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Abstract: We present a study of the intermolecular interactions in van der Waals complexes of methane
and neon dimers within the framework of the CCSD method. This approach was implemented and
applied to calculate and examine the behavior of the contracted two-particle reduced density matrix
(2-RDM). It was demonstrated that the region near the minimum of the two-particle density matrix
correlation part, corresponding to the primary bulk of the Coulomb hole contribution, exerts a
significant influence on the dispersion interaction energetics of the studied systems. As a result, the
bond functions approach was applied to improve the convergence performance for the intermolecular
correlation energy results with respect to the size of the atomic basis. For this, substantial acceleration
was achieved by introducing an auxiliary basis of bond functions centered on the minima of the
2-RDM. For both methane and neon dimers, this general conclusion was confirmed with a series of
CCSD calculations for the 2-RDM and the correlation energies.

Keywords: density matrix; dispersion function; van der Waals complexes; bond functions; electronic
correlation

1. Introduction

The weak interactions between closed-shell atoms and molecules are of fundamental
importance for the accurate description of a great variety of systems in a range of fields.
Important examples are the following: molecular biology and genetic engineering [1–17],
in which stacking interactions, as well as the folding of protein and chromatin compounds,
are highly dependent on hydrogen bonds and dispersion interactions. They also play
an important role in the following: drug design and medicine [18–20], with the docking
largely governed by the formation and breaking of non-covalent and non-ionic bonds;
supramolecular chemistry, in which the spatial organization of constituent molecular
systems is determined by weak covalent interactions; the chemistry of materials, in which
the crystallographic structure is often determined by non-covalent interactions; catalytic
chemistry, in which the adsorption of compounds and their distribution on a surface are
strongly influenced by weak interactions; and molecular chemistry and chemical reactivity.

The accurate parameterization of intermolecular interactions in complex molecu-
lar systems, such as proteins [10], often relies on high-precision calculations involving
small-model systems. Nevertheless, attaining an error level below 1% for intermolecular
interactions represents substantial challenges. One of these pertains to the accurate incor-
poration of intermolecular electronic correlation contributions [21]. For instance, studies
on potential energy surface (PES) cross sections for a methane dimer require the use of
high-quality post-Hartree–Fock treatment, including the coupled clusters or second-order
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perturbation theory applying Pople and Dunning basis sets [22,23]. In this case, a basis
set saturation (with up to 1% accuracy) has been achieved using the CCSD(T) method in
the aug-cc-pVQZ basis set, yielding an interaction energy of 0.51 kcal/mol in the case of a
complete basis set limit [23,24].

This highlights the importance of choosing a strategy to account for electron correlation
effects that offer a balanced compromise between efficiency and accuracy for the given
energy range. In particular, choosing methods to facilitate the slow-correlation energy
convergence with respect to the basis set size [25,26] approaching the complete basis
set (CBS) limit that mitigate the basis set superposition error (BSSE) [27–29] becomes
essential. This issue and related issues involve the development of strategies to construct
specially enhanced one-electron basis sets [21] designed to address the intermolecular
correlation. Finally, yet another role in the quantitative description of these interactions
is played by a finely tuned scheme employing the electron structure methods, which
are usually represented using a mixture of perturbation theory, variational, or coupled
clusters approaches.

The particular problem caused by the relatively small interaction energies concerns
the convergence of the applied strategy in terms of the intrinsic approximation level of the
quantum chemical strategy involved and the basis set sizes, in which the latter overlaps with
the previously mentioned requirements of the special one-electron bases. An approved
way of addressing the basis set saturation problem, in terms of the basis set size and
the maximum angular momentum, is referred to as the bond functions approach [21,30].
With this approach, the additional dummy atomic center with the specially designed set of
diffuse atomic functions is placed between molecular fragments to improve the description
of the wave function nodal structure, as well as the overall behavior in this region. This
goal partially overlaps with the focus of the explicitly correlated methods that are intended
to describe the most pronounced form of the same effect in the whole space of the electronic
coordinates (see, e.g., [31]). Illustrating the performance of this method, the basis set
saturation with respect to the energy results is already attained at the cc-pVDZ level in
the cases of the first- and second-row element compounds if the additional set of bond
functions [33221] is invoked [23,32,33]. This effect has been most extensively studied in the
context of a helium dimer, for which a comprehensive analysis of the correlation effects of
the dispersion component of the two-particle wave function is available [21,32].

