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Abstract: Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), can manifest as long-
term symptoms in multiple organ systems, including respiratory, cardiovascular, neurological, and
metabolic systems. In patients with severe COVID-19, immune dysregulation is significant, and the
relationship between metabolic regulation and immune response is of great interest in determining the
pathophysiological mechanisms. We aimed to characterize the metabolomic footprint of recovering
severe COVID-19 patients at three consecutive timepoints and compare metabolite levels to controls.
Our findings add proof of dysregulated amino acid metabolism in the acute phase and dyslipidemia,
glycoprotein level alterations, and energy metabolism disturbances in severe COVID-19 patients
3–4 months post-hospitalization.

Keywords: COVID-19; SARS-CoV-2; post-acute sequelae of SARS-CoV-2 infection; post-COVID-19
condition; post-COVID-19 syndrome; metabolomics; dyslipidemia; nuclear magnetic resonance

1. Introduction

During the COVID-19 pandemic, millions of people tested positive for the SARS-CoV-
2 virus, hundreds of thousands of patients were hospitalized, and in the middle of 2020,
the medical and academic community were already noting Long COVID as an emerging
issue in rehabilitation [1–3]. Long COVID, or post-acute sequelae of SARS-CoV-2 infection
(PASC), is a heterogeneous entity with possible long-term symptoms in multiple organ
systems, including respiratory, cardiovascular, neurological, and metabolic systems, among
others [4–7]. Zang and colleagues aimed to characterize PASC using Electronic Health
Records (EHR) by comparing ~58 thousand patient data records to ~503 thousand control
EHR data records. They found a significantly increased risk for new-onset diagnoses in
COVID-19 patients 12 months after the acute disease phase when compared to non-COVID-
19 patients, including myopathy, dementia, cognitive problems, skin symptoms, pulmonary
fibrosis, dyspnea, pulmonary embolism, thromboembolism, diabetes, cystitis, malaise and
fatigue, dizziness, joint pain, and others [4].

Studies worldwide have estimated a high prevalence of long-lasting complications
after the COVID-19 acute phase [6–8]. A systematic review that included 194 studies
(735,006 participants) assessed that 45% of COVID-19 survivors, regardless of hospital-
ization status, were experiencing unresolved complications for ~4 months [6]. The high
prevalence and unclear disease mechanisms lead to situations where healthcare systems
are ill-equipped to deal with these patients without clear evidence-based rehabilitation and
therapeutic guidelines for PASC patients.
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In patients with severe COVID-19, immune dysregulation is significant, and the rela-
tionship between metabolic regulation and immune response is of great interest in deter-
mining the pathophysiological mechanisms of PASC [9,10]. Quantitative omics approaches,
including metabolomics, have been used to understand metabolite profile differences be-
tween COVID-19 severity groups and controls, but most of them do not evaluate mid-term
and long-term metabolic changes [11–13]. The dysregulation of pathways related to energy
production and amino acid metabolism has been observed in several studies [11,13,14].
Changes in blood metabolite levels reflect more complex systemic disturbances induced
by SARS-CoV-2, which affect the liver, kidneys, and other tissues. Several studies have
presented evidence of plausible metabolic reprogramming of the urea cycle and/or the
TCA cycle [11,13,15]. COVID-19 is associated with the development of cardiovascular
diseases, including dyslipidemia and, specifically, high-density lipoprotein (HDL) dysregu-
lation [16,17]. Another confirmation of disturbed energy metabolism is reports of increased
risk of incident diabetes and incident antihyperglycemic use [4,18].

Considering the cardiometabolic nature of PASC, we aimed to characterize the
metabolomic footprint of recovering severe COVID-19 patients at three consecutive time-
points and compare the metabolite levels to controls. NMR-based metabolomics was used
to investigate metabolic changes during recovery from severe COVID-19. The blood plasma
from hospitalized COVID-19 patients was collected at three timepoints: acute phase, a
month later, and three to four months later to study metabolite profiles during recovery
from severe COVID-19. To see how these profiles change compared to non-COVID-19
samples, we also measured metabolite profiles for population controls (not healthy in-
dividuals because of the relatively high prevalence of comorbidities in COVID-19 cases).
A Bruker AVNEO 600 MHz IVDr NMR-Solution was employed for metabolomics in the
present study. The system utilizes 1H NMR spectroscopy, which allows us to quantify
not only the free metabolites across different chemical classes but also a variety of lipids,
lipoproteins, and their subclasses with exceptionally high reproducibility [19–21]. In fact,
there are several published studies that have used NMR metabolomics to study the unique
metabolic fingerprint of COVID-19 disease in the context of severity, differences among
sexes, and virus variants, elucidating the interaction between host metabolism and immune
response [14,22–25]. Our study is designed to address these questions: How do metabolite
profiles change during recovery from severe COVID-19 (linear regression for time series
data)? Can we identify significantly changed metabolites for patients with and without
PASC (time series + phenotype linear regression)? What metabolites significantly differ
between COVID-19 patients and controls at each timepoint (t-test, fold-change analysis)?
What are the significant pathways involved in recovery from severe COVID-19?

