB subfamily is the most studied. The
N-terminal of the R2R3-MYB TF is composed of two R structures, while the C-terminal R
structure has strong transcriptional activation function and certain plasticity, regulating
protein activity. R2R3-MYB TFs play a core role in controlling plant metabolism, cell
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cycle and identification, development, and response to abiotic and biotic stresses [7].
Dicotyledonous and monocotyledonous plants have more than 100 R2R3-MYB members
in their genomes. As of now, researchers have identified a large number of R2R3-MYB
TFs from plants such as Arabidopsis, rice, and maize [8]. AtMYB15, an R2R3-MYB gene
of Arabidopsis, responds to a variety of abiotic stresses [9]. GsMYB15 is related to the
survival ability of wild soybeans under salinity stress. AtMYB49 improves the salt tolerance
of Arabidopsis by activation of cutin deposition and antioxidant defense [10]. GbMYB5
endows cotton and transgenic tobacco with drought tolerance [11], while LcMYB1 endows
transgenic Arabidopsis with salt tolerance [12].

R2R3-MYB TFs are identified using the RNA-Seq data of Vitis vinifera L. and 134 genes
are obtained by collation and removal of redundancy [13]. Previously, the focus of attention
on MYB TFs in grapes was mainly on the synthesis pathway of secondary metabolites [14].
VvMYBPA1 in grapes is the first factor found to regulate their proanthocyanidins (PAs)
synthesis [15], and its heterologous expression increases the synthesis of PAs in Arabidopsis.
VvMYBPA2 has high homology with AtTT2, and ectopic expression increases the biosynthe-
sis of PAs in the hairy roots of grapes [16]. VvMYB5a and VvMYB5b genes act as positive
regulators to impact the expression of structural genes controlling the biosynthesis of
anthocyanin and proanthocyanidin [17,18]. In addition, MYB TFs are also associated with
disease resistance in grapes. Transient expression of VdMYB1 in Vitis vinifera promotes the
expression of VdSTS2 and enhances tolerance to grape powdery mildew [19]. However,
little attention has been paid to the functions of R2R3-MYB TFs in grapes under salinity
stress and drought stress, and there are also numerous gaps in the regulatory network.

The ‘Beta’ grape is native to the United States and is a hybrid variety. It was introduced
to China in the early years and has advantages such as drought tolerance, strong disease
resistance, and cold tolerance. In the Heilongjiang region, salinity and drought problems
are very serious. There are fewer varieties of grapes cultivated for processing. In addition
to Vitis amurensis Rupr., ‘Beta’ can also be used for wine and juice. Therefore, ‘Beta’ can be
used as a rootstock for grafting and raising seedlings. At the same time, it is also possible
to cross ‘Beta’ with other grape varieties to obtain new varieties. So, it is necessary to study
the pathways through which ‘Beta’ regulates salinity and drought tolerance. In this study,
a salinity and drought stress-induced gene, VhMYB15, was screened from the genome of
grapes. The aim of this study was to explore the valuable function of the MYB gene and
provide a molecular basis for breeding rootstocks of resistant grapes.

2. Results
2.1. Isolation and Bioinformatics Analysis of VhMYB15

Based on the homologous cloning of VvMYB15 (XM_002285157.4, Vitis vinifera L.), the
VhMYB15 gene was obtained. The coding region of VhMYB15, from the initiation codon to
the termination codon, contained a total of 762 nucleobases and was composed of 253 amino
acids, of which Ser (11.1%), Leu (7.9%), and Glu (7.5%) accounted for a large proportion
(Figure S1). Predictive analysis of the VhMYB15 protein revealed that its molecular weight
and isoelectric point were 28.42 kDa and 5.42, respectively. Since the average hydrophilic
coefficient was −0.675, VhMYB15 was a hydrophilic protein.