Although the bond function technique represents certain advantages, there is a high
level of arbitrariness in the choice of the parameterization, including the dummy center
position, as well as the auxiliary set size. Despite the fact that, for some noble gas di-
atomics, the bond functions centering issue was found to be of minor importance [34],
the situation turned out to be more complex in the general case (e.g., see the profound
benchmarking for the centering strategies in [35] against the A24 [36] and S66 [37] data
sets). While existing heuristics to select the dummy center position as various averages
of the monomer positions [38–41] generally lack theoretical rigor [35], regular analysis
of auxiliary set parameterization [42] should take into account the effects of successive
basis extension, optimizing the integral correlation characteristics under question with
respect to the auxiliary function positions and exponents throughout the entire geometric
parameter domain of interest, which becomes too computationally expensive. An alter-
native approach is to consider the optimization of basis parameters for the description of
local correlation effects, rather than the integral energetic characteristics. For helium, this
approach can be considered when analyzing interatomic interaction energy in the form
of the expansion of the SAPT theory [43], which, in this case, includes the interatomic
Hartree–Fock (HF) energy, as well as the intra-atomic and interatomic correlation contribu-
tions. In particular, the related contributions can be studied using the so-called dispersion
function [44], which represents the part of the explicitly correlated genimal solution that is
responsible for the monomers’ interaction. An alternative and more universal tool for the
analysis of correlation effects is provided with the two-particle density matrix (2-RDM),
the related cumulants, and the pair density functions [30,44–46]. It is well known that, for a
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nonrelativistic many-electron system that is non-interacting with an external magnetic field,
the spin-averaged pair density contains the complete information about all the correlation
effects [47]; this determines the quantity used to suggest the choice of the additional ba-
sis functions’ placement and “shape” parameters. Hence, the treatment of the auxiliary
function parameters in the framework of 2-RDM analysis not only allowed us to bypass
some of the expensive steps in interaction energy optimization [42] but also brought the
pure two-electron correlation effects’ consideration and the problem of spatial compactness
relevant to the standard Gaussian or Slater-type basis sets to common ground.

In the present work, we address these questions from a quantum chemical point of
view, inspecting the electron correlation at the level of the two-electron density reduced
spin averaged density and density matrix behavior. We show that placing the bond function
of the domain in the coordinate space where pair density undergoes strong changes is
a prerequisite for grasping the bond functions’ methodological advantages. To this end,
we applied the response theory approach to construct effective the CCSD theory density
matrices [48–52] for the methane and neon dimers in their ground states and the equilibrium
geometries that were optimized at the same level of this theory. The resulting dependencies
were applied to recover the spin-averaged two-electron density, which was, further, simply
called pair density; the diagonal values of this density were addressed to adjust the choice
of the basis set disposition.

In Section 2.1, we commence by outlining the relevant theoretical background, high-
lighting the role of the relaxed density matrices for correlation energy estimation in terms
of the diagonal Hellmann–Feynman theorem for the non-degenerate level. In Section 2.2,
we represent the main computational scheme for the calculation of the pair densities and
other response properties, and in Section 2.3, we discuss and analyze our obtained data.

2. Results and Discussion
2.1. Theory
2.1.1. Reduced Density Matrices in the CCSD Method

In the framework of the one-dimensional model space coupled cluster theory [53],
the ground state solution of the stationary Schrödinger equation (H − E) |Ψ⟩ = 0 within the
given number of electrons N and abelian symmetry was searched using the following form:

|Ψ⟩ = Ω |Φ⟩ = eT |Φ⟩ ,

where |Φ⟩ = argmin
|Φ0⟩=|i1⟩∧···∧|iN⟩

EHF(Φ0) is the Hartree–Fock physical vacuum, a wave op-

erator Ω establishes correspondence the exact |Ψ⟩ and model |Φ⟩ vectors, and a cluster
operator assumes the n-particle expansion T = T1 + T2 + . . . , where the subscript enumer-
ates the homogeneous components with respect to the excitation degree, which is restricted
to 2 for the CCSD case. The one-particle unitary transformations entering the HF mini-
mization have a generic form, eκ , with an antihermitian one-electron operator κ and can be
explicitly involved in the wave vector parameterization: |Ψ⟩ = e−κeTeκ |Φ⟩ = e−κeT |Φ⟩.
Using the fact that eT is invertible allowed us to reformulate the problem in terms of the
doubly dressed CC Hamiltonian H−κ,T = e− adT eadκ H = e−Teκ He−κeT as