2. Results

The study included 41 hospitalized patients with severe COVID-19 who were sam-
pled at three timepoints: Timepoint A (1st or 2nd day of hospitalization), Timepoint B
(4–5 weeks later), and Timepoint C (3–4 months post-hospitalization). The COVID-19
patients were also compared to 41 population controls (the study design is visualized in
Figure 1A). The characteristics of the study cohort are summarized in Table 1. As antici-
pated, the clinical blood tests showed abnormal results in the acute phase of COVID-19
patients (Timepoint A), corresponding to the previously described state of severe patients
in several meta-analyses [26,27]. The systemic response to the infection in our study cohort
was affirmed by the high variation observed in platelet, neutrophil, lymphocyte, monocyte
counts, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase,
bilirubin, lactate dehydrogenase, creatinine, and C-reactive protein clinical measurements,
which indicate renal and hepatic dysfunction and inflammation [26,27].
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Figure 1. (A) Study design. The study cohort consists of 41 hospitalized COVID-19 patients, for
whom samples were collected at three timepoints: (1) acute phase (Timepoint A) on the 1st or 2nd
day of hospitalization; (2) recovery phase (Timepoint B) 35 ± 14.7.65 days later; and (3) later recovery
phase (Timepoint C) 99 ± 16.79 days after the first sample. (B) Venn diagram showing the count of
statistically significant metabolites between timepoints A, B, and C. (C) Top 50 significantly changed
features (metabolites) based on limma linear regression analysis for time series data visualized in
the heatmap; each row conforms to a specific metabolite expressed in a normalized, log-transformed
concentration value, each column represents one sample, and the samples are arranged by time-
point. Distance measure: euclidean; clustering algorithm: ward. (D) Time-course profiles for the
top 3 features (by Hotelling’s T2 value) from multivariate empirical Bayes statistical time-series
analysis (MEBA); each line represents one patient.
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Table 1. Characteristics of the study participants.

Variable, Mean (SD) or n (%) COVID-19 Patients Population
Controls

Male/Female (n, %) 17 (41.46%)/24 (58.54%) 17 (41.46%)/24
(58.54%)

Age, average ± SD (years ± SD) 56.63 ± 13.16 53.10 ± 11.41
BMI, average (kg/m2 ± SD) 34.40 ± 22.95 27.08 ± 4.60
Time in hospital (days ± SD) 9.18 ± 3.25 -

Smoker/non-smoker (n, %) 3 (7.32%)/38 (92.68%) 3 (7.32%)/38
(92.68%)

Comorbidities *

Number of patients with
comorbidities (yes/no) 30 (73.17%)/11 (26.83%) 23 (56.10%)/18

(43.90%)
Hypertension (n, %) 17 (41.46%) 9 (21.95%)

Type 2 Diabetes Mellitus (n, %) 3 (7.32%) 3 (7.32%)
Other cardiovascular disease (n,

%) 10 (24.39%) 13 (31.71%)

Oncological (n, %) 2 (4.88%) 3 (7.32%)

Clinical measurements **

Average Acute COVID-19 Recovery phase
(1 month)

Recovery phase
(3–4 months)

Leukocytes (µL, SD) 5.71 (2.15) 6.19 (1.37) 5.67 (1.67)
Hemoglobin (g/dL, SD) 13.24 (1.45) 13.85 (1.28) 14.32 (1.43)

Hematocrit (%, SD) 39.91 (4.07) 41.47 (3.08) 41.26 (8.05)
Platelets (µL, SD) 173.13 (99.07) 267.10 (49.20) 238.17 (59.95)

Neutrophils (µL, SD) 2.41 (1.49) 3.21 (1.01) 3.00 (1.15)
Lymphocytes(µL, SD) 0.58 (0.54) 2.02 (0.66) 1.97 (0.66)
Monocytes (µL, SD) 0.24 (0.22) 0.59 (0.22) 0.50 (0.15)
Eosinophils (µL, SD) 0.03 (0.05) 3.03 (1.70) 3.05 (1.62)

ALT (U/l, SD) 23.82 (18.49) 39.23 (28.53) 30.95 (17.54)
AST (U/l, SD) 28.75 (13.74) 28.45 (13.68) 26.75 (12.91)
GGT (U/l, SD) 78.33 (99.33) 44.43 (43.10) 28.31 (30.13)

Bilirubin (µmol/L, SD) 6.64 (3.22) 13.30 (5.31) 11.26 (4.60)
LDH (U/L, SD) 295.00 (168.87) 215.70 (38.10) 189.67 (71.51)

Creatinine (µmol/L, SD) 72.45 (19.87) 68.65 (11.53) 70.57 (18.49)
CRP (mg/L, SD) 35.05 (42.05) 3.69 (2.80) 3.39 (4.28)

D-dimer (mg/mL, SD) 0.60 (0.12) 0.48 (0.31) 0.25 (0.15)
* Comorbidities for population controls were self-reported. ** Clinical measurements in the acute COVID-19 phase
were performed at an in-house hospital clinical laboratory, but the recovery phase measurements were performed
in the largest local network of certified clinical laboratories outside hospitals. SD: standard deviation; BMI: body
mass index; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl transferase;
LDH: lactate dehydrogenase; CRP: C-reactive protein.

