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Abstract: T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic
infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies
have shown promising results in reversing exhaustion, but this approach has several limitations. The
treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new
therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully
been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases.
Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse
exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus
on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-
based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-
based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint
blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted
T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and
accomplishing the objective of preventing and treating chronic diseases or cancer.

Keywords: T-cell exhaustion; nanoparticle; immune checkpoint blockade; tumor microenvironment;
T cell metabolism

1. Introduction

During acute infections, naive T cells are activated and undergo differentiation into
effector T cells and memory T cells [1–3]. Effector T cells play a role in eliminating antigens
and controlling infections. Following antigen clearance, the majority of effector cells would
die by apoptosis [4]. Only about 5–10% of T cells persist and continue to differentiate
into memory T cell subsets [5]. These memory T cells have long-term survival and retain
the capability of homeostatic proliferation [6,7]. When re-stimulated, memory T cells can
generate effector T cells and sustain a recall response [8].

In contrast, during several chronic infections and cancer, due to persistent antigen stimu-
lation, antigen-specific T cells become dysfunctional or even exhausted, which is characterized
by a decreased effector function, the sustained expression of various inhibitory receptors,
such as PD-1, TIM-3, and cytotoxic T lymphocyte antigen 4 (CTLA-4), and a loss of memory
ability [9–11]. T-cell exhaustion usually leads to disease progression. Recently, targeted
immune checkpoint molecules have been widely studied and can effectively reverse T-cell
exhaustion [10]. Although immune checkpoint blockade therapy shows great promise, there
are still limitations, such as limited response rates, the possibility of relapse, and toxicity [12,13].
Therefore, it is necessary to summarize the characteristics of exhaustion to explore new thera-
peutic targets for reversing T-cell exhaustion in chronic infections and cancer.

Nanoparticle (NP)-based delivery systems show promise to act as drug carriers and can
enhance the efficiency of antigen delivery [14]. Besides enhanced treatment effectiveness
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and decreased side effects, these systems possess great potential in immunotherapy due to
their targeting abilities and stimulation-responsive properties [15,16]. In addition, combining
NPs that target immune checkpoints with multiple therapeutic approaches has been shown to
have a better effect on reversing exhaustion. In this review, we summarize the characteristics
of exhausted T cells and discuss recent progress in NP-based immunotherapy for exhaustion
therapy. Finally, we provide a summary on the existing problems and discuss future challenges
and perspectives of nanoparticle application and exhaustion.

2. T-Cell Exhaustion Is Common in Both Infectious Diseases and Cancer

Immune dysfunction that occurs following persistent viral and bacterial infections
poses a threat to human health. During chronic pathogen infections, the immune system is
unable to quickly eliminate antigens, causing them to persist in the body, resulting in T-cell
dysfunction or even exhaustion [17]. T-cell exhaustion is initially observed in the chronic
lymphocytic choriomeningitis virus (LCMV) infection [18], as well as in cancer and other
chronic infections like the hepatitis B virus (HBV), human immunodeficiency virus (HIV),
and Mycobacterium tuberculosis (M. tuberculosis) [9,10,19]. The characteristics of exhausted
T cells are a gradual loss of effector function, the excessive expression of multiple inhibitory
checkpoints, and alterations in transcriptional programming [11]. Continuous antigen
stimulation, hypoxia, and high reactive oxygen species (ROS) levels are the main factors
that drive exhaustion [20]. When the immune system becomes “exhausted”, it becomes
incapable of effectively resisting the invasion of foreign pathogens, thus losing its ability to
eliminate pathogens [21].

When exhaustion occurs, T cell phenotypes change. Exhausted T cells overexpress
multiple cell surface inhibitory immune checkpoints such as PD-1, TIM-3, CTLA-4, and
lymphocyte activation gene 3 (LAG-3) [22]. In addition, recent studies have found that
an immune regulatory molecule, CD39, is also highly expressed on the surface of ex-
hausted T cells. CD39 is a surface-expressed ATP ecto-nucleotidase and is utilized to define
exhaustion [23,24]. In general, the more inhibitory checkpoints co-expressed on exhausted
T cells, the more severe the exhaustion [11].

T-cell exhaustion is a process of progressively losing their function [25], starting with a loss
of cytotoxicity, proliferation potential, and IL-2 secretion, followed by a loss of IFN-γ and TNF-α
production, ultimately impairing the ability to confer protection [10,11]. Furthermore, the
expression of transcription factors also changes. For instance, the upregulated expression
of B lymphocyte-induced maturation protein-1 (Blimp-1) [26] and the nuclear factor of
activated T cells (NFAT) [20,27] and the downregulated expression of the T-box-containing
protein expressed in T cells (T-bet) [28].

Exhausted T cells are heterogeneous in both phenotype and function [29], and can be
classified into two main clusters: progenitor exhausted and terminally exhausted T cells.
Progenitor exhausted subsets refer to a population of exhausted T cells that are similar to
stem cells but express PD-1 and T-cell factor 1 (TCF-1) [9,30]. This subset has the ability
to self-renew and proliferate and shows a good blocking response to the PD-1/PD-L1
pathway [31,32]. In contrast, terminally exhausted T cells exhibit an impaired proliferation
ability and they have no response to PD-1 pathway blocking [33]. They have high expres-
sion of PD-1 and TIM-3 and a loss of TCF-1 expression [34]. Emerging insight redefines
the phenotypic diversity of later-stage exhausted T cells, including terminal exhaustion
and a cytotoxic phenotype expressing the killer cell lectin-like receptor [35]. In this article,
“exhausted T cells” primarily refers to T cells that are terminally exhausted.