(H−κ,T − E) |Φ⟩ = 0. (1)

Assuming the HF problem to be solved, and projecting Equation (1) on the space of
excitations of the same degrees engaged in T, one can obtain the classical CC equation:

〈
Φ
∣∣(1 + Λ+)H

∣∣Φ〉 = ECC, (2)

where H = H0,T , and Λ is an arbitrary linear combination of the excitation operators of the
mentioned form. The first way, which leads to so-called unrelaxed densities, completely
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neglects the S part, which results in noticeable inaccuracies for the obtained densities and
related quantities, although the resulting functional is still a state. It is a well-known result
that the density matrices or states in the non-hermitian or hermitian formulations [45,54]
can be approximated using the Lagrangian variational approach [55]. With this technique,
the coupled clusters’ energy ECC =

〈
Φ
∣∣H∣∣Φ〉 and the amplitude equations are to be

summarized in the unique Lagrangian functional LCC =
〈
Φ
∣∣(1 + Λ+)H−κ,T

∣∣Φ〉, where the
operator Λ+ represents the summation of the amplitude equations with the Lagrangian
multipliers. Then, the stationarity conditions for LCC with respect to the T amplitudes
then provide the desired solution for the operator Λ. Additionally, the related equations
represent the variational formulation of the CC theory treatment, which allowed us to
apply the diagonal Hellman–Feynmann theorem for a non-degenerated case, providing a
convenient method for evaluating the ECC gradients.

Adapting the outlined consideration for the closed shell case of the CCSD approach, one
should restrict the cluster operator to the spin-averaged one- and two-particle components:

T1 = ∑
ai

ta
i Ei

a, T2 =
1
2 ∑

abij
tab
ij Ei

aEj
b,

where Eai is a spin-averaged excitation operator from the i-th occupied orbital to the
a-th virtual one. Next, the solution of the variational equations provides the complete
information required to construct the reduced density matrices of the CCSD approach:

γ
CCSDq
1, p =

〈
Φ

∣∣∣∣∣
(

1 + ∑
µ

λµτ̃µ

)
Eq

p0,T

∣∣∣∣∣Φ
〉

, (3)

γCCSDrs
2 pq =

〈
Φ

∣∣∣∣∣
(

1 + ∑
µ

λµτ̃µ

)
ers

pq0,T

∣∣∣∣∣Φ
〉

, (4)

where etu
rs = Er

t Es
u − Er

uδs
t , and the spacial dependency of these quantities is simply recov-

ered using the convolution with the basis-set orbitals in the coordinate representation

γCCSD
1 (r, r′) = ∑

pq
γ

CCSDq
1, p ⟨r|q ⟩

〈
p
∣∣r′ 〉,

γCCSD
2 (r1, r2, r′1, r′2) = ∑

pqrs
γCCSDrs

2 pq ⟨r1|r ⟩⟨r2|s ⟩
〈

p
∣∣r′1 〉〈q∣∣r′2 〉.

The desired densities are obtained as the diagonal part of the corresponding density
matrices: ρCCSD

1 (r) = γCCSD
1 (r, r) and

ρCCSD
2 (r1, r2) = γCCSD

2 (r1, r2, r1, r2).

Through this construction, the density matrices enter the energy functional as

ECCSD =
∫ [

−1
2

∆r′ + Ven(r′)
]

γCCSD
1 (r, r′)

∣∣∣∣
r′=r

d3r +
1
2

∫∫
ρCCSD

2 (r1, r2)

r12
d3r1d3r2,

determining all relevant correlation contributions. To rectify the latter, one should consider
the Hartree–Fock counterparts of the expressions above, including the one-electron RDM
γ

HFq
1, p =

〈
Φ
∣∣∣Eq

p

∣∣∣Φ〉, 2-RDM γHFrs
2, pq = γHFr

1, p γHFs
1, q − γHFr

1, q γHFs
1, s , and the related densities ρHF

1 (r)

and ρHF
2 (r1, r2) = ρHF

1 (r1)ρ
HF
1 (r2)−

∣∣γHF
1 (r1, r2)