Primarily, we wanted to identify how metabolite profiles for COVID-19 patients
change over time during the recovery process after severe disease and hospitalization.
We performed limma linear regression for time series data, using Subject as a covari-
ate to adjust for repeated within-subject samples, identifying 115 significant metabolites
(p-value < 0.05) (Supplementary Table S1B) across all contrasts (Timepoint C as the reference
group); the top 50 are visualized in the Figure 1C heatmap. As expected, the largest number
(114) of significantly different (p-value < 0.05) metabolites was between the acute phase
(Timepoint A) and the latest recovery phase (Timepoint C); similarly, between the acute
phase (Timepoint A) and the recovery phase (Timepoint B), 104 significant metabolites
(p-value < 0.05) were identified. The severe acute phase of COVID-19 patients can ex-
plain the significant difference in these contrasts. The top 10 most significantly changed
metabolites between the acute and recovery phases (Timepoints A and B, respectively)
were GlycB, Glyc, GlycA, Glyc/SPC, threonine, pyruvic acid, Apo-A1, TPA1, H3FC, and
HDA1. Interestingly, between the two recovery phases, Timepoints B and C, we identified
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17 statistically significant metabolites—the top 10 were methionine, histidine, GlycB, acetic
acid, pyruvic acid, Glyc, citric acid, GlycA, threonine, and V4TH—indicating that the
recovery process is still ongoing a month (35 ± 7.65 days) after hospitalization. See the
Figure 1B venn diagram showing the significant metabolite count across three contrasts.
Also, Hotelling’s T2 test was performed to detect changes or differences in the multivariate
mean of the data over time and to determine if the overall pattern or distribution of these
variables changed significantly across the studied timepoints (Supplementary Table S1C).
The top 3 metabolites (GlycA, Glyc, and GlycB by Hotelling’s T2 value) are visualized in
Figure 1D.

We recognize that our two subgroups, Long COVID and Recovered, each consist of
relatively small sample sizes (31 and 10 patients (×3 timepoints), respectively); the division
in groups was based on Electronic Health Record data (see methods). However, the strength
of our investigation lies in its longitudinal nature, which offers unique insights into the
trajectory of COVID-19 patients over time. Metabolome data in blood samples collected
at three distinct timepoints allows us to track the disease’s progression and recovery
in patients after the acute phase. Therefore, we used the COVID-19 subgroups to test
whether there is a significant difference between the Long COVID (n = 31) and Recovered
(n = 10) groups. We performed limma linear regression analysis (Metaboanalyst [18]) with
three experimental factors (phenotype, subject, and time) and compared the phenotype
groups with time and subject as covariates. When phenotype groups were compared,
27 metabolites were identified as significant (p-adjusted < 0.05) (Supplementary Table S1D),
and 19 of those were lipoprotein parameters. The top 10 most significant by adjusted
p-value are H2CH, H3FC, H2A2, H3A2, choline, H2PL, H3CH, succinic acid, acetone,
H3A1, and glucose.

Next, we set out to identify the significantly different metabolites between COVID-19
patients and population controls in each of the timepoints (A, B, and C) and determine
whether we see consistent changes across all contrasts that are involved in the pathogen-
esis of post-acute sequelae of SARS-CoV-2 infection (PASC) or the recovery from acute
COVID-19 and identify the significant pathways. When comparing the COVID-19 acute
phase (Timepoint A) vs. the population controls, we performed a t-test and identified
116 statistically significant metabolites (FDR < 0.05) (Supplementary Table S2A) and cal-
culated the fold change (FC) (Supplementary Table S2B). A total of 44 metabolites were
significant with an FC > 1.5. The summary of both analyses is visualized in the volcano
plot (Figure 2A), resulting in 13 strongly significant metabolites with a fold change thresh-
old of 2 and FDR < 0.05, 3 of them downregulated (acetic acid, methionine, and proline)
and 10 upregulated (threonine, pyruvic acid, V5FC, ornithine, V5CH, acetoacetic acid, 2-
Oxoglutaric acid, sacrosine, ethanol, and 2-Hydroxybutyric acid). Figure 2B shows pathway
significance (obtained by Global Test pathway enrichment analysis) and pathway impact
values (from pathway topology analysis) (Supplementary Table S2C). Pathway analysis
revealed 32 significantly enriched pathways (FDR < 0.05), including the top 10 by impact
values: phenylalanine, tyrosine, and tryptophan biosynthesis; synthesis and degradation
of ketone bodies; D-glutamine and D-glutamate metabolism; glycine, serine, and threonine
metabolism; alanine, aspartate, and glutamate metabolism; phenylalanine metabolism;
arginine and proline metabolism; pyruvate metabolism; glycerolipid metabolism; and
citrate cycle (TCA cycle). We also identified some of these pathways as significant in the
acute phase vs. controls in our previous targeted metabolomics experiment (LC-MS) [12].
Using liquid chromatography-mass spectrometry (LC-MS) in blood sera, we identified
tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (cit-
rulline and ornithine) metabolism, glutamine depletion, and altered metabolism of several
amino acids as contributing pathways in the immune response to SARS-CoV-2 in severe
COVID-19 [12].
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the y and x axes, respectively, resulting in 13 strongly significant metabolites (fold change > 1.5 and 
FDR < 0.05) indicated in red in the plot. (B) Scatterplot representing the most relevant metabolic 
pathways from the KEGG library, arranged by adjusted p values (obtained by Global Test pathway 
enrichment analysis) on the y-axis and pathway impact values (from pathway topology analysis) on 
the x-axis. The node color is based on its p value, and the node radius is determined based on path-
way impact values. (C) Timepoint A metabolites (x axis) vs. Timepoint B blood tests (y axis) in 
COVID-19 patients. Heatmap with the most clinically relevant metabolite (Timepoint A) correlations 
with biochemical and hematological analysis results from the clinical lab at recovery phase 
Timepoint B (~month after admission at the hospital), color represents the strength of the relation-
ship and its direct or inverse nature; only the pairs with sufficient data and significant correlations 
(p-value > 0.05) are shown. (D) Timepoint A metabolites (x axis) vs. Timepoint C blood tests (y axis). 
Heatmap visualizing metabolite (acute phase) correlations with biochemical and hematological 
analysis results in recovery phase Timepoint C (~month after admission at the hospital), color 