These two types of exhausted cells also exhibit different metabolic characteristics. Pro-
genitor exhausted T cells manifest a catabolic metabolism and mainly utilize mitochondrial
fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) as sources of fuel
energy [36]. Conversely, terminally exhausted T cells primarily depend on glycolysis, with
a reduced mitochondrial OXPHOS metabolism and decreased glycolysis [37–41]. In addi-
tion, terminally exhausted T cells show a reduced PGC-1α transcription and expression,
which is involved in controlling mitochondrial biogenesis [38,39]. In terminally exhausted
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T cells, mitochondrial dysfunction is mainly manifested by an increased mitochondrial
mass and reduced mitochondrial membrane potential, making it impossible for cells to
effectively utilize OXPHOS for energy production [37,42]. The impaired mitochondrial
OXPHOS restricts T cell proliferation and effector function by limiting ATP synthesis [43].

Targeting immune checkpoints has been extensively described as an efficient way to
restore immunity and reinvigorate exhaustion [44]. Additionally, blocking the ligands of im-
mune checkpoint molecules also achieves effective immunotherapy against tumor-induced
exhaustion. For instance, Galectin-9 is a TIM-3 ligand that acts as a negative regulator
and can induce cell death in the tumor microenvironment [45]. It has been found that
blocking Galectin-9 can induce anti-tumor immunity and reverse the exhaustion of effector
T cells [45,46]. Furthermore, multi-antibody combination therapy has demonstrated signifi-
cant efficacy in rejuvenating exhausted T cells, but the reinvigoration remains incomplete
and still has numerous limitations [47,48]. For example, the use of antibodies often requires
high doses and long-term usage [49]. Additionally, aside from the limited response rates
and toxicity, relapse is frequent, and many forms of cancer do not react to a single immune
checkpoint blockade [12,13]. Consequently, it is imperative to explore the novel pathogenesis
of exhaustion and explore new therapeutic targets to combat T cell exhaustion.

3. Nanoparticle Classification and Application

Nanoparticle (NP)-based delivery approaches can reduce side effects and toxicity
in non-targeT cells in immunotherapy, thereby significantly improving the effectiveness
of immunotherapy [50]. NPs have remarkable features, such as adjustable structures, a
strong biomolecular loading capacity, abundant surface modification, and controllable
release molecules [51,52]. NP-based delivery systems provide extended circulation and
active targeting [53,54]. They can target solid tumors by targeting tumor cells, stimulating
or reprogramming immune cells, remodeling the tumor microenvironment, and altering
immune responses, thereby generating effective antitumor immunity [55]. Moreover,
NPs can be easily modified to bind to specific receptors or ligands, thereby enhancing
compatibility and efficiency [56]. As a result, NP-based strategies have gained widespread
attention in disease treatment.

With the advancement of nanotechnology and materials science, numerous types of
NPs have been developed and applied in delivery systems [57]. Nanomaterials primarily
consist of organic nanomaterials (such as polymers and lipids), inorganic nanomaterials
(such as metals, oxides, and carbon), and hybrid nanomaterials (such as lipid polymers
and metal organic) [58,59]. These NPs can be designed and functionalized based on the
properties and requirements of different drugs or biomolecules, enabling efficient and safe
delivery in vitro. Consequently, lipid, polymeric, and inorganic NPs are engineered and
applied to enhance precision therapies [57].

3.1. Lipid-Based NPs

Lipid-based NPs are the most common ones with high safety [60,61]. Lipid-based
NPs are typically composed of phospholipids, ionizable lipids, cholesterol, and PEGylated
lipids [15]. The most typical form of these NPs is spherical particles, which primarily consist
of an internal hydrophilic part and an external lipid molecular layer. Lipid-based NPs as a
delivery system have numerous advantages, including self-assembly, simple emulation, the
ability to carry large loads, biocompatibility, and adjustable physicochemical properties [62].
The most typical representatives of such NPs are liposomes and lipid NPs (LNPs).

Liposomes, the most numerous types, are nanoparticle vesicles formed by the self-
assembly of amphiphilic phospholipid molecules. They have been utilized in various
scientific fields, typically for loading and delivering compounds with various properties,
such as lipophilic, amphiphilic, or hydrophilic compounds [63]. Liposomes are frequently
employed as carriers for gene delivery, enabling the encapsulation of DNA or RNA for gene
therapy or gene editing. Due to the rapid absorption of liposomes by the reticuloendothelial
system, their application is limited. Typically, the surface modification of liposomes is
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performed to prolong their circulation and enhance delivery, enabling their clinical use [64].
Additionally, the size of NPs affects cellular uptake. Generally, NPs smaller than 10 nm in
diameter are rapidly cleared by the kidneys, while NPs with a diameter exceeding 200 nm
are prone to triggering the complement system. Hence, the typical size of NPs used in
immunotherapy is usually between 10 and 200 nm [65].

Furthermore, another type of lipid-based NP is LNPs. Recently developed LNPs are
mainly composed of ionizable lipids, helper lipids, PEG-lipids, and cholesterol [66,67].
LNPs are extensively used for delivering nucleic acids and resemble liposomes in structure.
However, the main distinction lies in the micelle structure formed within the core of LNPs,
which can be altered according to the formulation and synthesis parameters [68]. Due to
their effectiveness in delivering nucleic acid, with the advantages of a small size, simple
synthesis, and serum stability, LNPs play a crucial role in personalized gene therapy
applications [69,70]. However, the disadvantages of the LNPs system include a low drug
load and limited biological distribution, leading to a high uptake in the liver and spleen [61].