∣∣2. In agreement with the traditional definition,
the correlation part of the CCSD energy corresponds to the difference of ∆ECCSD = ECCSD − EHF,
which leads to the natural form of the pair density distortions due to the electron correlation
∆ρCCSD

2 = ρCCSD
2 − ρHF

2 . The relevant exchange contribution as the trivial–cumulant part of

the pair density, ρCCSD
2,X (r1, r2) = ρCCSD

1 (r1)ρ
CCSD
1 (r2)−

∣∣γCCSD
1 (r1, r2)

∣∣2, can be defined, and
the following description for the Coulomb part of the density distortions caused by the
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correlation can be provided: ∆ρCCSD
2,C = ρCCSD

2 − ρCCSD
2,X . Finally, the contributions due to

the intermolecular interactions can be related to the supersystem [AB] of two interacting
fragments, A and B, which leads to the quantities of the general form

∆intρ[AB] = ρ[AB] − ρA − ρB

with ρ = ρCCSD
1 , ρCCSD

2 , ∆ρCCSD
1 , ∆ρCCSD

2 , ∆ρCCSD
2,C , ∆ρCCSD

2,X , respectively.

2.1.2. Cusp Region

Having introduced the relevant densities as the primary factors influencing various
correlation effects, we now explore a method to minimize the arbitrariness in selecting the
auxiliary basis, aiming for a quicker convergence of intermolecular correlation energies.
To achieve this goal, we propose analyzing the dependency of the pair density of electronic
coordinates and identifying specific domains where the two-electron density exhibits the
most significant behavior contributing to correlation effects. An effective approach involves
examining critical and special points within the pair density, considering details such as the
function’s shape, angular dependencies, and specific dimensional aspects. This information
can then be utilized to finely adjust the parameters of the basis set.

In the case of pair density, the first glance at the problem is greatly facilitated by the
cusp-like features at the zeros of the interelectronic distances. The asymptotic behavior
of wave functions in the vicinity of these points is controlled via the so-called Kato condi-
tions [56], which are naturally modified for the pair density case [57]. As is illustrated in
the helium dimer example by way of an analysis of dispersion function behavior [44,46],
compliance with the Kato conditions can be regarded as a good descriptor of the quality
correlation treatment, revealing the application of the bond functions [21,30] or explicitly
correlated methods [58–60] as good practice.

Since the main bulk of the correlation-related specifics of the pair density dependence
comes down to the lines of the electron–electron coalescence, a reasonable way to approach
the problem of adjusting the bond function basis set starts from an analysis of the diagonal
part of the pair density function ∆ρCCSD

2 , on which the most salient minima induced via the
correlation should be revealed. This observation was partially confirmed by an inspection of
the intermolecular electronic correlation in dispersion-bounded systems such as dimers of
noble gases or alkanes [21,30,32,44–46]. While the minima points of ∆ρCCSD

2 (r, r) would be
the first approximation for a place where the bond functions should be centered, the related
characteristic exponents and angular momenta of these additional functions can be partially
recovered from the relevant angular behavior and radial slopes of this function.

2.2. Computational Details
2.2.1. Constructing the Two-Particle Density Matrix

As noted above, a balanced description of the correlation effects using a profound post-
HF method is a prerequisite for obtaining chemically relevant results on the intermolecular-
correlation-based interactions in weakly bounded systems, including van der Waals com-
plexes, in which the dispersion and induction interactions are pure correlation effects.
These originate from the coupling-electron density fluctuations on the fragments due to the
intermolecular fluctuation potential.

In this regard, the coupled clusters strategy represents the method of choice if the
one-dimensional model space techniques can be engaged, and the CCSD method affords
a particularly good cost/performance ratio. In particular, this approach showed good
efficiency in the interaction energy calculations for a methane dimer (CH4)2 and in con-
structing PES cross sections using the CCSD in combination with the Dunning basis sets
cc-pVNZ and aug-cc-pVNZ (N = D, T, Q). This enables us to achieve basis set saturation
with cc-pVDZ if the bond functions are used, or with cc-pVTZ, with cc-pVQZ, or without
them [23].
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For the model system including the methane and Ne dimers, the relaxed density
matrices of the CCSD method were constructed in the molecular orbital basis sets using
the classical technique outlined in Section 2.1 [48–52]. This construction presumes that the
first-order response theory equations [48–50,61–65] take the form listed above, which has
been solved with respect to the Lagrange multipliers and the wave vector parameters on
common grounds.

