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Abstract: Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major
initiators of cell aging and biomarkers of many diseases. However, the underlying correlations
between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship
between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA
copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 µM and
200 µM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed
after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found
at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of
H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was
found between TL and MN (r = −0.76, p = 0.03), and mtDNA content was directly correlated with TL
(r = 0.6, p = 0.04) and inversely related to MN (r = −0.78, p = 0.02). Telomere shortening is the main
triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress.
The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a
telomere–mitochondria axis that might influence age-associated pathologies and be a target for the
development of relevant anti-aging drugs.

Keywords: telomere length; chromosomal damage; micronucleus; mitochondrial DNA copy number;
hydrogen peroxide; oxidative stress; peripheral blood mononuclear cells

1. Introduction

Genome instability driven by a large variety of endogenous and exogenous insults
is a major factor in aging and most common non-communicable diseases, which are the
leading cause of death and disability [1,2]. Indeed, a large number of correlative studies
have revealed evidence for an accumulation of nuclear DNA damage in aging and chronic
diseases, which can contribute to impairments in the maintenance and function of cells and
tissues [1,2]. Accordingly, there is a growing interest in identifying markers of human aging
to be used in clinical settings to predict disease risk and outcomes, as well as to develop
molecular therapies and lifestyle interventions that slow down the aging process.

The frequency of micronuclei (MN) in peripheral blood lymphocytes is extensively
used as a surrogate marker of chromosomal damage and genomic instability in different
tissues [1]. MN are extra-nuclear bodies that contain damaged chromosome fragments
and/or whole chromosomes that were not incorporated into the nucleus after cell division.
A large number of studies have consistently shown the association between an increase in
MN frequency and the risk of cancer, as well as several aging-related diseases [3].
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Additionally, it is well known that telomere integrity is crucial to maintaining genome
stability [4]. Telomeres are hexameric DNA repeats (TTAGGG) in association with a
complex of proteins that protect the ends of the chromosomes by capping them and
preventing their end-to-end fusion during cell division [5]. Conversely, telomere erosion is a
hallmark of cell senescence (a quiescent, non-replicative state) that drives cell dysfunction or
apoptosis. Indeed, short telomeres have been strongly implicated in the risk of developing
many diseases, ranging from cancer to cardiovascular disease and neurodegeneration [5,6].

Moreover, increasing evidence points to emphasizing the significance of the intimate
link between telomeres and mitochondrial metabolism in the process of cellular senescence
and the onset of age-related diseases [7–9]. At present, the mitochondrial DNA copy
number (mtDNAcn) is a promising marker of aging and mitochondrial function in clinical
and population studies, as the levels of mtDNAcn are directly correlated with energy
reserves, respiratory enzyme function, and mitochondrial membrane potential [10].

Interestingly, intriguing studies indicate that changes in the mtDNAcn might con-
tribute to mitochondrial dysfunction and consequent increased ROS production in the
mitochondrial matrix, which may further exacerbate nuclear DNA and telomere damage in
a vicious cycle [7,9].

However, little is known about the underlying correlations between telomere length
(TL), chromosomal damage, and abnormalities in the mtDNA. The present study is de-
signed to investigate the relationship between telomere attrition and chromosomal damage
evaluated via a cytokinesis-blocked micronucleus (CBMN) assay and whether nuclear
DNA alterations can affect mtDNAcn in peripheral blood mononuclear cells (PBMCs)
activated in vitro by phytohemagglutinin (PHA) in the presence/absence of hydrogen
peroxide (H2O2) as an oxidative and genotoxic stimulus.

2. Results
2.1. Effect of Oxidative Stress on Telomere Length and Chromosomal DNA Damage

For both 100 µM and 200 µM H2O2 treatments, we observed dose-dependent increases
in telomeric damage at different times (p < 0.05). Significant telomere shortening was
observed after exposure to either dose of H2O2 (100 µM, p = 0.03; 200 µM, p = 0.005)
compared to the control at 44 h (Figure 1). The telomere length reduction was about 26%
and 38% for treatments with 100 µM and 200 µM H2O2, respectively. The decrease in
telomere length also persisted at 72 h and 96 h after PBMC incubation (p < 0.05) (Figure 1).
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Figure 1. Telomere shortening in PBMCs treated with H2O2. Telomere shortening was observed after
exposure to both doses of H2O2 compared to the control at different times.