3.2. Polymeric NPs

Polymer NPs are another important class of nanoparticle carriers, which have a variety
of compositions and forms [57]. Polymer NPs also possess flexible and controllable delivery
capabilities. The therapeutic agent can be encapsulated inside the NPs, encased in the
matrix, or chemically coupled to the NPs surface or with the polymer. With this feature,
polymer nanoparticles can effectively carry a variety of materials, such as drugs, biomacro-
molecules, various proteins, and vaccines [71]. Although the transfection efficiency of
polymer NPs is relatively low compared with lipid-based NPs, the structure of polymers is
more stable and easier to modify. By introducing functional groups such as thiol groups,
polymers NPs can respond to stimuli such as ROS, pH, and enzymes. The modification of
ligands such as targeting peptides and antibodies promotes the specific targeting of the
delivery system [72].

Currently, the nanocapsules and nanospheres are the most common forms of poly-
mer NPs, which are further divided into three categories: polymersomes, micelles, and
dendrimers. Polymersomes are a type of artificial synthetic vesicles whose membranes
consist of block copolymer amphiphiles [73]. These NPs contain an aqueous inner core
surrounded by an outer bilayer membrane, which integrates hydrophobic drugs, while the
core can encapsulate hydrophilic drugs, peptides, nucleotides, and enzymes. Moreover,
the outer surface of the membrane can be modified to show the surface portion used for
targeting [74]. They offer better stability and drug retention efficiency and become effective
carriers for delivering therapeutic agents to cytosol [75,76]. Commonly used polymersomes
include PEG [77], Poly (lactic-co-glycolic acid) (PLGA) [78], and poly (dimethylsiloxane)
(PDMS) [79]. PEG polymers consist of repeated units of ethylene glycol, which can form
linear or branched chain structures, with functional groups at one or more ends, enabling
various conjugation possibilities and greatly increasing the drug loading [80]. Additionally,
PLGA polymers are linear copolymers with repeating units of lactic and glycolic acid
and the most widely applied type of particles due to their favorable properties, such as
biocompatibility, biodegradability, and controllable drug release profile [81].

Polymer micelles can carry various types of therapeutics, such as small molecules
or proteins, and have been widely used in clinical trials to deliver cancer drugs [82,83].
Dendrimers are a type of hyperbranched polymer with complex three-dimensional struc-
tures. Their mass, shape, size, and surface chemistry can be controlled in synthesis. Among
them, polyethyleneimine (PEI) and poly (amidoamine) (PAMAM) dendrimers are widely
used. Dendritic polymers can accommodate various types of therapeutics, and they are
most commonly explored for transporting small molecules and nucleic acids [84]. In size,
polymer micelles and other particles with a diameter of 10–100 nm are more likely to
aggregate in tumors compared to larger liposomes [85]. Therefore, to achieve the most
effective tumor permeability, it is crucial to control the particle size. However, polymeric
NPs are still limited by the high risk of particle aggregation and toxicity. As a result, only
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a small amount of polymer nanomedicines has been approved by the Food and Drug
Administration (FDA) for clinical use. Currently, polymeric NPs are being tested in a large
number of clinical trials [60].

3.3. Inorganic NPs

Inorganic materials like gold, silica, manganese (Mn), and iron have been synthesized
and are widely used in various types of delivery. The formulation of these inorganic NPs
is highly precise and can be designed into various sizes, geometry shapes, and structures.
Currently, the most extensively investigated are gold NPs (AuNPs), which have flexible
forms in practical synthesis applications, including nanospheres, nanostars, nanorods,
nanoshells, and nanocages [86]. Another common class of inorganic NPs materials is iron
oxide, which possesses size-related superparamagnetic properties and has been success-
fully utilized for drug delivery [87]. Mesoporous silica (MSNs) and calcium phosphate
(CaP) are also common inorganic NPs that show promise as emerging nanocarriers for
delivering various molecules to various target sites [88]. Manganese dioxide (MnO2) NPs
are also among the most stable and functional inorganic nanomaterials, they are widely
used as carriers for nucleic acid, protein, and drug delivery [89]. Most inorganic NPs
have good biocompatibility and stability, thereby addressing the limitations that organic
materials cannot overcome. Nevertheless, their clinical application is restricted due to their
low solubility and high toxicity [87,90].

3.4. Other NPs

In addition to the above nanomaterials, others have also been developed for drug deliv-
ery, such as cell membrane (CM)-camouflaged nanocarriers and metal–organic frameworks
(MOFs), etc.

Recently, CM-camouflage technology has emerged as a new type of nanocarrier that
provides NPs with the desired functions and complements the therapeutic efficacy [55,91,92].
For instance, tumor CM-decorated NPs carry abundant tumor antigens, which activate
dendritic cells (DCs) and T cells to stimulate and infiltrate the tumor microenvironment, ulti-
mately inhibiting tumor growth [92,93]. Additionally, a T lymphocyte membrane-decorated
epigenetic nanoinducer loaded with IFN I inducer ORY-1001 and overexpressing PD-1 could
identify and enter PD-L1-expressing cells. This would then provide intratumor IFN supple-
mentation and inhibit its immunosuppressive activities, resulting in improved T cell-mediated
antitumor activity [92]. Additionally, T-cell-membrane-coated NPs (TCMNPs) have been de-
veloped to target tumors and block immune checkpoint interactions. TCMNPs have shown
potential as an alternative to current immunotherapy [94,95]. Moreover, red blood cell
(RBC) membrane-coated NPs loaded with an anti-inflammatory Glyburide and monocyte
membrane-coated NPs loaded with Gliclazide have also been developed for atherosclerosis
therapy, respectively [96,97].