The reduced two-particle density matrix (2-RDM) in the MO basis was firstly repre-
sented in the atomic orbital basis and then recontracted to provide the required coordinate
representation as an analytical function of the coordinates of the first and second electrons.
Finally, the obtained dependence was corrected on the Hartree–Fock 2-RDM to provide
the actual correlation contribution, the diagonal of which had to be examined to locate the
most correlated and valuable spatial regions.

2.2.2. Details of the Calculations

The main objects of study were a methane dimer in its D3d geometry [22,23] including
an equilibrium one, a neon dimer, and a mixed methane-dimer complex, in which the
equilibrium geometries (see Figure 1) were optimized within the same CCSD/basis set
combination in which the 2-RDM was considered. Since the pair density calculations were
carried out in only one geometry, characterized by quite large interfragment distances,
we decided not to resort to the standard counterpoise correction procedure for the target
correlation part of the 2-RDM ∆ρCCSD

2 values. The 2-RDM was constructed in coordinate
representation for (CH4)2 using the CCSD-RDM method with the basis sets cc-pVDZ,
cc-pVTZ, and cc-pVDZ+bf[33221], in which the notation bf[33221] means the 3s3p2d2f1g
basis on the dummy center recommended in reference [66]. The correlation energies of
(CH4)2 and Ne2 were calculated using the same technique with the cc-pVDZ, cc-pVTZ, cc-
pVDZ+bf[33221], and cc-pVTZ+bf[33221] basis sets. Moreover, to explore the pair density
deficit behavior, due to the correlation in asymmetric cases, the related calculations for the
VDZ quality basis set (CH4)· · ·Ne were carried out for various geometric configurations.
Finally, we addressed the influence of the bond functions’ dummy center on the interaction
energies in all the mentioned complexes. To this end, the counterpoise-corrected energy
dependences [28] on the interfragment distances measured as those between the non-
hydrogen atoms were obtained for the cc-pVNZ+bf[33221] (N = D, T, Q) bases with various
choices for the dummy center position, and the complete basis set extrapolation was
performed [67].

Figure 1. Schematic representation of the methane–neon complex (a) and methane dimer (b) equilib-
rium geometries.
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2.3. Calculation Results

The expected result of a series of calculations was that, due to symmetry requirements,
the main bulk of the pair-electron density deficit would have occurred at the geometric
center of the studied dimers, at the midpoint of the C-C or Ne-Ne distances, respectively.
Placing an auxiliary set of bond functions at these points, as noted in reference [68], signifi-
cantly improves the description of the electronic correlation of the compounds under study,
which significantly affects the interaction energies of the fragments.

In order to validate these statements, we carried out a series of calculations for the
correlation part of the diagonal values of the pair density ∆ρCCSD

2 (r, r) and explored regions
near the pronounced minimum that arose in the geometric center or the center of mass of
the supermolecule. In the case of the methane dimer, these dependences were calculated
with the cc-pVDZ and cc-pVTZ basis sets and with sets augmented via bond functions
[33221]. The resulting coordinate dependences of pair densities are presented in Figure 2,
and the corresponding values at selected points are compiled in Table 1. For the section of
pair densities in various bases, we could pinpoint a pronounced minimum at which the
bond functions were assumed to be located to reduce the basis set requirements.

∆ρCCSD(0, y, z, 0, y, z) (au)
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Figure 2. The sections of the coordinate diagonal pair density dependence for the methane dimer
along the yz plane ∆ρCCSD

2 (0, y, z, 0, y, z); the captions vdz, vdz-bf, and vtz correspond to the cc-pVDZ,
cc-pVDZ+bf[33221], and cc-pVTZ basis sets, respectively.

Table 1. The diagonal values of the pair density matrix of (CH4)2 corrected on the Fock contribution
∆ρCCSD

2 (r, r) = ρCCSD
2 (r, r)− ρHF

2 (r, r) in various points with respect to the equilibrium geometry
optimized in CCSD, in which the dimer was oriented on the ζ molecular axis, for the different basis
sets used.