We also performed the CBMN assay to test whether treatment with oxidative stimulus-
induced chromosomal damage (Figure 2). The results revealed a dose-related increase in
MN after H2O2 treatment (p < 0.05). A significant increase in micronuclei was found at 72 h
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(18 ± 2 vs. 32 ± 3 and 41.5 ± 2 for baseline, 100 µM, and 200 µM) and persisted at 96 h
(19 ± 2.5 vs. 33 ± 3 and 37.5 ± 2 for baseline, 100 µM, and 200 µM, respectively).
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Figure 2. Increased chromosomal damage in PBMCs in response to H2O2 treatment. Micronucleus
yield increased at 72 h and 96 h for both 100 µM and 200 µM H2O2 exposure.

2.2. Effect of Oxidative Stress on Mitochondrial DNA Copy Number

For mtDNAcn analysis, no significant difference in mtDNAcn was observed in the
treated samples at 44 h and 72 h (p > 0.05) (Figure 3). Conversely, our results demonstrated
a significant increase in mtDNAcn (559 ± 84 vs. 1090 ± 177, p = 0.04) after high oxidative
stress exposure (200 µM H2O2) compared to the control value. A moderate trend toward
significance was also observed after exposure to 100 µM H2O2 (p = 0.08, Figure 3).
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Figure 3. Mitochondrial DNA copy number alterations in PBMCs treated with H2O2. mtDNAcn
increased after high oxidative stress exposure (200 µM H2O2) compared to the control value.

2.3. Correlation between Nuclear DNA Damage and Mitochondrial DNA Copy Number

When looking for a potential association between nuclear DNA damage and mtDNA
content, we found a significant inverse correlation between TL and MN frequency in
PBMCs treated with 200 µM H2O2 (r = −0.76, p = 0.03) (Figure 4). Additionally, TL was
found to be correlated with mtDNA content after high oxidative stress exposure (r = 0.6,
p = 0.04).
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After the same exposure to 200 µM H2O2, an significant inverse correlation was found
between MN frequency and mtDNAcn (r = −0.78, p = 0.02, Figure 4).

3. Discussion

In the present study, we first observed a shortening in TL and a concomitant increase
in chromosomal DNA damage after treatment with H2O2 in PBMCs, supporting the notion
that the decreased length of telomeric DNA sequences is clearly associated with increased
chromosomal damage.

It is becoming increasingly evident that the primary role of telomeres and their associ-
ated proteins is to maintain chromosome and genome stability by preventing chromosomal
ends from being recognized as double-strand breaks and protecting them from end-to-end
fusion and degradation [4,11]. While acting as factors to prevent loss of genetic information,
telomeric DNA shortens in somatic cells with each cell division [4]. As telomere length
declines with aging, cancer and other non-communicable diseases have been linked to this
shortening [5,6]. Telomeric erosion is primarily due to oxidative stress that preferentially
damages telomeric regions over the other genomic DNA regions, as well as inhibits telom-
erase activity in vitro in various cell types [12]. During oxidative stress, the accumulation
of DNA damage within telomeres is enhanced by the high incidence of guanine residues in
telomeric DNA sequences [13] and by a less efficient repair process compared with the rest
of the genome [14].

The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result
in chromosome fusion and lead to chromosome instability [15]. Chromosome instability
related to telomere dysfunction is mainly mediated by the formation of nuclear anoma-
lies such as MN, which represent established markers of genotoxic events and genome
instability [16,17]. MN originates from chromosome fragments or intact chromosomes that
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are not included in daughter nuclei during mitosis. The main reasons for their formation
are a lack of functional centromere in the chromosome fragments or whole chromosomes
or defects in one or more of the proteins of the mitotic system that, consequently, fail to
properly segregate chromosomes [18]. Accordingly, dysfunctional telomeres can generate
a wide variety of chromosome-visible alterations as MN, generating unstable karyotypes
associated with human aging and cancer [15].

In our study, the analysis of TL revealed significant telomere shortening after treatment
at 44 h that persisted at 72 h and 96 h. Interestingly, an increase in chromosome instability
was found in the same time frame of telomere shortening, suggesting a clear correlation
between these two markers of nuclear genome instability. In particular, the strict correlation
with TL indicates that the analysis of MN represents a good readout for telomere defects
and any resulting chromosome segregation errors.

Our results are consistent with previous observations by Coluzzi et al. [19], which
reported that oxidative base damage leads to abnormal nuclear morphologies (nucleoplas-
mic bridges, nuclear buds, and MN frequency), and telomere dysfunction is an important
contributor to this effect. Even though the authors found telomere shortening and in-
creased abnormal nuclear morphologies 48 h after treatment in human primary fibroblasts,
they observed a restoration of TL and a reduction in chromosome instability, especially
nucleoplasmic bridges, at subsequent times (72 and 96 h) [19]. This is probably due to
the different times of treatment with H2O2 since cells were only treated with hydrogen
peroxide (100 and 200 µM) for 1 h against persistent treatment with the oxidative stimulus,
as in our study.