By predicting and analyzing the secondary structure of the VhMYB15 protein, it was
found that it consisted of 30.83% alpha helices, 4.74% beta turns, 4.35% extended strands,
and 60.08% random coils (Figure S2A). VhMYB15 contained two SANT conserved domains
at 13–63 aa and 66–114 aa (Figure S2B). Predicting the tertiary structure of VhMYB15, it
was found that the predicted model was consistent with the prediction of the secondary
structure and the prediction of the conservative domain (Figure S2C). Multiple sequence
analysis revealed that VhMYB15, like MYB proteins from other species, contained R2
and R3 domains (Figure 1A). Analyzing the evolutionary relationship, it was found that
VhMYB15 and VrMYB15 (Vitis riparia L.) clustered on the same branch, with the closest
evolutionary relationship. In addition, together with DzMYB15, GhMYB15, and MiMYB15,
they formed the first cluster of the evolutionary tree. AtMYB15, BrMYB15, CmMYB15, and
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CpMYB15 constituted the second cluster, which was also closely related to the evolution of
VhMYB15. The third cluster, consisting of SlMYB15, FtMYB15, LsMYB15, and GsMYB15,
was relatively distant (Figure 1B).
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tion tree. The red line and red box represent the target protein and R repeat sequence, respectively.

2.2. Subcellular Localization of VhMYB15 Protein

By injecting the fusion vector VhMYB15–pCAMBIA1300 containing a GFP tag into the
leaves of Nicotiana benthamiana, protein localization was determined. Combining the fluo-
rescence of DAPI and GFP, it was found that green fluorescence was distributed throughout
the entire cell of tobacco injected with the 35S::GFP vector. In tobacco injected with the
35S::VhMYB15-GFP vector, the green fluorescence coincided with the blue fluorescence of
DAPI, so it was determined that VhMYB15 was localized in the nucleus (Figure 2).
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Bar = 100 µm.

2.3. Analysis of the Expression Characteristics of VhMYB15 in ‘Beta’

The tissue-specific expression characteristics of VhMYB15 in ‘Beta’ were analyzed
by qRT-PCR. The data showed that the expression level of VhMYB15 was high in roots,
relatively high in mature leaves, and low in stems and young leaves, indicating that the
main function of VhMYB15 may be nutrient transport (Figure 3A).

Salt, drought, cold, heat, and ABA stresses can all induce the expression of VhMYB15.
Within 24 h of stresses, the changes in expression levels under different stresses showed
a single-peak pattern. Data analysis found that under salt, drought, cold, heat, and ABA
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stresses, the time points at which the expression peaks occurred in roots and leaves were
the same, 8 h, 4 h, 2 h, 8 h, and 8 h, respectively. In addition, these results also indicated that
the up-regulation of VhMYB15 expression was more induced by salt and drought stresses
(Figure 3B,C).
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2.4. Heterologous Expression of VhMYB15 in Arabidopsis Improved Salinity Tolerance

To analyze whether VhMYB15 plays a regulatory role in salinity and drought stresses, a
VhMYB15–pCAMBIA1300 fusion vector was constructed. Transgenic plants were obtained
by transforming the pCAMBIA1300 vector and VhMYB15–pCAMBIA1300 vector into
Arabidopsis. RNA extraction was performed on plants with positive kanamycin screening
for qRT-PCR analysis. VhMYB15 was not expressed in the wild type (WT) or unloaded line
(UL), while VhMYB15 was expressed in positive plants to varying degrees, indicating the
successful transfer of VhMYB15 in Arabidopsis (Figure 4A). From the eight transgenic lines
(L1, L2, L3, L4, L5, L6, L7, and L8), L1, L3, and L7, lines with high expression of VhMYB15,
were selected to continue cultivation for the next experimental analysis.

In order to analyze the effect of VhMYB15 on the tolerance of Arabidopsis to salinity
stress, all lines of Arabidopsis were treated with 200 mM NaCl to analyze the effects of
stress on plant phenotype and survival rate. Under control conditions (Salinity 0 d), the
growth trend of Arabidopsis in all lines was basically the same, and there was no significant
difference in survival rate. After 10 d of salinity treatment (Salinity 10 d), both VhMYB15-
overexpressing (L1, L3, L7) and control-group plants (WT and UL) exhibited yellowing in
their leaves, and there were obvious differences in phenotypes. VhMYB15-overexpressing
Arabidopsis leaves had a lighter yellowing phenomenon (Figure 4B). After relieving the
stress conditions and returning to normal growth for 3 d, it was found that the survival rates
of VhMYB15-overexpressing Arabidopsis (80%, 75%, and 82%) were significantly higher
than those of the control group Arabidopsis (46% and 41%) (Figure 4C).