Figure 2. Timepoint A vs. population controls. (A) Volcano plot visualizing the distribution of
metabolites in the analyzed contrast, significance (−log10(p-value)) versus log2 fold change is plotted
on the y and x axes, respectively, resulting in 13 strongly significant metabolites (fold change > 1.5
and FDR < 0.05) indicated in red in the plot. (B) Scatterplot representing the most relevant metabolic
pathways from the KEGG library, arranged by adjusted p values (obtained by Global Test pathway
enrichment analysis) on the y-axis and pathway impact values (from pathway topology analysis)
on the x-axis. The node color is based on its p value, and the node radius is determined based
on pathway impact values. (C) Timepoint A metabolites (x axis) vs. Timepoint B blood tests (y
axis) in COVID-19 patients. Heatmap with the most clinically relevant metabolite (Timepoint A)
correlations with biochemical and hematological analysis results from the clinical lab at recovery
phase Timepoint B (~month after admission at the hospital), color represents the strength of the rela-
tionship and its direct or inverse nature; only the pairs with sufficient data and significant correlations
(p-value > 0.05) are shown. (D) Timepoint A metabolites (x axis) vs. Timepoint C blood tests (y axis).
Heatmap visualizing metabolite (acute phase) correlations with biochemical and hematological anal-
ysis results in recovery phase Timepoint C (~month after admission at the hospital), color represents
the strength of the relationship and its direct or inverse nature; only the pairs with sufficient data and
significant correlations (p-value > 0.05) are shown.
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In the present study, we explored how acute phase (Timepoint A) metabolites correlate
with hematological and biochemical analyses performed in a clinical lab in the recovery
phases (Timepoint B and Timepoint C). Interestingly, the highest correlations (by R values)
in Timepoint A metabolites vs. Timepoint B blood tests were ornithine and AST (0.85),
proline and alanine aminotransferase ALT (0.83), and asparagine and C-reactive protein
(CRP) (0.72). Interestingly, the highest significant correlations in Timepoint A metabolites
vs. Timepoint C blood tests were tyrosine and D-dimer (-0.98), glycerol and ALT (0.83), and
ornithine and D-dimer (0.79). Figure 2 shows Timepoint A metabolite correlations with
blood analysis results at Timepoints B (2C) and C (2D). The correlation coefficients for the
significant comparisons can be found in Supplementary Table S2D,E.

When comparing the COVID-19 recovery phase/month post-hospitalization (Time-
point B) vs. the population controls, a t-test identified 21 statistically significant metabolites
(FDR < 0.05) (Supplementary Table S3A) and calculated the fold change (FC) (Supplemen-
tary Table S3B). A total of 44 metabolites had an FC > 1.5. The summary of both analyses is
visualized in the volcano plot (Figure 3A). Acetic acid, V5FC, V5CH, V5PL, and sacrosine
were significantly different (FDR < 0.05) in the analyzed comparison with a fold change of
±1.5. Figure 3B shows pathway significance (obtained by Global Test pathway enrichment
analysis) and pathway impact values (from pathway topology analysis) (Supplementary
Table S3C). Pathway analysis revealed three significantly enriched pathways (FDR < 0.05):
beta-alanine metabolism, glycolysis/gluconeogenesis, and pyruvate metabolism. Figure 3C
visualizes the results of correlation analysis (Supplementary Table S3D); all statistically
significant R values present color between the pair. We identified three correlations as the
strongest (by R-value): succinic acid and erythrocytes (0.89), succinic acid and GFR (0.89),
and succinic acid and hemoglobin (0.86).

The same analysis strategy was performed in the COVID-19 recovery phase
3–4 months post-hospitalization (Timepoint C) vs. the population controls
comparison, summarized in Figure 4A–C. A t-test identified 10 statistically significant
metabolites (FDR < 0.05) (Supplementary Table S4A), and 4 metabolites had an FC > 1.5
(Supplementary Table S4B). The volcano plot (Figure 4A) shows two metabolites (V5FC
and ornithine) as significantly different (FDR < 0.05, fold change ±1.5) in the analyzed
contrast. Interestingly, pathway analysis (Figure 4B) in this contrast revealed 16 signifi-
cantly enriched pathways (FDR < 0.05) compared to only 3 in Timepoint B vs. population
controls. In the acute phase (Timepoint C) vs. the population controls, the top three
pathways by impact values (among the statistically significant) are: D-glutamine and D-
glutamate metabolism; alanine, aspartate, and glutamate metabolism; and glycine, serine,
and threonine metabolism (Supplementary Table S4C). The Figure 4C heatmap visualizes
the results of the correlation analysis between Timepoint C metabolites and Timepoint C
blood tests; all statistically significant R values present color between the pair. We identi-
fied these three correlations as the strongest (by R-value): cholesterol—cholesterol (0.91),
triglycerides—triglycerides (TG) (0.89), and HDL-cholesterol—HDL-cholesterol (0.86),
which are the same molecules only measured with different methods and labs. The next
strongest R values identified were: Apo-B100—cholesterol (0.83), isoleucine—D-dimer
(−0,81), and Apo-B100—non-HDL-cholesterol (0.80) (Supplementary Table S4D).
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Figure 3. Timepoint B vs. population controls. (A) Volcano plot visualizing the distribution of
metabolites in the analyzed contrast, significance (−log10(p-value)) versus log2 fold change is plotted
on the y and x axes, respectively. (B) Scatterplot representing the most relevant metabolic pathways
from the KEGG library, arranged by adjusted p values (obtained by Global Test pathway enrichment
analysis) on the y-axis and pathway impact values (from pathway topology analysis) on the x-axis.
The node color is based on its p value, and the node radius is determined based on pathway impact
values. (C) Timepoint B metabolites (x axis) vs. Timepoint B blood tests (y axis) in COVID-19
patients. Heatmap visualizing statistically significant metabolite correlations with biochemical and
hematological analysis results in recovery phase Timepoint B (~month after admission at the hospital),
color represents the strength of the relationship and its direct or inverse nature; only the pairs with
sufficient data and significant correlations (p-value > 0.05) are shown.
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Figure 4. Timepoint C vs. population controls. (A) Volcano plot visualizing the distribution of
metabolites in the analyzed contrast, significance (−log10(p-value)) versus log2 fold change is plotted
on the y and x axes, respectively. (B) Scatterplot representing the most relevant metabolic pathways
from the KEGG library, arranged by adjusted p values (obtained by Global Test pathway enrichment
analysis) on the y-axis and pathway impact values (from pathway topology analysis) on the x-axis.
The node color is based on its p value, and the node radius is determined based on pathway impact
values. (C) Timepoint C metabolites (x axis) vs. Timepoint C blood tests (y axis) in COVID-19
patients. Heatmap visualizing statistically significant metabolite correlations with biochemical and
hematological analysis results in recovery phase Timepoint B (~month after admission at the hospital),
color represents the strength of the relationship and its direct or inverse nature; only the pairs with
sufficient data and significant correlations (p-value > 0.05) are shown.

