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Abstract: Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation
(LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether
boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic
action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG)
LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to
counteract the LTP impairment caused by acute exposure to soluble Aβ42 aggregates. nE2 was found
to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with
finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices
treated with soluble Aβ42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor
(NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aβ42,
and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able
to counteract Aβ42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic
mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.

Keywords: 17β-estradiol; P450-aromatase; 5α-reductase; LTP; synaptic plasticity; estrogen; neurosteroid

1. Introduction

Neurosteroids are a wide range of cholesterol-derived molecules, synthesized de novo
within the central nervous system (CNS), able to exert diverse neuronal functions and affect
behavior. 17β-Estradiol (E2), one of the most studied estrogenic neuro-active steroids, is
known to regulate multiple neuronal molecular signaling systems that are at the basis of
synaptic transmission and neural network remodeling and that contribute to learning and
memory processing, ultimately affecting cognition [1,2]. Although neuronal- and systemic-
derived E2 may contribute simultaneously to synaptic modulation, growing evidence
suggests an important contribution of neural E2 (nE2) in the rapid modulation of synaptic
transmission and plasticity. Accordingly, nE2 has been demonstrated to exert a pivotal role
in the long-term potentiation (LTP) of synaptic transmission in the hippocampus [3–5] and
in other brain regions [6,7] involved in learning and memory processes [5,8–12]. Dysfunc-
tional E2 signaling has been reported to be dramatically related to several neurological
conditions, ranging from psychiatric disorders [13,14] to many neurodegenerative dis-
eases [15–17], in which cognitive decline is present to a certain extent. Among others, mild
cognitive impairment (MCI), Alzheimer’s disease (AD), or other conditions associated with
dementia, display changes in E2 signaling within the CNS [18–20] paralleled by changes
in cognitive functions. Like most chronic diseases, AD develops slowly from a preclinical
phase into a fully expressed clinical syndrome. In AD, large amyloid beta (Aβ) aggregates
and plaque deposition are major pathogenic factors of the disease. In this regard, it is
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known that E2 decreases the generation of Aβ [21] and promotes its degradation, reducing
the risk for AD [22]. However, aggregated Aβ accumulation is only a part of a much larger
set of pathogenic processes, comprising tau protein hyperphosphorylation or activation
of the local immune response, which together initiate cognitive decline. In this patholog-
ical setting, soluble Aβ oligomers exist in a dynamic equilibrium with more aggregated
fibrillary structures [23,24], and the former seem to be the main toxic species responsible
for neural circuit imbalance in critical brain areas such as the hippocampus. Aβ oligomers
indeed deeply affect glutamatergic synaptic transmission, altering membrane distribution
of glutamate receptors and interfering with intracellular calcium homeostasis, undermining
the ability of hippocampal neurons to express LTP, ultimately leading to network dysfunc-
tion [25–27] and neurological symptoms. Estrogen depletion in mouse models of AD was
shown to increase pathological signs and treatment with E2 was shown to exert a protective
role against amyloidogenesis and cognitive impairment [28–30]. Most of the E2 effects are
likely due to the up- or down-regulation of gene transcription, but E2 can also activate rapid
intracellular signaling pathways, acting within seconds or minutes through membrane-
associated extranuclear receptors [31,32]. E2 rapidly increases synaptic transmission in
various brain regions by facilitating glutamate NMDARs activity [33–36] and inhibiting
GABA release [37], thus rapidly modulating the function of neurons [4,38–40].

Here, we performed electrophysiological analysis to establish whether nE2 is able
to exert rapid modulatory effects on LTP deficits in a rat model of Aβ-induced synaptic
dysfunction, resembling synaptic deficits as in an MCI-like condition and AD.

2. Materials and Methods
2.1. Animals

All procedures involving animals were performed in conformity with the European
Directive 2010/63/EU, in accordance with protocols approved by the Animal Care and
Use Committee at the University of Perugia, authorization n. 297/2016-PR. All efforts
were made to minimize the number of animals used and their suffering. Adult Wistar
rats (3-month-old, ~300 g, Charles River, Italy) were used for the experiments; only male
animals were used to avoid any possible influence of cyclic estrogenic fluctuation on the
induction of synaptic plasticity [41]. Animals were housed at room temperature of about
23 ◦C with food and water ad libitum and a 12 h light-dark cycle.