To the best of our knowledge, this is the first study in the literature evaluating the
in vitro responses to H2O2 of both telomere and chromosomal damage with changes in
mtDNAcn in PBMCs. PBMCs are typically in the resting stage of the cell cycle (G0) and can
be stimulated by mitogens to divide in vitro. Among the mitogens, phytohemagglutinin
(PHA) stimulates the T-cell (thymus dependent) fraction of lymphocytes, while it has
little or no effect on the B-cell (bone-marrow-dependent) lymphocyte fraction [20]. T-
lymphocytes are of particular interest since they play an important role in the control of
the immune response and against noxious agents in several diseases [21]. Additionally,
lymphocytes are commonly used as surrogate cells to measure specific genetic alterations
of other cells, representing a useful cell model for studying human aging and multiple
diseases [22]. Thus, our findings indicated that both MN and TL measurements in PBMCs
may be sensitive markers of oxidative stress, nuclear genetic damage, and cell aging, as
well as indicators of the risk and progression of common aging pathologies.

Mitochondrial dysfunction is another sign of aging, and as cells have both a nuclear
and a mitochondrial genome, this is also intimately tied to genomic instability. Mitochon-
dria are both the major intracellular source and primary target of ROS [23]. According to
the free radical theory, ROS causes oxidative DNA damage in both the mitochondrial and
nuclear genome, which results in an accumulation of mutations that eventually lead to
aging [24]. The evidence suggests that mitochondrial DNA (mtDNA) damage plays a role
in contributing to mitochondrial dysfunction and subsequent reactive oxygen species (ROS)
production, thereby intensifying telomere damage in a cyclic manner [7,9]. It is noteworthy,
however, that mitochondria can also become dysfunctional as telomeres shorten, establish-
ing a connection between the primary theories of cellular aging [25]. Telomere dysfunction
triggers the suppression of the master regulator of mitochondrial biogenesis and function,
namely peroxisome proliferator-activated receptor gamma co-activator 1α/β (PGC-1α/β),
resulting in mitochondrial dysfunction and ROS production. Specifically, telomere attrition
activates p53 and DNA damage response pathways, which, in turn, inhibit PGC-1α and
PGC-1β. Consequently, mitochondrial dysfunction driven by telomere shortening may
impair oxidative phosphorylation and increase ROS generation. This, in turn, can further
exacerbate mitochondrial distress and telomere shortening, creating a two-pronged vicious
cycle that amplifies the dysfunctional system [26].
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Each human cell contains about 100–1000 mitochondria carrying 2–10 copies of
mtDNA. mtDNAcn is positively correlated with the number and size of mitochondria.
Compared with nuclear DNA, mtDNA has diminished protective histones and DNA repair
capacity and is, hence, particularly susceptible to ROS-induced damage. Cells challenged
with ROS have been shown to synthesize more copies of their mtDNA and increase the
mitochondrial abundance to compensate for damage [27].

Together with telomere loss and chromosome instability, our data revealed that the
mtDNA contents of cells treated with H2O2 increased with the duration of the incubation,
leading us to hypothesize a potential compensatory mechanism to oxidative stress-induced
telomeric loss. However, our study observed a significant correlation between nuclear DNA
damage and mtDNA copy number, supporting the notion of a telomere–mitochondria axis
that directly links DNA damage, telomere shortening, and the direct effect on mitochondrial
DNA content via p53 [28].

Additionally, our findings are consistent with previous studies indicating that telom-
eric DNA damage occurs earlier than mitochondrial failure [29]. T cells treated with
KML001 (sodium meta-arsenite) showed telomere dysfunction that, in turn, activated the
p53 signaling pathway. p53 regulation can influence the expression of PGC-1α and NRF-1 to
improve mitochondrial function, such as mitochondrial membrane potential, mitochondrial
respiration, and ATP synthesis [29].