Cell-derived nanovesicles (CDNs) are artificially generated vesicles from the mem-
branes of various immune cells. These vesicles reserve membrane proteins, resulting in low
immune recognition [98–100]. Unlike extracellular vesicles (EVs), cell-derived nanovesicles
overcome challenges such as low yields and can achieve higher yields using methods
like mechanical extrusion, ultrasonic, or microfluidic [101–103]. Moreover, cell-derived
nanovesicles can efficiently load RNA and modify surface proteins [104]. Since they orig-
inate from the cell membrane, these vesicles offer the possibility of producing vesicles
expressing certain surface molecules [105,106]. Therefore, cell-derived nanovesicles provide
a promising approach for enhancing immunomodulation through engineering.

Metal–organic frameworks (MOFs) are a highly versatile enzyme carrier [107,108].
They can encapsulate functional enzymes, potentially preserving their catalytic activity
and protecting them from degradation by the surrounding environment [109]. In addition,
MOFs offer advantages like a nontoxic or less toxic adjustable structure and pore size, large
surface areas, and better biocompatibility, making them a potential delivery carrier for the
development of nanoreactors [110–113].
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4. Nanoparticle-Based Immunotherapy in Reversing T-Cell Exhaustion

Besides targeting immune checkpoints, NP-based remodeling of the tumor microenviron-
ment and targeting the T cell metabolism have emerged as methods to reverse T cell exhaustion
(Figure 1). The approaches that have been applied up to date are as follows (Table 1).
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Figure 1. NP-based immune-targeting methods to reverse T cell exhaustion. These include target-
ing inhibitory checkpoint blockades, remodeling the tumor microenvironment, and targeting the
metabolism of exhausted T cells, etc. NPs are used to deliver antibodies like anti-PD-1, anti-TIM-3,
anti-Galectin-9, PD-1 siRNA, PD-L1 aptamer, etc., which can block immune checkpoints. Additionally,
c-di-GMP and small-molecule-targeting therapeutics like oxaliplatin, AS, TLR7/8 agonist (R848),
CCR2 siRNA, and clodronate can induce M2-to-M1 macrophage repolarization and trigger efficient
immunity. NP-loaded imatinib and dinaciclib are designed to target immunosuppressive cells, such
as Tregs and MDSCs. Acriflavine, axitinib, or 4-1BB antibody can alter T cell metabolism, promoting
T cell mitochondrial biogenesis or reducing hypoxia, thus effectively relieving T-cell exhaustion.
Furthermore, NP-based combination therapies elicit strong antitumor responses.

4.1. Targeting Checkpoint Blockade

Immune checkpoint blockade therapy has shown great promise for overcoming ex-
haustion. During T-cell activation, PD-1 is induced later and, after binding to PD-L1 or
PD-L2, weakens TCR signaling through the recruitment of tyrosine phosphatase [114].
Anti-PD-1 mainly induces the expansion of specific tumor-infiltrating exhaust-like CD8
T cell subsets. Additionally, CTLA-4 is immediately upregulated after competitively bind-
ing to the B7 ligand, thereby limiting T-cell activation [115]. Anti-CTLA4 promotes the
expansion of ICOS+ Th1-like CD4 effector cell populations [116]. Considering the constitu-
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tive expression of CLTA-4 on CD4 regulatory T cells (Treg), anti-CTLA4 mainly depletes
inhibitory Treg cells [117]. However, there is still limited efficacy, significant toxicity, limited
delivery potential, off-target effects, etc. [118]. NPs can greatly enhance delivery by protecting
immunotherapies and enhancing the interaction with immune cells, ultimately enhancing the
effectiveness of current immunotherapy approaches [119]. By modifying antibodies and other
ligands on the surface of NPs, the specific and efficient uptake of NPs can be induced [120].

Inhibitory receptors are often targeted for NP-based immunotherapy against ex-
hausted T cells. Recently, researchers have successfully transported PD-1 siRNA into
T lymphocytes by lipid-coated CaP, improving the cellular uptake of siRNA and reducing
PD-1 expression [121]. In addition, the direct delivery of PD-1 siRNA into T cells through
AuNPs coated with PAMAM dendrimers could increase PD-1 gene silence and regulate
T cell exhaustion. Considering that 2,3-dioxygenase (IDO), an immunosuppressive agent,
causes exhaustion and the increased formation of regulatory T cells (Tregs), synergiz-
ing with an IDO inhibitor can further improve the tumor immunotherapeutic potency
and reverse T cell exhaustion [49]. Meanwhile, some studies have also developed tumor
CM-camouflaged NPs, which are edited by a long noncoding RNA (lncRNA). They way in
which they synergistically act with anti-TIM-3 could amplify DC inflammasome activation
by enhancing antigen cross-presentation and ameliorate exhaustion, showing remarkable
efficacy against tumors [122].