3. Discussion

In this study involving 41 hospitalized COVID-19 patients (measuring metabolites
at three timepoints) and 41 population controls, we found proof of dysregulated amino
acid metabolism, dyslipidemia, glycoprotein level alterations, and energy metabolism
disturbances that we discuss below. Given the high heterogeneity of acute COVID-19 and
PASC, the main limitation of our study is the relatively small sample size. However, the
application of a longitudinal study design provides greater statistical power and minimizes
potential interference with variable complexity at individual levels.
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3.1. Dysregulations in Amino Acid Metabolism

In our previous metabolomic investigation, we focused on the patients in the acute
phase of COVID-19, uncovering significant alterations in amino acid metabolism. Using
liquid chromatography-mass spectrometry (LC-MS) on blood sera, we identified trypto-
phan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline
and ornithine) metabolism and glutamine depletion as contributing pathways in the acute
phase immune response to SARS-CoV-2 in severe COVID-19. We also reported the al-
tered metabolism of several amino acids (alanine, leucine, histidine, tyrosine, methionine,
phenylalanine, asparagine, glutamine, and others) [12]. The current study used NMR on
a different cohort of COVID-19 patients, extending the observation period and including
samples from the timepoint of 3–4 months post-hospitalization. Limma linear regression
identified histidine, methionine, phenylalanine, threonine, glutamine, tyrosine, and others
as significant for COVID-19 patient time-series metabolic profiles, but choline and valine
were significantly different between the Long COVID and Recovered subgroups. The
amino acid concentrations tend to normalize to similar levels as controls for most patients
3–4 months post-hospitalization. The extensive dysregulation of amino acids during the
acute phase indicates significant immune system activation, as recently, they have been
proposed to be immunometabolites and immunotrasmitters and mark immune cell activity
pathways [9,10]. For example, glutamine is important as respiratory fuel for macrophage
function, survival, and proliferation of T and B cells [10,28–30]. Adding to that, Holmes
et al. observed a persistently reduced glutamine/glutamate ratio in most non-hospitalized
COVID-19 patients in their study three months post-infection, emphasizing the impor-
tance of the relationship between these amino acids in astrocytes in the central nervous
system [14]. Interestingly, ornithine, an amino acid involved in the urea cycle, was found to
be significantly changed in the present study in time series data linear regression analysis,
and we observed that it is higher in the COVID-19 acute phase. For most patients, it lowers
to normal levels during the first month of recovery, but for some, it is still significantly
higher than levels in controls 3–4 months after hospitalization. We also noted that ornithine
significantly positively correlated with alanine aminotransferase and aspartate aminotrans-
ferase in the 3–4 month post-hospitalization recovery phase. We discuss liver involvement
further in the next paragraphs.

3.2. Dyslipidemia in COVID-19

Linear regression analysis for time series data during recovery from severe COVID-19
identified ppolipoprotein-A1 (ApoA-1) and high-density lipoprotein-cholesterol (HDL-
Chol) as significantly altered, and when compared to population controls, the Apo-A1 and
HDL-Chol levels in blood plasma were still lower a month after hospitalization, and for
several patients, they also remained low 3–4 months after hospitalization. Importantly,
HDL-Chol was among the significant metabolites when linear regression was used to
investigate differences among the Long COVID and Recovered patient groups. This ob-
servation is consistent with other studies, which have associated low HDL-Chol levels
with poor outcomes [14,31,32]. HDL-Chol is considered “good” cholesterol because it
enhances endothelial function and promotes endothelial cell integrity; Apo-A1 forms the
largest part of HDL cholesterol. Adding to that, it has been previously proven that the
activation of the inflammatory cascade can cause a decrease in HDL-Chol and changes in
apolipoprotein profiles, which manifest as impairment in the reverse cholesterol transport
mechanism by which the body removes excess cholesterol from peripheral tissues and
delivers them to the liver, consequently leading to an increased accumulation of cholesterol
in cells [16,33,34]. To note, we also observed a positive correlation between acute phase
ApoA-1 and HDL-Chol levels measured by NMR and the recovery phase (1 month and
3–4 months post-hospitalization) HDL-cholesterol levels measured in the clinical lab, indi-
cating that patients are exposed to an abnormal level of lipoproteins for a prolonged time,
and it could contribute to endothelial damage observed in COVID-19 patients [35]. We also
identified changes in other lipoprotein and triglyceride fractions, indicating dyslipidemia
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that has been observed in COVID-19 patients before, increasing the risk of cardiovascular
complications for patients recovering from COVID-19 [31,32]. Similar results with 1H NMR
metabolomics were obtained by Ghini et al. in an Italian COVID-19 patient cohort; they
showed that patients with PASC tend to have altered lipoproteomes [25]. Adding to that,
in a recent study, dysregulated lipoprotein profiles were noted as more characteristic for
non-hospitalized post-acute COVID-19 patients who were experiencing persistent symp-
toms than those who were considered fully recovered [14]. Our study provides further
evidence that dyslipidemia is characteristic of recovery from COVID-19 in hospitalized
patients; taken together with the other literature evidence, it is advisable to monitor blood
lipid levels for hospitalized COVID-19 patients and consider lipid-lowering medication to
avoid poor cardiovascular outcomes.