2.2. Slice Preparation and Electrophysiological Procedures

Rats were decapitated under deep sedation and the brain removed and immersed
for 2–3 min in ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM): 126 NaCl,
2.5 KCl, 1.2 MgCl2, 1.2 NaH2PO4, 2.4 CaCl2, 10 glucose and 25 NaHCO3, continuously
bubbled with 95% O2 and 5% CO2, pH = 7.4. Transversal 400 µm-thick hippocampal slices
were obtained using a vibratome (LEICA, VT 1200S) with iced ACSF as the cutting solution.
The slices were then transferred to a recovery chamber with oxygenated ACSF at 30 ◦C
for 30 min and then at room temperature (RT) for 1–2 more hours before experimental
recordings. Each slice was then transferred into a recording chamber and submerged
in ACSF at a constant rate flow of 2.9–3 mL/min at a temperature of 29 ◦C. Local field
excitatory postsynaptic potentials from the hippocampal dentate gyrus (DG) were recorded
as previously described [42]. Borosilicate glass microelectrodes filled with 2 mol/L NaCl
as recording electrodes (resistance 10–15 MΩ) were placed nearby the granular layer.
Electrical responses were evoked by stimulating the perforant pathway at 0.1 Hz (10 µs
duration, 20–30 V amplitude) by a pair of bipolar electrodes placed under visual control.
An Axoclamp 2B amplifier (Molecular Devices, San Jose, CA, USA) was used for recordings,
and traces were filtered at 3 KHz, digitized at 10 KHz and stored in a PC. The postsynaptic
responses in the DG included population spikes (PS) that were set at 50% of maximum
amplitude. LTP of the PS amplitude was induced by a high-frequency stimulation (HFS)
protocol at 100 Hz, consisting of three trains of 1 s, at 5 min intervals.
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Drugs were applied by dissolving them to the desired final concentration in oxy-
genated ACSF and then bath-applied by switching the recording solution to one containing
known concentrations of drugs. Total replacement of the medium in the chamber occurred
within 1 min. Finasteride (Fin) and E2 were applied at a final concentration of 1 nM,
letrozole (Let) at 100 nM and ICI 182,780 (ICI) at 100 nM [7]. For experiments involving
memantine (Mem), slices were incubated for 2 h in a chamber containing the drug diluted
at 1 µM in oxygenated ACSF [12]. E2, Fin, ICI, Let and Mem were from Tocris Biosciences
(Bristol, UK).

2.3. Preparation of Aβ1-42 Oligomers and Treatment of Brain Slices

Amyloid β-peptide 1-42 (Aβ42, Innovagen, Lund, Sweden) was initially solubilized
with hexafluoro isopropanol (HFIP, Sigma-Aldrich, St. Louis, MO, USA) and incubated
at RT for 30 min, resulting in a final peptide concentration of 1 mM. The Aβ42-containing
solution was divided in 10 µL aliquots and HFIP was allowed to evaporate overnight in a
fume hood. Tubes were then transferred to a SpeedVac and dried down for approximately
1 h. The dried peptide was stored at −80 ◦C. Immediately before use, aliquots were carefully
and completely re-suspended in anhydrous dimethyl sulfoxide (Sigma-Aldrich) by pipette
mixing followed by bath sonication for 10 min (5 mM, Aβ42 DMSO stock). Aβ42 oligomers
were prepared by diluting 5 mM Aβ42 stock in PBS 0.01 M at pH 7.4, the solution was
immediately vortexed for 30 s, then incubated at 4 ◦C for 24 h [43].

For Aβ42 treatments, some hippocampal slices were moved to an incubation chamber
30 min after cutting, remaining incubated for 2 h in a solution containing oxygenated
ACSF enriched with 200 nM fresh Aβ42 oligomers. The slices were then transferred to the
recording chamber for electrophysiological recordings [42,44].