Ionizable LNPs have been developed to deliver Epstein–Barr virus (EBV) latent mem-
brane protein 2 (LMP2) mRNA to lymph nodes. Subsequently, LMP2 mRNA is expressed
on antigen-presenting cells (APC), which activate CD8+ T cells, combat LMP2-expressing
cancer cells, and promote the formation of memory T cells. Additionally, synergistic
anti-PD-1 therapy could block the PD-L1 pathway, provoke strong anti-tumor efficacy,
and reverse T-cell exhaustion [123]. Furthermore, a nanoparticle vaccine based on CaP,
loaded with CpG, which is the Toll-like receptor 9 (TLR9) ligand, and a Gag epitope from a
Friend retrovirus-specific CD8+ T cell, is very effective in activating DC and enhancing cell
response [124–126]. Additionally, combining anti-PD-L1 with a therapeutic vaccination is
more effective in reactivating the CD8+ T cell response and eliminating the viral [127].

T-cell-derived nanovesicles also provide an effective strategy to influence T-cell exhaus-
tion. These nanovesicles generated by cytotoxic T cells are continuously extruded through
membranes containing micro/nano pores. The surfaces of this nanovesicle are equipped
with PD-1 and TGF-β receptors, which can cut off the PD-L1 pathway on cancer cells
and clear TGF-β secretion, ultimately killing cancer cells and preventing cytotoxic-T-cell
exhaustion [128]. To address the limited therapeutic effectiveness of immune check-
point blockades, researchers have developed T-cell-membrane-coated NPs (TCMNPs).
These TCMNPs contain proteins derived from the T-cell membrane and are modified with
adhesion proteins LFA, allowing them to target tumors and block immune checkpoint
interactions [94]. Additionally, they are loaded with anticancer drugs, such as dacarbazine,
which can be released to kill cancer cells and induce FasL-mediated apoptosis, similar to the
way cytotoxic T lymphocytes (CTLs) function. However, TCMNPs do not respond to immuno-
suppressive molecules like TGF-β1 and PD-L1, as they are capable of clearing them [95].

Besides antibody blockades, various alternatives to antibodies, such as PD-L1 ap-
tamers and nanocarriers, are being developed to reduce the cost of tumor immunotherapy.
Some studies have employed PD-L1 aptamer to modify gold nanorods (GNRs) to create
a PD-L1-targeting therapy. This novel approach can block immune checkpoints, facili-
tate nanoparticle accumulation, and generate strong photoacoustic signals within tumors.
When combined with concurrent photothermal therapy, this strategy significantly enhances
antitumor immunity by activating CD8+ T cells and inhibiting Treg cells, thereby resulting
in the suppression of exhaustion [129].

4.2. Remodeling the Tumor Microenvironment

The components within the tumor microenvironment, which participate in regulating
the progress of T-cell exhaustion are garnering increasing attention as potential immune
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targets [41,130,131]. Tumor-associated macrophages (TAMs) are the most abundant types
of immune cells in the tumor microenvironment [132,133]. TAMs, a vital component in
this microenvironment, can influence tumor development [134]. TAMs are divided into M1
and M2 types. M1-like TAMs are typically considered tumor-killing macrophages, while
the M2 type displays immunosuppressive properties, tumor-promoting functions, and
distal metastasis [135]. Additionally, the tumor microenvironment also comprises various
regulatory immunosuppressive cells, such as Tregs, myeloid-derived suppressor cells
(MDSCs), and regulatory DCs. These cells play a role in tumor immune escape and pose
a significant challenge in cancer immunotherapy [55]. Therefore, remodeling the tumor
microenvironment by targeting TAMs, which includes inducing M2-to-M1 repolarization,
inhibiting TAMs recruitment and depleting TAMs, and targeting immunosuppressive cells,
has emerged as a strategy for cancer therapy and reversing exhaustion [136].

4.2.1. Targeting TAMs

(1) Inducing TAMs repolarization

The majority of macrophages in the tumor microenvironment exhibit an anti-inflammatory,
M2-like phenotype, and the number of M2-like TAMs is associated with poor prognosis and
drug resistance [137,138]. Therefore, repolarizing M2-type TAMs to M1-type is beneficial
for macrophages to exert tumor-killing effects, prevent tumor metastasis, and improve the
immunosuppressive state of the tumor microenvironment. This TAMs reprogramming
strategy might be a superior therapeutic approach.

Modulating the tumor microenvironment by consuming lactate and amplifying im-
munogenic cell death-induced immune responses can enhance the anti-tumor activity of
cytotoxic T cells [139]. Lactic acid secreted by cancer cells promotes macrophage polariza-
tion (from the M1 to M2 phenotype) and T-cell exhaustion [140]. Wang H, et al., use MOFs
to load lactate oxidase and oxaliplatin, which catalytically consume lactic acid and induce
immunogenic cell death, respectively, and then coat with the platelet membrane (PM) for
targeting tumor sites. This induces M2-to-M1 repolarization and decreases the Treg levels,
thereby favoring tumor eradication [139].

Remodeling the tumor microenvironment combined with immune checkpoint block-
ades provokes a strong anti-tumor effect by reversing T-cell exhaustion [141]. Some studies
utilize a sheddable PEG-decorated nanodrug loaded with a STAT6 inhibitor (AS) to in-
duce M2-to-M1 repolarization. This contributes to recruiting effector T cells for tumor
infiltration. Additionally, being combined with Galectin-9 blocker enhances the immune
response and reduces exhaustion in highly malignant breast cancer [46]. In addition, the
delivery of TLR7/8 agonist (R848)-loaded β-cyclodextrin NPs to TAMs in vivo has been
demonstrated in multiple tumor models to promote M2-to-M1 repolarization, leading
to the inhibition of tumor growth. Similarly, when used in combination with anti-PD-1
therapy, immunotherapy becomes more effective [142]. Moreover, the delivery of another
TLR7/8 agonist 3M-052 to TAMs also induces phenotypic changes in TAMs and promotes
tumor regression [143].