Under control conditions (Salinity 0 d), there was no obvious difference in the phys-
iological indicators of all Arabidopsis lines, but the physiological indexes changed under
salinity stress, showing obvious differences. Salinity treatment resulted in an increase in
plant antioxidant enzyme activity, proline content, MDA content, and electrolyte leakage.
The activities of CAT, SOD, POD, and proline content of VhMYB15-overexpressing Ara-
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bidopsis were the highest (Figure 5A,D–F), while MDA content and electrolyte leakage
were the lowest (Figure 5C,G). In addition, the content of chlorophyll was also affected
by salinity stress and decreased, but the VhMYB15-overexpressing Arabidopsis was less af-
fected (Figure 5B). The measured physiological indicators of plants before and after salinity
stress further indicate that overexpression of VhMYB15 may enhance plant tolerance to
salinity stress.
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electrolyte leakage (G) in Arabidopsis (wild type: WT, unloaded line: UL, transgenic lines: L1, L3,
L7) at different salinity stages (Salinity 0 d, Salinity 8 d). Using WT indicators as controls. The SD is
represented by an error bar (n = 3). (**) p-value ≤ 0.01.

2.5. VhMYB15 in Transgenic Arabidopsis Activated Salinity Tolerance-Related Genes

The expression levels of AtSOS1, AtSOS2, AtSOS3, and AtNHX1 genes were analyzed
by qRT-PCR. The results showed that the expression levels of AtSOS1, AtSOS2, AtSOS3,
and AtNHX1 did not differ significantly among all lines of Arabidopsis when not subjected
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to salinity stress. Salinity stress induced the expression of these responsive genes, and
the expression level in VhMYB15-overexpressing Arabidopsis was higher. Therefore, we
speculate that VhMYB15 may alleviate osmotic pressure and maintain the balance of
intracellular Na+ concentration by activating the expression of salt stress-responsive genes,
thereby enhancing plant tolerance to salinity stress (Figure 6).
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Figure 6. qRT-PCR detection of salinity tolerance-related gene expression in Arabidopsis (wild type:
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2.6. Heterologous Expression of VhMYB15 in Arabidopsis Improved Drought Tolerance

Under control conditions (Drought 0 d), overexpression of VhMYB15 did not cause
phenotypic differences in Arabidopsis, and all lines had good leaf growth, with green color
and no yellowing. After 10 d of water deficiency (Drought 10 d), phenotypic differences
between VhMYB15-overexpressing Arabidopsis and the control-group Arabidopsis appeared
(Figure 7A). Water scarcity leaded to leaf withering, while overexpression of VhMYB15
weakened this trend. After watering again and returning to normal conditions for 3 d, most
of the VhMYB15-overexpressing Arabidopsis resumed growth, with survival rates of 82%,
79%, and 80%, while most of the control-group Arabidopsis died (Figure 7B).
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drought stages. Using WT as control. The SD is represented by an error bar (n = 3). (**) p-value ≤ 0.01.
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Under control conditions (Drought 0 d), there was no significant difference in physio-
logical indicators among all Arabidopsis lines, but physiological indicators changed under
drought stress, and there were significant differences. The water shortage resulted in
increases in proline content, MDA content, and electrolyte leakage and decrease in chloro-
phyll content (Figure 8A–C,G). In addition, the activity of antioxidant enzymes was also
improved. The activities of CAT, SOD, and POD and the contents of proline and chlorophyll
in VhMYB15-overexpressing Arabidopsis were significantly higher than those in the control
group, while MDA content was the opposite, significantly lower than that of the control
group (Figure 8D–F).
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Figure 8. Analysis of proline (A), chlorophyll (B), MDA (C), POD (D), SOD (E), CAT (F), and
electrolyte leakage (G) in Arabidopsis (wild type: WT, unloaded line: UL, transgenic lines: L1, L3, L7)
at different drought stages. Using WT indicators as controls. The SD is represented by an error bar
(n = 3). (*) p-value ≤ 0.05, (**) p-value ≤ 0.01.