3.3. Glycoprotein Level Alterations

GlycA originates from a subset of glycan N-acetylglucosamine residues, GlycB
(branched-chain N-acetyl signals), and Glyc (N-acetylneuraminic acid) on enzymatically
glycosylated acute-phase proteins (levels rise or fall in response to inflammation, modifica-
tion carried out by glycosidases and glycosyltransferases) [36–39]. Inflammation-induced
alterations of N-linked acute-phase glycoproteins result primarily from the addition or
removal of sialic acid, galactose, or fucose residues [36,39]. Otvos et al. showed that GlycA
can be a robust systematic inflammation marker; Duprez et al. identified it as a marker for
inflammation and a strong predictor of cardiovascular events [38,40]. In the present study,
GlycA, GlycB, and Glyc significantly changed during recovery from severe COVID-19, as
identified by linear regression analysis (the highest levels are in the acute phase). Addition-
ally, GlycA, GlycB, and Glyc showed the highest Hotteling’s T2 values across time series
data in COVID-19 recovery, indicating the most constant change pattern across patients.
When compared to population controls, GlycA, Glyc, and GlycB were still elevated one
month after hospitalization, and for most patients, they also stayed elevated 3–4 months
after hospitalization when compared to population controls. Importantly, GlycA is a novel
marker for chronic, long-term inflammation. Leveraging population-based omics data in a
10-year-long study, increased GlycA levels were found to be chronic within individuals
for up to a decade, increasing the risk of severe respiratory infections, which can lead to
septicemia and pneumonia [36]. Elevated GlycA positively corresponded to inflammatory
cytokines and increased neutrophil activity, suggesting chronic inflammation [36]. We also
note that GlycA, GlycB, and Glyc significantly correlated with clinical blood test parame-
ters in our cohort (plasma glucose, LDH (lactate dehydrogenase), GGT (gamma-glutamyl
transferase), CRP (C-reactive protein), HDL and LDL cholesterol, neutrophil count, and
triglycerides). The chronic inflammation should be studied in large, prospective, recov-
ered COVID-19 and Long COVID patient cohorts to determine the best anti-inflammation
therapeutic strategies for patients with PASC.

3.4. Energy Metabolism Disturbances

Several studies have presented evidence of disturbed energy metabolism by
SARS-CoV-2 virus infection, and our results add evidence in support of these proposed
mechanisms as important in recovery after hospitalization [11,41,42]. In our study, two
important overlapping pathways of energy metabolism, glycolysis/gluconeogenesis and
pyruvate metabolism, were identified as significantly different between COVID-19 patients
(at all timepoints) and population controls. Adding to that, the TCA cycle was identified
as significantly different between COVID-19 patients in the acute phase and population
controls and between COVID-19 patients in the latest recovery phase (3–4 months after hos-
pitalization) and controls. This indicates serious alterations in energy metabolism. Caterino
et al. compared metabolomes and cytokine profiles among different clinically severe pa-
tients and controls [11]. They proposed a strong connection between the hypoxemia state
and the subsequent oxidative stress, which may have a major effect on the mitochondrial
energy metabolism and detoxification processes in the hepatocytes, noting that the hepatic
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urea cycle is the main metabolic pathway involved in the detoxification processes [11]. The
urea cycle metabolizes ammonia to urea with a fumarate shunt connecting the urea and
TCA cycles within the liver [43]. In a hypoxic state, there is a burden of glucose production
(gluconeogenesis) and urea elimination (the urea cycle) in the liver. A recently published
study of 39 post-COVID-19 patients in rehabilitation also found high levels of succinic and
fumaric acids (TCA cycle metabolites) and associated these observations with hypoxia and
inflammation [44]. Although analyzing drug metabolites was out of this study’s scope,
a notable fact is that corticosteroids, especially dexamethasone, were used for the treat-
ment of severe COVID-19, and corticosteroids increase hepatic gluconeogenesis, reduce
peripheral use of glucose, and increase insulin levels, contributing to hyperglycemia in
patients. Acetic acid, lactic acid, pyruvic acid, citric acid, and succinic acid are involved in
energy metabolism pathways, and we found them to be significantly changed in COVID-19
patients (linear regression for time series data). The optimistic result in our relatively
small cohort study is that 3–4 months post-hospitalization, the levels of these metabolites
normalized and were similar to population controls.