Targeting the stimulators of interferon genes (STING) pathway in TAMs through
optimizing the delivery system is critical for reversing T-cell exhaustion. Cyclic dimeric
guanosine monophosphate (c-di-GMP), a STING agonist, initiates a type I interferon (IFN-I)
response, which causes CD8+ T cells to accumulate and infiltrate at the tumor sites and
triggers an immunogenic response [144,145]. Utilizing novel NPs consisting of neutral
cytidinyl lipid DNCA together with cationic lipid CLD to loaded c-di-GMP could stimulate
more IFN-β production and promote immunogenic cell death, effectively reversing T-cell
exhaustion in tumors [146].

Additionally, altering the phenotype of TAMs can also be achieved by targeting signal-
ing pathways involved in macrophage polarization, such as histone deacetylases (HDACs),
phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors, etc. [136]. The high expression of
HDAC has been observed in various types of cancers [147]. Recently, the HDAC inhibitor
TMP195 has been found to change the TAMs phenotype, leading to a decrease in tumor
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burden and metastases. Furthermore, the combination of TMP195 and anti-PD-1 has
exhibited additive effects on anti-tumor effects [148]. Moreover, PI3Kγ acts to enhance
immunosuppressive activity and reduce immunostimulatory activity during inflammation
and cancer. PI3Kγ inhibitors (SF1126 and AZD3458) or the genetic deletion of Pik3cg, can
also facilitate macrophage reprogramming [149,150]. When AZD3458 is combined with
anti-PD-1/anti-PD-L1, it exhibits greater therapeutic efficacy compared to the checkpoint
inhibitor alone [136].

(2) Inhibiting TAMs recruitment

Chemokines play a crucial role in regulating the recruitment of TAMs to the inflamma-
tion site. Numerous studies have demonstrated that the chemokine ligands secreted by
both cancer and stromal cells in the tumor microenvironment are significant in recruiting
TAMs [151,152]. Consequently, blocking chemokine signals could be a novel strategy to
disrupt the accumulation of TAMs and enhance therapeutic responses.

TAMs-recruiting chemokine (CCL2, CCL3, CCL4, and CCL5), VEGF, and CSF-1 have
the potential to enhance TAMs recruitment and serve as therapeutic targets. Among them,
CCL2 and its ligand CCR2 (the CCL2–CCR2 axis) are crucial in determining TAMs accu-
mulation [153]. To block this axis, cationic NPs encapsulating siRNA-CCR2 (CNP/siCCR2)
have been developed to inhibit CCR2 expression in monocytes. More importantly, by block-
ing the recruitment of monocytes to tumor tissue, CNP/siCCR2 can reprogram the tumor
microenvironment, suppress tumor growth, reduce tumor metastasis, and exert effective
anti-tumor effects [154]. Furthermore, CCR2 antagonists (RS504393 and RS102896) have
been developed to suppress tumor metastasis [155,156]. In some mouse tumor and metas-
tasis models, CCR2 antagonists synergize with anti-PD-1 therapy to show an enhanced
antitumor response [157].

(3) TAMs depletion

The infiltration of TAMs in tumor tissue is significantly negatively correlated with
tumor prognosis. TAMs generate signals that support tumor growth and promote cell
survival. When TAMs are depleted, the production of these signals is reduced, lead-
ing to a decrease in tumor cell proliferation [158]. Therefore, the targeted depletion of
M2-like TAMs is a feasible option for immunotherapy. Some studies demonstrate that
TAMs induce exhaustion programs while depleting TAMs reduces exhaustion programs
and enhance the effectiveness of tumor-infiltrating CD8+ T cells [159]. TAMs are specifically
targeted for apoptosis induced by liposomal clodronate due to their active phagocytosis of
liposomes [160]. Using liposomes encapsulating clodronate could deplete TAMs, thereby
restoring the host’s defenses and eliminating tumor cells [158,160]. The targeted delivery
of proapoptotic peptides M2pep to TAMs to selectively reduce the TAMs population has
shown improved survival rates and anticancer effects [161].

In addition, the production and activation of TAMs mainly rely on macrophage
colony-stimulating factor-1 (CSF-1). Besides clodronate liposome treatment, CSF-1 receptor
(CSF-1R) inhibitors BLZ945 and PLX3397 have also been shown to deplete macrophages.
This depletion restores T-cell migration and infiltration into tumor islets and improves
anti–PD-1 immunotherapy [162,163]. Furthermore, TAMs dual-targeting lipid NPs (M2NPs)
loaded with CSF-1R siRNA have also been developed. These NPs have a scavenger receptor
targeting the peptide connected to TAMs-targeting peptides (M2pep) on the surface. These dual-
targeting NPs significantly reduce the proportion of TAMs, inhibit tumor growth, downregulate
the expression of PD-1 and TIM-3, and restore T-cell function [164]. Compared to inhibiting
TAMs recruitment, depleting pulmonary TAMs may be a favorable strategy for alleviating
lung cancer progression [158]. However, further exploration is still needed.