2.7. VhMYB15 in Transgenic Arabidopsis Activated Drought Tolerance-Related Genes

We conducted qRT-PCR analysis of the expression levels of the key enzyme gene for
proline synthesis P5CS1, the catalase 1 (CAT1) gene, the key enzyme in ABA synthesis gene
NCED3, and the key gene SnRK2.6 that regulates stomatal closure in Arabidopsis. The results
showed that under sufficient irrigation conditions, there was no significant difference in
the expression levels of AtP5CS1, AtCAT1, AtCAT1, and AtSnRK2.6 among various lines of
Arabidopsis. The expression of these genes increased due to dehydration, and the expression
of VhMYB15-overexpressing Arabidopsis was significantly higher than that of the control
group (Figure 9).
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3. Discussion

‘Beta’ is often used as a hybrid parent or grafting stock to obtain varieties with better
tolerance and quality. At the same time, ‘Beta’ is also used as a processing variety for brew-
ing and making juices [20]. MYB TFs are widely present in animals, plants, and fungi and
are also one of the largest TF families in plants, possessing multiple biological functions [21].
It is not only involved in the regulation of plant growth and development [22,23], but it
also participates in plant tolerance to stresses such as drought, salinity, and cold [24–26].
Therefore, it is necessary to study the function of MYB TFs in ‘Beta’, which is beneficial
for grape breeding using genetic engineering technology. In this research, the VhMYB15
gene was cloned and isolated from ‘Beta’ using VvMYB15 (XM_002285157.4, Vitis vinifera
L.) as a homologous gene. The VhMYB15 protein shared the same conserved domain with
MYB15 proteins from other species and contained two SANT-MYB DNA binding domains,
belonging to the typical R2R3-MYB protein (Figure 1).

TFs typically perform transcriptional regulatory functions in the nucleus, so most TFs
are located at the subcellular level in the nucleus, and nuclear localization has gradually
become the standard for identifying genes as TFs [27]. In this study, the 35S::VhMYB15-GFP
vector was constructed and introduced into tobacco cells, and it was observed that it was
also located in the nucleus, consistent with previous studies and consistent with the general
characteristics of TFs.

MYB TFs are involved in regulating plant tolerance to a variety of adverse environ-
ments. For example, the expression of GhMYB113 is positively regulated by drought stress
and negatively regulated by salt stress [28]. ZmMYB002 is highly expressed in maize
seeds, roots, and leaves and can be significantly induced by drought and salt stresses [29].
VvMYB112 and VvMYB15 are induced by salt, drought, and cold, while VvMYB107 and
VvMYB87 are only induced by salt and are not sensitive to drought or cold [30]. This study
used qRT-PCR to detect the expression of VhMYB15 in different tissue parts, with tissue
specificity and the highest expression level observed in the roots (Figure 3A). Therefore,
the roots can give priority to responding to adverse conditions. In addition, VhMYB15 was
expressed in both leaves and roots under salinity, drought, cold, heat, and ABA stresses,
but its expression patterns were different. The response rate of VhMYB15 to salinity and
drought stresses was relatively rapid, and the expression of VhMYB15 decreased rapidly
with the extension of stress time, with a large change range. Under cold, heat, and ABA
stresses, the expression trend of VhMYB15 was the same as that of salinity and drought,
but the expression level was relatively low (Figure 3). Therefore, salinity and drought were
selected as stress treatment conditions for further analysis of VhMYB15 function.

When plants are subjected to salt and drought stresses, the balance of REDOX reactions
within their cells is disrupted. This imbalance can lead to the production of a large number
of reactive oxygen species (ROS) and other harmful metabolites in plants [31]. These
substances accumulate to a certain extent, which can damage the cellular structure of
plants, increase the permeability of cell membranes, and lead to a large amount of electrolyte
leakage [32]. In addition, ROS can also inhibit the activity of biological enzymes, thereby
affecting various physiological and metabolic reactions of plants.