Liver tissue is not the only one that changes rapidly in an oxygen-deficient envi-
ronment caused by pneumonia and lung damage. Marchuenda-Egea and Narro-Serrano
described how energy metabolism changes in muscles, liver, and adipose tissue, which
leads to the COVID-19 signature blood metabolome in severe COVID-19 patients [41]. Hy-
poxia caused by pneumonia impacts muscle tissue significantly because oxygen is crucial
for the efficient functioning of mitochondria, where it acts as the final electron acceptor in
oxidative phosphorylation (the main cellular ATP production process) [41,45]. The muscle
tissue adapts to this stress by breaking down muscle proteins to generate energy; one
possible pathway for that is the glucose–alanine cycle, which allows myocytes to obtain
energy continuously from muscle proteins by oxidizing amino acids [41,46]. The glucose–
alanine cycle generates alanine that can be transported to the liver, where it can donate
amino groups to pyruvate (to be used in gluconeogenesis) or to oxaloacetate, producing
glutamate and initiating the urea cycle [46]. In our study, pathway analysis revealed several
significantly different alanine metabolism pathways between COVID-19 patients during
recovery phases and population controls, but alanine itself was not significantly altered.
Adding to that, during hypoxia, the liver obtains its energy from the oxidation of lipids
through β-oxidation, generating ketone bodies [47]. We also measured ketone bodies, and
3-hydroxybutyric acid was higher for some COVID-19 patients at hospitalization but was
the same level as controls in both recovery phases. Acetoacetic acid was high for most
patients in the acute phase and for some patients a month later, but for all patients, it
returned to normal levels 3–4 months post-acute phase. It is interesting to note that Ghini
et al. also observed a significant increase in ketone bodies (3-hydroxybutyrate, acetone,
and acetoacetate) during the acute phase in most severe patients (they compared mild,
severe, fatal, and reference groups), concluding that the higher increase in ketone bodies
was attributed to a higher risk of fatal events [24]. An increase in ketone bodies and plasma
lipoproteins during the acute phase indicates a greater mobilization of energy sources from
adipose tissue, and this contributes to the disturbed lipid metabolism discussed previously.

Finally, our metabolomics study measured glucose, which was identified as statistically
significant by the limma linear regression analysis for both the COVID-19 time series data
and the Long COVID/Recovered subgroups. The highest levels of glucose were measured
during the acute phase. For most patients, glucose tends to go back to normal after
3–4 months of recovery (same levels as controls), but for several patients, it stays higher. It
should be noted that one patient had new-onset diabetes and another had increased blood
glucose listed in their EHR data during the 12-month post-acute period. In the scientific
literature, there is an increasing amount of evidence that some patients develop diabetes as
post-acute sequelae of COVID-19 and need glucose-lowering therapies [4,18,48,49]. The
literature and our results show that attention to possible hyperglycemia in recovering
COVID-19 patients (blood tests) is advisable and should be adequately treated to avoid the
development of hyperglycemia-induced complications. We also note that this study had an
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important limitation that should be addressed in the future: the need for deeper clinical
phenotype data on COVID-19 patients in the acute and recovery phases. The availability
of these data would provide the possibility to correlate the measured metabolites with
characteristic symptoms and complications of acute COVID-19 and PASC.

4. Materials and Methods
4.1. Study Design

Our study cohort consists of 41 hospitalized severe COVID-19 patients (5 of whom
were in the intensive care unit), from whom blood was collected at three timepoints:
(1) acute phase (Timepoint A) samples were collected on the 1st or 2nd day of hospitaliza-
tion; (2) recovery phase (Timepoint B) samples were collected 35 ± 7.65 days later; and
(3) later recovery phase (Timepoint C) samples were collected 99 ± 16.79 days after the
first sample. The acute phase (Timepoint A) sample collection at the hospital started on 25
May 2020 and was finished by 28 January 2021; all patients had confirmed SARS-CoV-2
infection (with an antibody or qPCR test) at the time of admission to the hospital. The
patient recruitment was organized in collaboration with Riga East University Hospital and
Vidzeme Hospital (Latvia). During hospitalization, most patients in the cohort received
bromhexine hydrochloride or ambroxol hydrochloride as bronchiolitis therapy, dexametha-
sone (glucocorticoid) as anti-inflammatory therapy, enoxaparin (most often), fraxiparine,
or warfarin as an anticoagulant, paracetamol, ascorbic acid, calcium gluconate, sodium
chloride, and therapies for individual comorbidities. The collection of longitudinal samples
was organized in an ambulatory setting according to the study design. None of the patients
were vaccinated with any of the COVID-19 vaccines before hospitalization or during the
sample collection period. Hematological and biochemical analyses in the acute phase were
performed at the hospital’s clinical lab but during recovery in a certified clinical laboratory
(E. Gulbja Laboratorija, Ltd., Riga, Latvia). Health registry data were obtained for the
patients, and they were divided into two subgroups (Recovered (n = 10) and Long COVID
(n = 31)) by these criteria: if they had a new post-acute sequelae of SARS-CoV-2 infection
(PASC) diagnosis in the 12 months following the COVID-19 acute phase (1-month acute
phase and 12-month period as a post-acute period). We used the PASC diagnosis selection
from the recently published work of Zang et al. [4]. We also compared COVID-19 patients
to population controls (n = 41) without acute respiratory infection symptoms during enroll-
ment and 3 months before sample collection (self-reported). All samples were collected
during the same period (2020–2021). The study design is visualized in Figure 1A, and
cohort characteristics are summarized in Table 1. Written informed consent was obtained
from every participant before their inclusion in the study, and the study protocol was
approved by the Central Medical Ethics Committee of Latvia (No. 01-29.1.2/928).