4.2.2. Targeting Immunosuppressive Cells

Although various engineered NPs have been designed to target effector cells, such
as T cells and TAMs, other approaches have also been used to suppress the activity of
immunosuppressive cells, such as Treg cells, MDSCs, and regulatory DCs, and indirectly
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enhance immune responses. For instance, hybrid NPs conjugated with the tLyp1 peptide
and loaded with the tyrosine kinase inhibitor imatinib have been used to target the Nrp1
receptor on Treg cells and downregulate their suppression by inhibiting STAT3/STAT5
signaling. When these NPs are combined with anti-CTLA-4 therapy, they show enhanced
tumor inhibition [165]. Furthermore, a lipid nanoparticle encapsulating the cyclin-dependent
kinase inhibitor dinaciclib and modified with anti-PD-L1 has been designed to deplete MDSCs
and attenuate their immunosuppressive functions [166]. When exhaustion occurs, TIM-3 is
also expressed on DCs, which inhibits their response upon interaction with their ligands [167].

4.3. Targeting T-Cell Metabolism

NP-based targeting the T-cell metabolism has become a new method for reversing ex-
haustion. Impaired mitochondrial function and hypoxia are the main metabolic features and
drivers of the exhaustion of T cells, along with the low expression of major histocompatibility
complex class I (MHC I) on the surface of tumor cells. This deficiency causes the low-efficiency
recognition of T cells, which compromises therapeutic outcomes. Zhang D, et al., utilize
a tumor CM-decorated vesicle, modified by oxidized sodium alginate and loaded with
axitinib, 4-1BB antibody, and PCSK9 inhibitor PF-06446846. Axitinib can alleviate hypoxia,
the 4-1BB antibody can enhance T-cell mitochondrial biogenesis, and PF-06446846 increases
the expression of MHC I and further enhances the efficiency recognition of T cells. The
synergistic effects of these agents significantly revitalize T cell function [168].

Mitochondrial dysfunction is an intrinsic trigger factor for exhaustion. Wu H, et al.
demonstrate that mitochondrial dysfunction drives T cells towards terminal exhaustion
through maintaining stable levels of hypoxia-inducible factor 1α (HIF-1α) protein expres-
sion and the related glycolytic reprogramming [169]. Additionally, HIF-1α also initiates
downstream gene PD-L1 transcription [170]. Since hypoxia and ROS are the main drivers
in immune exhaustion, ROS-responsive manganese dioxide (MnO2) NPs are developed
to carry the HIF-1α inhibitor (acriflavine) to the tumor sites, successfully relieving T-cell
exhaustion and activating tumor-specific immune responses [171].

Overall, these data suggest that NP-based methods may have the potential to reverse
T-cell exhaustion, but further investigation is still required.

Table 1. Nanoparticle-based immunotherapy in reversing T-cell exhaustion.

Strategy Composition of NPs Immunomodulators Target Cells Intervention Mechanism Ref.

Targeting
checkpoint blockade

PAMAM dendrimer-
entrapped AuNPs

PD-1 siRNA;
IDO inhibitor T cells Silencing PD-1 gene [49]

lncRNA-edited tumor
CM-camouflaged NPs Anti-TIM-3 DC cells and

CD8+ T cells

Mediating antigen
cross-presentation and

dampening immunosuppression
[122]

LMP2-mRNA LNPs Anti-PD-1 CD8+ T cells Enhancing memory T-cell formation [123]

CaP-based
nanoparticle vaccine

Anti-PD-L1;
CpG;

a virus-specific
CD8+ T cell epitope

CD8+ T cell Reactivating CD8+ T cell immunity [127]

T-cell-derived nanovesicles PD-1;
TGF-β receptor Cancer cells Blocking the PD-L1 pathway and

eliminating TGF-β [128]

T-cell-membrane-coated
NPs (TCMNPs)

LFA;
Dacarbazine Tumor cells

Blocking immune checkpoint
interactions and inducing
FasL-mediated apoptosis

[95]

Gold nanorods (GNRs) PD-L1 aptamer Tumor cells Activating CTLs and inhibiting
Treg cells [129]



Int. J. Mol. Sci. 2024, 25, 1396 11 of 19

Table 1. Cont.

Strategy Composition of NPs Immunomodulators Target Cells Intervention Mechanism Ref.

Remodeling the
tumor microenvironment

MOFs coating with PM Lactate oxidase;
Oxaliplatin TAMs Promoting M2-to-M1 repolarization

and decreasing Treg levels [139]

PEG-decorated NPs Anti-Galectin-9;
AS TAMs

Promoting M2-to-M1 repolarization
and enhancing effector

T-cell infiltration
[46]

Cyclodextrin NPs
TLR7/8 agonist

(R848);
anti-PD-1

TAMs Promoting M2-to-M1 repolarization
and inhibiting tumor growth [142]

Neutral cytidinyl lipid
DNCA/cationic

lipid CLD
c-di-GMP Cancer cells

Triggering immunogenic cell death
and increasing effector

T-cell infiltration
[146]

Cationic NPs CCR2 siRNA Monocytes Inhibition of TAMs recruitment [154]

Liposome Clodronate TAMs TAMs depletion [160]

Lipid NPs

CSF-1R siRNA;
M2pep;

a scavenger receptor
targeting peptide

TAMs;
scavenger receptor TAMs depletion [164]

Hybrid NPs
tLyp1 peptide;

Imatinib;
Anti-CTLA-4

Tregs Downregulating Tregs suppression [165]

Lipid NPs Dinaciclib;
Anti-PD-L1 MDSCs Depleting MDSCs and attenuating

their immunosuppressive functions [166]

Targeting
T-cell metabolism

Tumor CM
decorated vesicle

Axitinib;
4-1BB antibody;

PF-06446846
T cells Promoting T-cell mitochondrial

biogenesis and reducing hypoxia [168]

MnO2 NPs Acriflavine Tumor cells
HIF-1α functional inhibition and

subsequently activating
tumor-specific immune responses

[171]

5. Conclusions and Perspectives

T-cell exhaustion commonly emerges in numerous pathogens, infections, and cancer.
T-cell exhaustion usually leads to disease progression. Although multiple mechanisms
may be involved in the occurrence of exhaustion, it is still necessary to dissect how these
mechanisms network together to influence the immune response and explore new targets
for immunotherapy.