Plants can eliminate reactive ROS free radicals through POD, SOD, and CAT, re-
duce cell membrane peroxidation, alleviate cell membrane osmotic pressure, and improve
survival ability under adverse conditions [33,34]. Salt and drought stress accelerate the
degradation of chloroplasts in plants, leading to a decrease in the stability of thylakoid
membranes and a significant decrease in chloroplast absorption of light energy, ultimately
leading to a decrease in photosynthetic rate [35]. MDA is the end product of membrane
lipid peroxidation [36], and its changes in content can reflect the degree of membrane
system damage. Stress can trigger or exacerbate membrane lipid peroxidation in plant
cells and increase plasma membrane permeability and MDA content, leading to the wors-
ening of biofilm damage [37]. In addition, plants also alleviate stress damage through
solute accumulation, and some studies suggest that proline is the most effective osmotic
regulator [38]. By observing the phenotype of VhMYB15-overexpressing Arabidopsis and
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measuring related physiological indicators, the function of VhMYB15 under salinity and
drought stresses was analyzed. It was found that VhMYB15-overexpressing Arabidopsis
suffered significantly less damage under salinity and drought stresses than the control
group, resulting in better growth and higher survival rate after stress relief (Figures 4 and 7).
Under salinity and drought stresses, the antioxidant enzyme activity, chlorophyll content,
and proline content of VhMYB15-overexpressing Arabidopsis was significantly higher than
that of the control group, while MDA content and electrolyte leakage were the opposite,
which was consistent with the phenotype of Arabidopsis (Figures 5 and 8).

We verified the difference in tolerance between VhMYB15-overexpressing Arabidopsis
and control Arabidopsis under stress at the molecular level. The AtSOS pathway is currently
one of the most extensively studied mechanisms by which plants regulate salt stress
responses [39]. SOS1, SOS2, and SOS3 constitute the SOS signaling pathway for salt
tolerance in Arabidopsis, playing an important role in regulating K+/Na+ homeostasis in
plants under salt stress [40]. The AtSOS1 encodes a Na+/H+ reverse transporter protein,
mediating Na+ efflux and transport and protecting cells from Na+ toxicity [41]. The
AtSOS2 gene encodes serine/threonine protein kinases, and its activity depends on the
regulation of the calcium-binding protein AtSOS3 [42]. AtSOS3 activates and interacts
with the AtSOS2 protein kinase [43]. The phosphorylation of the AtSOS3–AtSOS2 complex
can activate the AtSOS1 protein, directly promoting Na+/H+ exchange controlled by
AtSOS1 [44]. In addition, it may also negatively regulate the process of Na+ entering cells.
NHX1 (Na+/H+ antagonist, NHX) encodes the Na+/H+ reversal transporter located on
the vacuole membrane [45]. It can transport excess Na+ within the cell to the vacuole,
thereby reducing Na+ accumulation in the cytoplasm and improving salt tolerance [46].
Overexpression of IlNHX in tobacco maintains a high K+/Na+ ratio in tissues under salt
stress, while reducing chlorophyll loss and lipid peroxidation, thereby improving tobacco
salt tolerance [47]. Our research results were consistent with the expression characteristics
of these four genes, and salinity stress positively regulates the expression of SOS and
NHX1. In the VhMYB15-overexpressing Arabidopsis, the expression levels of AtSOS1/2/3 and
AtNHX1 were significantly higher than those of the control-group Arabidopsis. This indicates
that VhMYB15 can maintain the balance of intracellular Na+ concentration by positively
regulating AtSOS1/2/3 and AtNHX1, thereby enhancing salinity tolerance (Figure 6). This
was consistent with the measurement results of electrolyte leakage.