Electron Coordinates r = (x, y, z) (a0) cc-pVDZ cc-pVTZ cc-pVDZ
+bf[33221]

x y z ∆ρCCSD
2 (r, r)

0 0 0 −0.4143 −2.71 −1.26
0 0 0.9 −0.321 −2.66 −0.808
0 0.9 0 −0.355 −2.33 −1.06

In this case, the observed minimum corresponds to the most significant correlation
contributions observed in all bases studied. In the interpretation of Coulson [69,70], regard-
ing a fairly complete description of the exchange correlation at the HF level, the pair density
minima, as shown in Figure 2, can be rationalized as the point of maximum depth due to
the Coulomb hole ∆ρCCSD

2 C /ρCCSD
1 − ∆ρCCSD

1 , the correct description of which is provided
via an auxiliary set of functions. Against this background, the explicitly correlated methods
can be considered to perform in a similar way, improving the exchange–correlation hole
description in two-electron coordinate space, though they are significantly more computa-
tionally expensive for large organic systems since these approaches capture the correlation
for all coordinate domains, rather than simply where it is most pronounced.
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A comparison of the results of this study of methane and neon dimers with the data
obtained in another study of a helium dimer [30] confirmed that basis sets containing bond
functions allow a more accurate description of the intermolecular electronic correlation.
As in the case of the helium dimer, the behavior of the pair density shows a minimum,
which corresponds to the middle of the distance between the monomers. In our case,
we were able to both construct a graph of the corresponding dependencies and obtain
quantitative estimates. In general, for many electron systems consisting of a methane dimer
and a helium dimer, it was possible to show that basis sets with bond functions improve
the description of intermolecular electron correlation. In addition, the developed tool can
be used to study more complex molecules.

Having examined the pair density behavior of the symmetric dimers, in which the
dummy center for the additional functions can be naturally chosen for symmetry reasons,
we examined the corresponding pair density dependencies for a mixed methane–neon
dimer in various geometries using the CCSD-RDM method with the cc-pVDZ basis set.
The obtained ∆ρCCSD

2 (r, r) sections were shown in Figure 3 for the equilibrium geometry
and two relative displacements. As expected, the pair density values turned out to be
highly geometry- and system-dependent. In the equilibrium geometry with the C-Ne
distance RC−Ne value of 3 Å, the pair density minimum point was found to be 34% closer
to the neon atom, with a relative distance of 0.6 Å, whereas decreasing and increasing the
C-Ne distance by 0.4 Å resulted in displacing the minimum by 0.7 and 0.4 Å relative to the
Ne position, respectively.
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Figure 3. The section of the diagonal pair density coordinate dependence ∆ρCCSD
2 (0, y, z, 0, y, z) in

the yz plane for the (CH4)· · ·Ne complex obtained from the CCSD-RDM/cc-pVDZ calculations.
The captions eq, q, and q’ correspond to the equilibrium geometry and the geometries with the Ne-C
distance being increased and decreased by 0.4 Å, respectively. The green, black, and white circles
depict the projection of the neon, carbon, and hydrogen atoms, correspondingly.

In order to assess the role of the bond functions centering on the quality of the CCSD
description for the intermolecular correlation and the extent to which the assumed choice
of the pair density minimum is relevant for this, we performed a number of calculations
for the counterpoise-corrected interaction energy depends on the interfragment distance
of the methane and neon dimers, as well as the methane–neon complex, according to
the procedure described in Section 2.2.2. The CCSD calculations were carried out with
the aug-cc-pVNZ (N = D, T, Q) bases, followed by the CBS extrapolation with the bond
functions located at various selected positions, including the pair density minimum point
recovered using the aug-cc-pVDZ basis. The benchmark data were obtained in a similar
way using the aug-cc-pVNZ (N = D, T, Q, 5, 6) basis set series without the bond functions
with subsequent CBS extrapolation.