An NP-based programming approach has been studied in the process of rejuvenating
T-cell exhaustion. The results demonstrate that the NP-based combination immunotherapy
elicits strong T-cell responses and reverses T-cell exhaustion. Despite these investigations
enhancing our understanding of the mechanisms of exhaustion and introducing new re-
search on NP-targeted therapies, numerous important questions remain unanswered. For
instance, while targeting pathways like PD-1 antibodies have shown some therapeutic
effects, we still know very little about the underlying mechanisms. Additionally, when tar-
geting multiple pathways to reverse T-cell exhaustion, we lack a comprehensive molecular
understanding of their synergistic effects.

In addition, there still exist several limitations in NPs’ application in the delivery
system. For instance, toxicity, low intake, off-targeted, tissue retention-induced immune
tolerance, etc., [172]. Cytotoxicity is the most common one [173]. NPs also exhibit immuno-
genicity and can be easily recognized and cleared by immune cells [174]. Furthermore, the
size of NPs also affects cell uptake, as it influences the enthalpy and entropy capabilities
that control the adsorption effect of NPs [175]. Therefore, certain-sized non-degradable
NPs could be retained in tissue and organs, such as lungs, liver, kidneys, etc., and pose
serious hazards [65].

Rationale NP designs are critical for improving precision therapies. This review has
discussed numerous NP designs for reversing T-cell exhaustion. The NPs platform offers
a range of modifiable characteristics, such as size, shape, surface properties, charge, and
responsiveness, which can be selected to optimize specific applications in chronic infection
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and cancer treatment. For instance, surface modifications are implemented in some NP
designs to prevent the side-effect of non-specific distribution. Additionally, many NPs
incorporate PEG to avoid rapid excretion. However, the most important issue remains to
be that by understanding the characteristics of exhausted T cells and their immunosuppres-
sive microenvironment during the exhaustion process, NPs can be designed for targeted
interventions to achieve the best outcomes.

Notably, the NP-based approach has shown impressive and remarkable outcomes during
preclinical research, indicating its strong potential for combating cancer and infectious diseases.
However, only a few materials have been examined in clinical trials so far, and none have
been authorized for use [176]. Additionally, NP-based antigen delivery can induce immune
tolerance, which promotes the application of NPs in autoimmunity [177,178]. Therefore, further
investigation into the pathogenesis of exhaustion and NP-based immunotherapies is necessary
for developing novel interventions against exhaustion.
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PD-1: programmed cell death protein 1; TIM-3: T-cell immunoglobulin and mucin domain 3;
CTLA-4: cytotoxic T lymphocyte antigen 4; NPs: nanoparticle; HBV: hepatitis B virus; LCMV:
lymphocytic choriomeningitis virus; HIV: human immunodeficiency virus; M. tuberculosis: Mycobac-
terium tuberculosis; ROS: reactive oxygen species; LAG-3: lymphocyte activation gene 3; Blimp-1:
B lymphocyte-induced maturation protein-1; NFAT: nuclear factor of activated T cells; T-bet:
T-box–containing protein expressed in T cells; TCF-1: T-cell factor 1; PD-L1: PD-ligand 1; FAO: fatty
acid β-oxidation; OXPHOS: oxidative phosphorylation; LNPs: lipid nanoparticles; PEG: polyethylene
glycol; PLGA: Poly (lactic-co-glycolic acid); PDMS: poly (dimethylsiloxane); PEI: polyethyleneimine;
PAMAM: poly (amidoamine); FDA: Food and Drug Administration; Mn: manganese; AuNPs: gold
NPs; MSNs: mesoporous silica nanoparticles; CaP: calcium phosphate; CM: cell membrane; MOFs:
metal–organic frameworks; DC: dendritic cell; TCMNPs: T-cell-membrane-coated nanoparticles;
CTLs: cytotoxic T lymphocytes; RBC: red blood cell; CDNs: cell-derived nanovesicles; EVs: ex-
tracellular vesicle; MOFs: metal–organic frameworks; Treg: regulatory T cell; IDO: indoleamine
2,3-dioxygenase; lncRNA: long noncoding RNA; EBV: Epstein–Barr virus; LMP2: latent membrane
protein; APC: antigen-presenting cells; TLR9: Toll-like receptor 9; GNRs: gold nanorods; TAMs:
tumor-associated macrophages; PM: platelet membrane; STAT6: signal transducer and activator of
transcription 6; AS: STAT6 inhibitor; STING: stimulators of interferon genes; c-di-GMP: cyclic dimeric
guanosine monophosphate; HDACs: histone deacetylases; PI3Kγ: phosphoinositide 3-kinase gamma;
CNP/siCCR2: siRNA-CCR2-encapsulated cationic NPs; CSF-1: colony-stimulating factor-1; CSF-1R:
CSF-1 receptor; M2NPs: TAMs dual-targeting Lipid NPs; M2pep: TAMs targeting peptides; MDSCs:
myeloid-derived suppressor cells; IFN-I: type I interferon; MHC I: major histocompatibility complex
class I; PCSK9: proprotein convertase subtilisin/kexin type 9; HIF-1α: hypoxia-inducible factor 1α;
MnO2: manganese dioxide.
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