P5CS is a rate-limiting enzyme in the proline biosynthesis pathway, and its mRNA
expression level is positively correlated with proline content in plants [48]. There is a high
positive correlation between plant stress tolerance and proline accumulation. For example,
heterologous expression of the LcP5CS gene in Arabidopsis enhances plant tolerance to
drought stress [49]. The main function of CAT is to remove excess hydrogen peroxide
produced during stress and maintain the oxidative balance of plants under adverse condi-
tions [50]. Research has found that under drought stress, the expression level of the CAT
gene in drought-resistant varieties is significantly higher than that in drought-sensitive
varieties, indicating that these antioxidant enzymes provide innate protection for drought-
resistant varieties against ROS toxicity [51]. SnRK2 plays an important role in plant stress
tolerance [52]. AtSnRK2.6 (open stochastic 1) belongs to the Arabidopsis SnRK2 family and
can be activated and expressed by ABA signaling. Under stress, the protein phosphatase
PP2C in plants releases the inhibition of SnRK2.6 protein kinase. Subsequently, SnRK2.6 pro-
tein kinase initiates the regulatory effect on downstream signaling components and causes
stomatal movement to enhance plant drought tolerance [53]. NCED is a key rate-limiting
enzyme in ABA synthesis, widely involved in plant responses to abiotic stress. Overexpres-
sion of AtNCED3 in Arabidopsis enhances plant tolerance to drought stress by increasing
endogenous ABA levels [54]. Our research results were consistent with the expression
characteristics of these four genes, and drought stress positively regulates the expression
of P5CS1, CAT1, NCED3, and SnRK2.6. In the VhMYB15-overexpressing Arabidopsis, the
expression levels of AtP5CS1, AtCAT1, AtNCED3, and AtSnRK2.6 were significantly higher
than those in the control-group Arabidopsis. This indicates that VhMYB15 can enhance
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drought tolerance by positively regulating the expression of these stress-related genes,
increasing the accumulation of proline and the clearance of ROS (Figure 9).

In summary, based on the data from this study, we have established a potential stress
regulation network model centered on VhMYB15 (Figure 10). Under salinity stress, the
expression of VhMYB15 activates the SOS pathway, and AtSOS1 mediates the efflux of Na+

in cells under salt stress. Its activity is regulated by the SOS3–SOS2 kinase complex. In
addition, the SOS pathway and ABA can regulate the expression of AtNHX1, maintain
intracellular K+/Na+ balance and, thus, improve plant salinity tolerance. Under drought
stress, VhMYB15 increases the accumulation of proline and enhances the ability to clear ROS
by increasing the expression of AtP5CS and AtCAT1. In addition, VhMYB15 responds to
drought stress through ABA-dependent pathways. The expression of VhMYB15 promotes
an increase in AtSnRK2.6 expression, thereby regulating stomatal closure and increasing
tolerance to drought stress. VhMYB15 also increases plant drought tolerance by positively
regulating the expression of AtNCED3. In summary, overexpression of VhMYB15 positively
regulates plant tolerance to salt and drought stress.
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4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and Treatments

The ‘Beta’ plants were planted in a light incubator owned by our research group
(Laboratory 322, College of Horticulture and Landscape Architecture, Northeast Agri-
cultural University). We selected ‘Beta’ hydroponic seedlings with strong root systems
and small growth differences for stress analysis. The specific methods of stresses were as
follows: the hydroponic seedlings were placed in Hoagland solution for salinity (Hoagland
solution containing 100 mM NaCl, Coolaber, Beijing, China), drought (Hoagland solution
containing 20% PEG6000, Coolaber, Beijing, China), cold (Hoagland solution at 4 ◦C), high
temperature (Hoagland solution at 37 ◦C), and ABA (Hoagland solution containing 100 µM
ABA, Coolaber, Beijing, China) treatments [55]. Samples were taken at 0, 1, 2, 4, 8, 12, and
24 h after stresses, and the expression pattern of VhMYB15 was analyzed using qRT-PCR.
Arabidopsis was planted in a nutrient bowl (peat soil:vermiculite = 2:1) in the same growth
environment as that of ‘Beta’ (humidity: 75%, 25 ◦C, 16 h of light) [56,57].