Special attention was paid to the potential energy curves of the asymmetric (CH4)· · ·Ne
complex for which the bond functions were placed in the geometric center of the C-Ne
bond, shifted relative to the center of the carbon atom and in the perpendicular direction
in 1 Å and at the pair density minimum point. The results shown in Figure 4 confirm that
an inconsistent expansion of the small basis sets in general deteriorated the interaction
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energy data, improving the description only for a special choice of the auxiliary function
parameters that, for the bond functions, were determined by the pair density behavior.
In particular, due to the balanced BSSE cancellation in the counterpoise procedure for the
bond functions centered on the pair density minimum, the best performance in terms of
the basis set saturation was already observed for the cc-pVTZ level (see Figure 4). In turn,
this contrasts with the conclusion drawn for noble gas diatomics in [34], in which dummy
center displacements did not significantly affect the result for converged energy values. At
the minimum point, the energy was equal to 0.13 kcal/mol, and the distance between the
carbon and neon atoms was 3.4 Å. The differences between the curves constructed with
the cc-pVTZ, cc-pVQZ, and CBS basis sets were quite small, and they amounted to up to
1% in the equilibrium distance. The same observations are valid for comparisons with the
benchmark data obtained without the auxiliary set, which showed the almost instantaneous
convergence of the results mentioned for the minimum pair density placement. The
opposite observation could be made for the other choices of the dummy center position,
shown in Figure 4. The inconsistency in the fragments and the complex description resulted
in quite irregular behavior for the interaction energies when moving from the cc-pVDZ
to the cc-pVQZ bases. Moreover, although the comparison of the curves for the cc-PVTZ
and cc-pVQZ bases assumed that basis set saturation had occurred at the cc-pVTZ level,
the unbalanced description of the monomers relative to the full complex led to severe
artifacts when extrapolating to the CBS limit. In particular, when the distance was reduced
to 3.8 Å, a sharp change in the interaction energy dependence was observed for cc-pVDZ;
the values of the interaction energy took excessive values, especially at the minimum
distance of about 3.4 Å. Hence, the correspondence between the basis size and the energy
value was violated, and the energies underwent abrupt changes in the cc-pVTZ, cc-pVQZ,
and cc-pVDZ series.

Finally, we addressed the unified treatment of the relative errors and convergence rate
dependencies at the dummy center position for the (CH4)· · ·Ne interaction energies. To this end,
we investigated the average values of ϵx = |Ex − ECBS|/|ECBS| and εx = |ϵx+1 − ϵx|/|ϵx−1 − ϵx|
descriptors with x = 3, 4, 5, and “∞” in the region RCH4−Ne = 2.8, 3.0, . . . , 10 Å near the equi-
librium geometry and at the intermediate intermonomer distances, recovered for the
aug-cc-pVNZ (N = D, T, Q) bases, and the related CBS extrapolations. We explored a
wide range of dummy center displacements from 0.2 to 1 Å relative to the center of the
intermonomer distance and at the pair density minimum obtained without the bases’
augmentation. As a result, it was found that adding the bond functions at the minimum
position accelerated convergence in the sense of the specified descriptors by about 20%,
reducing the average errors relative to the CBS results for a given shift by 11% and up to
24% relative to CBS at the minimum pair density point. A similar treatment was applied
to the symmetric cases (CH4)2 and Ne2, which led to analogous results, generally facili-
tating the convergence by an average of 34% and 26% for the neon and methane dimers,
correspondingly. Thus, the example of the methane–neon system shows that an inadequate
choice of bond function parameters leads to an unbalanced description of the intermolec-
ular correlation effects. In this case, the auxiliary functions resulted in the deterioration
of the cc-pVDZ basis results, which were partially remedied on the cc-pVQZ level. The
equilibrium interaction energy value of 0.13 kcal/mol reproduced for the pair density mini-
mum results revealed errors of more than 5% for the considered alternative choices of the
dummy center.
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Figure 4. Interaction energy dependences of the (CH4)· · ·Ne complex obtained in the CCSD cal-
culation for the cc-pVNZ+bf (N = D, T, Q) bases and the corresponding CBS results. The CBS
extrapolation data for a series of TZ-6Z basis sets without the bond functions are depicted using
a solid black line with diamonds. The best results observed when placing the bond functions
at the pair density minimum are shown using solid lines with diamonds. The curves obtained
with bond functions positioned at the geometric center of the C-Ne bond or shifted relative to one
by 1 Å along the equatorial x direction or towards the carbon atom are indexed as (1), (2), and
(3), respectively.