Noteworthy, Lee et al. found an increase in mitochondrial mass and mtDNA content
in a concentration- and dose-dependent manner in human lung fibroblast cell lines treated
with H2O2 at concentrations of 90–360 µM for 24–72 h. These results highlight the role
of mtDNA alterations as early molecular events in response to endogenous or exogenous
oxidative stress [27]. In another elegant study, both replicative and H2O2-induced prema-
ture senescence models were used to detect the mitochondrial biological characteristics in
human embryonic lung fibroblasts. The accumulated mtROS induced cellular senescence,
whether replicative or premature, with the common features of low-level mitochondria
quantity, mitochondrial 5-methylcytosine (mt-5-mC) content and mitochondrial transcrip-
tion factor A (mtTFAM) protein expression, and high-level mtDNA copy number and DNA
methyltransferase (mtDNMT) activity being the compensatory effects [30].

4. Materials and Methods
4.1. H2O2 Experiments with Peripheral Blood Mononuclear Cells

Human primary PBMCs from anonymous individuals were purchased from Lonza
(Walkersville, MD, USA). Cryopreserved PBMCs were thawed in a 37 ◦C water bath for
1–2 min, centrifuged at 200× g at room temperature for 15 min, and suspended in 1 mL of
medium LGM-3™, following manufacturer’s instructions (Lonza, Walkersville, MD, USA).
Cells were counted in a cell counter (TC20 Automated Cell Counter, Biorad, Hercules,
CA, USA), and cell viability was determined via the trypan blue exclusion method. Cell
viability was greater than 90%.

A total of ~5 × 106 PBMC were incubated in each 5 mL conical tube with Gibco™ PB-
MAX™ Karyotyping Medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with fetal bovine serum (FBS), L-glutamine, and phytohemagglutinin (PHA) for subsequent
analyses. All cells were cultured in a humidified atmosphere (5% CO2, 37 ◦C).

H2O2 was applied as an exogenous inducer of oxidative stress. Specifically, PBMCs
were treated with 100 µM or 200 µM H2O2 (Merck, Darmstadt, Germany) after 24 h of
incubation. Each test contained three separate experiments: (1) PBMCs without H2O2
treatment (control); (2) PBMCs treated with 100 µM H2O2 (mild oxidative stress exposure);
(3) PBMCs treated with 200 µM H2O2 (high oxidative stress exposure).

Afterward, after 44 h, 72 h, and 96 h of incubation, cells were washed twice with DPBS,
spun down to a pellet, and suspended in 200 µL DPBS for DNA extraction and subsequent
analyses (telomere length and mtDNAcn assays). In parallel, for chromosomal damage
analysis, cells were harvested at 72 or 96 h post-PHA stimulation and fixed as described
below. To demonstrate reproducibility, two independent experiments were carried out
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for PBMCs derived from two different healthy individuals. Figure 5 shows the schematic
diagram for the experimental setup.
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Figure 5. Schematic diagram for the experimental setup. PBMCs were treated with 100 µM or 200 µM
H2O2 at 24 h incubation. At 44 h, 72 h, and 96 h incubation, DNA was extracted from cells for
subsequent analyses (telomere length and mtDNAcn assays). For MN analysis, cells were harvested
at 72 or 96 h post-PHA stimulation.

4.2. Telomere Length (TL) and Mitochondrial DNA Copy Number (mtDNAcn) Analysis

DNA was extracted from PBMCs by using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany), according to the manufacturer’s instructions. DNA concentration and quality
were assessed using a NanoDrop Lite Spectrophotometer (Thermo Scientific, Waltham,
MA, USA). An absorbance ratio at both 260 and 280 nm (A260/A280) greater than 1.7 was
considered suitable for the subsequent analyses

Both TL and mtDNAcn levels were measured by using quantitative real-time
(RT) methods (CFX384 Touch Real-time PCR detection system, Bio-Rad, Hercules, CA,
USA), following previously described protocols. In brief, TL was measured in genomic
DNA by determining the T/S ratio. A relative telomere length was calculated using the
equation T/S ratio = 2−∆∆Ct, where Ct is a threshold cycle and ∆Ct = Ct × telomere −
Ct × single copy gene. The T/S ratio reflected the average length of the telomeres across
all PBMCs [31]. The levels of mtDNAcn were determined through the amplification of
the mitochondrial ND1 gene and β-globin gene of genomic DNA. The difference in the
average threshold cycle (Ct) number values was used for the measurement of relative
content. mtDNAcn was calculated by using the (2−∆Ct) method (∆Ct = Ct mtNDI1 − Ct
gDNA). All RT PCRs were performed in triplicate in 384-well plates [32].