4.2. Cloning and Bioinformatic Analysis of VhMYB15

Total RNA was extracted from ‘Beta’ leaves and the first cDNA was synthesized.
The target gene VhMYB15 was isolated by a homologous cloning method [55]. Based on
the CDS sequence of VvMYB15 (XM_002285157.4, Vitis vinifera L.), Primer 5 was used to
design primers for PCR amplification (the primer sequence was as follows: VhMYB15-
F/R: ATGGTAAGAGCTCCTTGTTG/TCAAAGCTCC TGTAAGCCGC). The primers were
from the 5′ to the 3′. The PCR product was connected with the T5 cloning vector, and the
kanamycin-positive single colony was selected for sequencing, and the CDS sequence of
the target gene was obtained [58]. The homology of VhMYB15 was analyzed using NCBI
(https://www.ncbi.nlm.nih.gov/, accessed on 21 January 2023) and DNAMAN 5.2, the
evolution relationship of VhMYB15 was analyzed using MEGA11, the physicochemical
properties of VhMYB15 were analyzed using TBtools v2.042, and the secondary structure
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and tertiary structure of VhMYB15 were analyzed using SOPMA (http://npsa-pbil.ibcp.
fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html, accessed on 26 March 2023) and
SWISS-MODEL (https://swissmodel.expasy.org/, accessed on 26 March 2023) [27,59].

4.3. Vector Construction and Subcellular Localization of VhMYB15

The vector pCAMBIA1300 GFP was linearized using restriction endonuclease BamHI
and SalI [27]. The fusion vector VhMYB15–pCAMBIA1300 was obtained by adding
15 bp homologous arms to both ends of the cloned primers (VhMYB15-2F/2R: GGTAC-
CCGGGGATCCATGGTAAGAGCTCCTTGTTG/GCTCACCATGTCGACAAG CTCCTG-
TAAGCCGC; the primers were from the 5′ to the 3′) and connecting the target gene to the
linearized vector by a homologous recombination method [6]. The successfully constructed
vector was transformed into Agrobacterium GV3101 for subsequent experiments [4].

In order to determine the localization of VhMYB15 in cells, Agrobacterium containing
the VhMYB15–pCAMBIA1300 vector and pCAMBIA1300 vector were injected into 30-day-
old tobacco leaves, and the distribution of GFP fluorescence signals was observed under
confocal microscopy. DAPI staining was used as a means of assisting localization [32].

4.4. Expression Analysis of VhMYB15

We used the VvActin-7 gene (Vitis vinifera, XM_002282480.5) as an internal reference
gene with the following primers: VvActin-7 F/R: CTTGCATCCCTCAGCACCTT/TCCTGT
GGACAATGGA TGGA. The specific primers (VhMYB15-qF/qR) were designed to avoid
the conservative domain of the CDS region of VhMYB15. The specific sequence was as
follows: VhMYB15-qF/qR: TTGTTGTGATAAGGTGGG/CTTGTTTTGGAAGGGCTC. The
primers were from the 5′ to the 3′. The ChamQ Universal SYBR qPCR Master Mix kit
(Vazyme, Nanjing, China) was selected for the experiment. We adopted a two-step method
for qRT-PCR testing, and the specific method was adapted from Han et al. [60]. It mainly
included pre-denaturation (95 ◦C, 30 s) and a 40-cycle circulation system (95 ◦C, 10 s; 60 ◦C,
30 s). The relative expression of VhMYB15 was calculated by 2−∆∆Ct [60].

4.5. Generation of Transgenic Lines

The Agrobacterium containing the pCAMBIA1300 vector and VhMYB15–pCAMBIA1300
vector were activated by a secondary activation method [27]. When the Agrobacterium
solution had an OD600 = 1, the re-suspension solution was prepared (OD600 = 0.5–0.8).

Inflorescences of Arabidopsis were soaked in re-suspension solution for 30 s then left to
rest for 5 min and cultured in the dark for 24 h. In order to improve the success rate of Ara-
bidopsis transformation, each batch of seedlings was infected 2–3 times, with an interval of
1 week between infections. The infected seeds were screened using kanamycin (50 mg L−1),
and the initially obtained seedlings were T1-generation plants, which were further cultured
until the seeds were harvested. Subsequently, the expression of VhMYB15 in T2-generation
Arabidopsis was analyzed by qRT-PCR. In order to obtain homozygous T3-generation Ara-
bidopsis, the lines with relatively high expression were further cultured. Subsequently,
salinity and drought treatments were carried out using T3-generation Arabidopsis [21].