4.2. Sample Preparation and Instrumental Analysis

The blood samples were collected in EDTA blood collection tubes and centrifuged to
separate blood plasma. They were then aliquoted, frozen, and stored according to standard
operating procedures (SOPs) of the Genome Database of the Latvian Population (National
Biobank [40]). Sample preparation for analysis: 300 µL of thawed blood plasma and
300 µL of Bruker plasma/serum buffer were shaken to mix, then 600 µL was transferred in
a 5 mm SampleJet tube used for instrumental analysis. The raw NMR spectrum in samples
was recorded using the Bruker IVDrAvance III HD 600 MHz NMR system that uses a
temperature-controlled autosampler SampleJet™ and TXI probes resonating with 1H, 13C,
and 15N (Bruker BioSpin GmbH, Ettlingen, Germany) [50]. The Bruker IVDrAvance III
HD 600 MHz NMR system employs 1H NOESY (Nuclear Overhauser Effect Spectroscopy),
JRES (J-RESolved spectroscopy), CPMG (Carr–Purcell–Meiboom–Gill), and PGPE (Pulsed
Gradient Perfect Echo) techniques. Together, three modules were applied for fully auto-
mated annotation and quantification: B.I. QUANT-PS™ (for small molecules), B.I. LISA™
(for lipoprotein subclasses and subfractions), and B.I. BioBank QC™ (for sample quality
control). Sample preparation and instrumental analysis were performed according to SOPs
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developed by Bruker; it has been shown that by using these standardized SOPs, NMR
metabolomics can provide highly reproducible data [20,51,52].

4.3. Statistical Analysis

For statistical analysis of metabolites, we used a merged table of all quantified metabo-
lites, including free metabolites (no protein denaturing performed) across different chemical
classes (alcohols and derivatives, amines and derivatives, amino acids and derivatives,
carboxylic acids, essential nutrients, keto acids and derivatives, sugars and derivatives,
sulfones, and technical additives), N-acetylated- glycoproteins (GlycA and GlycB), Glyc
(N-acetylneuraminic acid), SPC (supramolecular phospholipids composite), quantified
lipids and lipoproteins (triglycerides, cholesterol, LDL-chol, HDL-chol, LDL-phos, HDL-
phos, Apo-A1, Apo-B100), and concentrations of lipoprotein VLDL, IDL, LDL, and HDL
classes and subclasses. We also included biologically relevant proportion calculations:
Apo-B100/Apo-A1, Glyc/SPC, and LDL-cholesterol (LDCH)/HDL-cholesterol (HDCH)
as possible biomarkers across contrasts. Together, we analyzed 169 quantified features in
164 samples. See the quantified input features for all samples in Supplementary Table S1A.

For statistical analysis, we used web-based MetaboAnalyst software 5.0 [53]. To
normalize metabolite data, we applied log transformation (base 10) and Pareto scaling
(mean-centered and divided by the square root of the standard deviation of each variable).

4.4. Linear Regression for Time Series Data Analysis in COVID-19 Patients

The underlying method is based on limma [54]. We analyzed two models: (1) time
series data and (2) time series + phenotype (Recovered/Long COVID). For model (1), the
reference group was set to be Timepoint C when compared to Timepoints A and B, but
Timepoint B was used as a reference group to compare with Timepoint A; for model (2),
the direction of comparison was Long COVID vs. Recovered. In both analyses, Subject,
indicating one patient, was used as a covariate to adjust for repeated within-subject samples.
For time-pattern analysis, we used multivariate empirical Bayes statistical time-series
analysis (MEBA) at Metaboanalyst, a method to rank the features by calculating Hotelling’s
T2. It can be applied to determine if these variables’ overall pattern or distribution changes
significantly across timepoints.

4.5. Univariate Analysis for Two-Group Comparisons

To identify the significantly different metabolites between COVID-19 patients and
population controls at each of the timepoints (A, B, and C) and determine whether we see
consistent changes across all contrasts that are involved in the pathogenesis of or recovery
from acute COVID-19, we also performed the univariate analysis in each of the interesting
contrasts with Metaboanalyst: t-test to determine significance and fold change analysis
calculation to determine the level of changed metabolite concentration. To visualize the
significance and fold change analysis results in the volcano plot, −log10(p-value) and
log2FoldChange were calculated in Metaboanalyst and visualized with Prism Graphpad 9.

4.6. Pathway Analysis

We also used Metaboanalyst to determine significant pathways in each of the contrasts;
for that, a set of features was used (only quantified metabolites that could be annotated).
Log transformation and Pareto scaling were applied for data normalization. The reference
pathway library was selected for Homo sapiens (KEGG). The enrichment method (Global
Test) was used to calculate adjusted p-values and −log10(p-value) for the plot. The reference
pathway library was selected for Homo sapiens (KEGG).

4.7. Biochemical Analysis and Metabolite Correlations

We also analyzed the correlations of the metabolites with the hematological and
biochemical markers from laboratory analyses at different timepoints. In each pairwise
correlation, we excluded any patient if the respective laboratory analysis was not performed
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or the metabolite/marker was below detection level, and the correlation coefficient was only
calculated if data were available for at least five patients. The calculation was performed
using the non-parametric Kendall’s tau.

5. Conclusions

While currently there are no regulator-approved therapies that directly target the
root causes of Long COVID symptoms, and the causes themselves are not widely under-
stood, metabolomics data from longitudinal studies of recovering patients can identify
the molecules behind observed complications to advise possible risks in recovery from
severe COVID-19. From our data and the literature evidence, we recommend checking
recovering COVID-19 patients for hyperglycemia and dyslipidemia with widely available
markers in the blood and considering chronic inflammation as a potential risk of developing
complications over time.
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