4.3. Micronucleus Assay

The presence of MN in binucleated cells was assayed by blocking the cells at the
cytokinesis stage [18]. In brief, the PBMC culture was set as described earlier in the
text. Cyt-B (6 µg/mL) was added to the culture at 44 h after the initiation. After a total
of 72 h or 96 h of incubation, cells were harvested and fixed according to the standard
methods. The fixed cells were dropped onto clean iced slides, air-dried, and stained using
the Giemsa technique. For each sample, 1000 binucleated cells were scored under an
optical microscope (final magnification 40×) for MN analysis, following the criteria for MN
acceptance [18]. We evaluated the MN frequency as the number of micronucleated cells
scored per 1000 observed binucleated cells. Figure 6 shows a schematic representation of
the MN formation.



Int. J. Mol. Sci. 2024, 25, 1428 8 of 10
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 10 
 

 

 
Figure 6. Schematic representation of the micronucleus formation. Micronuclei (MN) are tiny extra-
nuclear bodies in the cytoplasm consisting of acentric fragments of chromosomes or entire chromo-
somes, which do not integrate into the daughter nuclei during cell division. 

4.4. Statistical Analysis 
The results were expressed as the mean ± standard error (SE). Continuous variables 

were compared using the Student t-test and Mann–Whitney U test for parametric and 
non-parametric data, respectively. Multiple comparisons were performed via one-way 
analysis of variance (ANOVA), followed by a multiple comparison test (Bonferroni test), 
or a Kruskall–Wallis test. Regression analysis with the Pearson test was used to evaluate 
the relationship between two continuous variables. Statistical analysis of the data was con-
ducted using the StatView statistical package, version 5.0.1 (Abacus Concepts, Berkeley, 
CA, USA). A p-value of ≤0.05 was considered statistically significant in this study.  

5. Conclusions 
In summary, telomere shortening/dysfunction may be the main triggering mecha-

nism of chromosomal damage in stimulated T-lymphocytes under the stimulation of oxi-
dative stress. An endogenous upregulation of mtDNA content could be an early compen-
satory mechanism to sustain oxidative phosphorylation activity in response to stress. 
Moreover, our findings showed a direct link between telomere dysfunction, chromosomal 
damage, and mtDNA content. Further investigations are needed to understand the mo-
lecular mechanisms involved in telomere crosstalk with mtDNA and how these processes 
can affect the pathophysiology of many age-related diseases. This research is essential for 
revealing new pathogenic pathways and allowing the development of anti-aging drugs. 
Numerous anti-aging strategies, grounded in the two primary hallmarks of aging, have 

Figure 6. Schematic representation of the micronucleus formation. Micronuclei (MN) are tiny
extra-nuclear bodies in the cytoplasm consisting of acentric fragments of chromosomes or entire
chromosomes, which do not integrate into the daughter nuclei during cell division.

4.4. Statistical Analysis

The results were expressed as the mean ± standard error (SE). Continuous variables
were compared using the Student t-test and Mann–Whitney U test for parametric and
non-parametric data, respectively. Multiple comparisons were performed via one-way
analysis of variance (ANOVA), followed by a multiple comparison test (Bonferroni test),
or a Kruskall–Wallis test. Regression analysis with the Pearson test was used to evaluate
the relationship between two continuous variables. Statistical analysis of the data was
conducted using the StatView statistical package, version 5.0.1 (Abacus Concepts, Berkeley,
CA, USA). A p-value of ≤0.05 was considered statistically significant in this study.

5. Conclusions

In summary, telomere shortening/dysfunction may be the main triggering mechanism
of chromosomal damage in stimulated T-lymphocytes under the stimulation of oxidative
stress. An endogenous upregulation of mtDNA content could be an early compensatory
mechanism to sustain oxidative phosphorylation activity in response to stress. Moreover,
our findings showed a direct link between telomere dysfunction, chromosomal damage,
and mtDNA content. Further investigations are needed to understand the molecular
mechanisms involved in telomere crosstalk with mtDNA and how these processes can affect
the pathophysiology of many age-related diseases. This research is essential for revealing
new pathogenic pathways and allowing the development of anti-aging drugs. Numerous
anti-aging strategies, grounded in the two primary hallmarks of aging, have thus far been
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developed. These encompass telomere reactivation, mitophagy activation, the employment
of epigenetic drugs, the removal of senescent cells, the administration of anti-oxidant
and anti-inflammatory drugs, and the utilization of stem cell-based therapy. For instance,
achieving optimal telomere length through the use of telomerase activators or restoring
mitochondrial function via SIRT1 and AMPK activation are potentially effective approaches
for counteracting aging [33]. Consequently, delving into the molecular intricacies of the
aging process undoubtedly represents a fascinating challenge
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