4.6. Analysis of Related Physiological Indexes in VhMYB15-Overexpressing Arabidopsis

WT, UL, and transgenic Arabidopsis lines (L1, L3, and L7) with similar growth were
selected to measure the stress-related physiological indexes. Each Arabidopsis line was
divided into three equal parts: one part was cultured under normal conditions, and the
other two parts were treated with salinity stress or drought stress. The specific method was
irrigation with Hoagland solution containing 200 mM NaCl for 8 d under salinity stress
and no watering for 10 d under drought stress. The survival rate was calculated after 3 d
of stress relief. The phenotypes of the plants before and after stresses were observed, and
the related physiological indexes of the plants were measured. The chlorophyll content
was measured by the anhydrous ethanol extraction method, the proline was extracted
by sulfonic salicylic acid, and the color reaction was carried out with ninhydrin [50].

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://swissmodel.expasy.org/
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Malondialdehyde was extracted by thiobarbituric acid [3]. The activities of peroxidase
(POD), superoxide dismutase (SOD), and catalase (CAT) were detected with the Suzhou
Grace Biotechnology test kit (item No. G0107F, G0101F, G0105F, Comin, Suzhou, China).

4.7. Expression Analysis of Stress-Related Genes in VhMYB15-Overexpressing Arabidopsis

The RNA of Arabidopsis lines (WT, UL, L1, L3, L7) was extracted under salinity stress
(200 mM NaCl for 8 d) and drought stress (no watering for 10 d), and cDNA was obtained
by reverse transcription. The expression of AtNCED3, AtSnRK2.6, AtP5SC, AtCAT1, At-
SOS2, AtSOS3, AtSOS1, and AtNHX1 downstream genes of VhMYB15 was detected by
qRT-PCR. AtActin2 was selected as the internal reference gene. The specific primers were as
follows: AtP5CS1-F/R: AGGGAAAGTTCCA GAAAG/CATAACTAAGCGAGCCAC; At-
CAT1-F/R: GTCCTGGGATTCAGACAGGC/GGCC TCACGTTAAGACGAGT; AtNCED3-
F/R: TTGATGCTCCAGATTGCTTC/GGACCCTATCACG ACGACTT; AtSnRK2.6-F/R:
AGATCCCGAGGAACCAAAGA/CTCTTTGCAGGGTCAGCA AC; AtSOS2-F/R: GCAAG
GGAAGAAGAAGAAGT/TCTCCGCTACATAACTGCC; AtSOS3-F/R: GAATCCATCGCT-
CATCAA/CCATTTCTTCCTCTTCACA; AtSOS1-F/R: TTCATCATCCTC ACAATGGCTC-
TAA/CCCTCATCAAGCATCTCCCAGTA; AtNHX1-F/R: AGCCTTCAGGGAA CCACAAT
/CTCCAAAGACGGGTCGCATG; AtActin2-F/R: TTACCCGATGGGCAAGTCA/AAACG
AGGGCTGGAACAAGA [61]. The primers were from the 5′ to the 3′. The PCR program
and expression calculation method were the same as those in Section 4.4.

4.8. Statistical Analysis

Using GraphPad principle (v8.0.2.263) software, physiological index data of various
Arabidopsis lines (WT, UL, L1, 3, 7) before and after stresses were analyzed, and standard
error (±SE) and differences (* p ≤ 0.05, ** p ≤ 0.01) were marked. Both biological and
technical replicates were performed three times.

5. Conclusions

VhMYB15, an R2R3-type MYB TF isolated from ‘Beta’, can respond to various stresses,
with higher expression levels in its roots and mature leaves under salinity and drought
stresses. By constructing VhMYB15-overexpressing Arabidopsis and analyzing its phenotype
and stress-related physiological indicators, it was found that heterologous expression
of VhMYB15 improved the survival ability of Arabidopsis under salinity and drought.
In addition, the expression level analysis of MYB downstream stress-related genes also
confirmed this result. The analysis of VhMYB15 function can provide a possibility for the
molecular breeding of grapes.
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