Similar conclusions can be drawn for the symmetric methane and neon dimers,
for which the potential energies are shown in Figure 5, where the pair density minimum
choice for the dummy center already led to basis saturation for cc-pVDZ and cc-pVQZ sets,
resulting in a binding energy of 0.39 kcal/mol for the methane dimer and 0.063 kcal/mol
for the neon dimer, respectively. Displacing the center along the equatorial plane required
much larger bases for basis set saturation; specifically, the binding energy was under-
estimated at the cc-pVTZ and cc-pV5Z levels, resulting in values of 0.36 kcal/mol and
0.057 kcal/mol for the methane and neon dimers calculated using the CCSD method, respec-
tively, which corresponded to the relative error exceeding 5%. A further deterioration of
the results was observed with the shift towards a monomer position. In this case, the imbal-
anced BSSE cancellation completely disrupted the convergence, making the binding energy
values for the methane and neon dimers equal to 2 kcal/mol and 7 kcal/mol, respectively,
for the cc-pVTZ basis set, and even worse results of 14 and 30 kcal/mol, correspondingly,
were observed for the cc-pVDZ level.
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Figure 5. Interaction energy dependences of the (CH4)2 and Ne2 molecules on the left panel (a) and
the right panel (b), respectively, obtained via the CCSD calculation for the cc-pVNZ+bf (N = D, T, Q)
bases and the corresponding CBS results. The curves obtained with bond functions centered on the
geometric center or shifted relative to one by 1 Å along the equatorial x direction or towards one of
the fragments are specified with the a, b, and c labels on the legend, correspondingly.

3. Methods

To perform CCSD 2-RDM calculations, we employed the algorithm proposed by
Gauss et al. [48] with the following contraction in order to obtain the relevant coordinate
representation; for this, the C++ program package was implemented. In the main pipeline,
the T1 and T2 amplitudes were recovered from the iterative solution of the CCSD equations,
alternating with solving linear equations on Λ amplitudes. The canonical molecular
orbitals, cluster amplitudes, and all the necessary molecular integrals were ascertained via
calculations through the MOLPRO software package (version 2010.1) [71].

The system of equations for the Λ amplitudes (Λ–equations) was solved using the
GMRES method with a precondition [72,73] for which the DIIS technique was used to
accelerate the convergence [74,75]. The Krylov space method GMRES was preferred over
the usual Jacobi method since it revealed itself as a much more robust technique, particularly
in cases of non-diagonally dominant equation systems for which the Jacobi approach was
designed [72]. The main disadvantage of this method, slowing its convergence, was
eliminated by using the Jacobi precondition [76] and by addressing the DIIS approach for
each outer iteration of GMRES.

The matrix of molecular integrals was stored symmetrically since it requires a large
amount of computer memory and is symmetrical with respect to electronic permutations.
The same problems of allocating and storing for large sparse matrices arose for the cluster
amplitudes for which the effective caching method was applied.

4. Conclusions

The results outlined in the previous section illustrate that the correct choice of the
auxiliary function parameters, particularly, the dummy center of the bond functions set, is
mandatory in order to obtain converged results for the weakly bonded systems, in which
the direct increasing basis set turned out to be prohibitively expensive. The reasonable
option for tuning these parameters on the bond functions example was proposed based on
the pair density features that locate the spatial domain responsible for the major bulk of the
dispersion energy or, generally, the correlation-based properties.

The calculations in the present work carried out for the molecules Ne2, (CH4)2,
and CH4 · · ·Ne were intended to represent the diagonal pair density features as a good
descriptor of the local correlation effect analysis in the cases in which geminal-dispersion-
function-based considerations lacked universality. The well-known fact of applying the
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bond functions method to improve the intermolecular correlation description was verified
for the model systems concerned. Moreover, it was found that the bond functions at the
pair density minima greatly facilitated the basis set convergence, at least for the interaction
energy results. This observation can be attributed to the local Coulomb hole dependence
revealing maxima in the bond centers for the equilibrium geometries [69,70].

The presented approach to choosing the dummy center, as well as further assumptions
on the close relationship between the two-particle density features and the criteria for
replenishing the basis set, can allow us to establish a well-defined procedure for tuning the
auxiliary basis parameters that is devoid of classical arbitrariness problems and commonly
addressed using different heuristics [21,35].
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