2.4. Data Analysis and Statistic

Data analysis was performed using Clampfit (Molecular Devices) and GraphPad
Prism 8.0.1 (GraphPad software). The time course of the PS amplitude was measured
for 15–20 min to obtain a stable, reproducible response to set a baseline and then was
measured for subsequent 50 min. Modifications of the PS amplitude induced by drugs
or by HFS were expressed as a percentage of the baseline value. The occurrence of LTP
was verified by Student’s t-test by comparing PS amplitudes 5 min pre-HFS to 40 min
post-HFS. Comparisons among different post-HFS PS amplitude time-courses (LTP curves)
were evaluated by two-way ANOVA considering the treatment as the main factor. The
LTP amplitude corresponded to the PS amplitude measured at 50 min post-HFS. Statistical
significance was established at p < 0.05. Values given in the text and figures are the
mean ± SEM, and n represents the number of slices, 3–4 slices per rat were used for
electrophysiological recordings. Aβ42-treated and untreated slices were recorded for
each animal.

3. Results
3.1. Local E2 Synthesis Is Required for the Induction of Long-Term Potentiation in the
Dentate Gyrus

To evaluate whether the local synthesis of E2, obtained by the conversion of testos-
terone (T), could rapidly influence neuronal learning in the DG, we compared the LTP in
the presence or absence of the aromatase inhibitor Let. After acquiring a stable PS response,
LTP was induced in the control condition or after the bath application of 100 nM Let. We
found that in the presence of Let the mean LTP amplitude was reduced by 64% (control,
223.45 ± 9.6%, Let, 144.4 ± 13.8%, p < 0.01; Figure 1a), suggesting that the synthesis of E2
is required for the induction of physiological LTP in DG. We also tested the effect of the
endogenous production of 5α-dihydrotestosterone (DHT), the major androgenic metabolite
of T, on LTP expression in the DG by comparing the LTP in the presence or absence of
1 nM of the steroid 5α-reductase inhibitor Fin. We found that DG LTP did not depend
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on the presence of endogenous DHT, since LTP measured in the presence of Fin was not
significantly different from the control LTP (215.7 ± 14.2%, p > 0.05; Figure 1a).
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3.2. Locally Synthetized E2 Restores LTP in DG of Aβ42-Treated Slices via Direct Interaction with
E2 Receptors

The Aβ42-induced synaptopathy model we produced by the treatment of rat brain
slices with Aβ42 is characterized by an impaired hippocampal LTP [42,44]. To demonstrate
the role of locally synthetized E2 in LTP induction in this model, we measured DG LTP
after incubation of the slices in ACSF enriched with 200 nM Aβ42 with or without the
presence of Fin. We found reduced LTP in slices treated with Aβ42 by 54% with respect
to untreated controls (Aβ42, 156.59 ± 14.58%, p < 0.01; Figure 1b). Interestingly, in slices
exposed to Aβ42 plus 1 nM Fin, LTP impairment was completely prevented (Aβ42 + Fin,
232.57 ± 22.30%, vs. Aβ42 p < 0.01; Figure 1b), suggesting that promoting the conversion
of T into E2 is sufficient to maintain physiological LTP. To confirm that the restoration
of LTP in Aβ42-treated slices in the presence of Fin was in fact due to an increased level
of E2, we induced LTP in Aβ-treated slices in the presence of Fin plus 100 nM ICI, a
selective antagonist of E2 receptors. In this condition, the mean LTP was reduced by
61%, not significantly different from what was measured in the presence of Aβ42 alone
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(Aβ42 + Fin + ICI, 148.56 ± 17.81%, vs. Aβ42, p > 0.05; Figure 1b), confirming that E2
production is able to prevent LTP impairment in Aβ42-induced synaptopathy. Consistently,
exogenous application of 1 nM E2 was able to fully restore DG LTP in Aβ42-treated slices
(229.7 ± 35.7%; Figure 2).
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3.3. nE2-Dependent DG LTP Involves Glutamate NMDA Receptor Function

We previously found that LTP impairment in DG is fully restored in a genetic model of
brain amyloidosis by Mem [12], a noncompetitive NMDAR antagonist that is widely used
in clinical practice for AD therapy [45,46]. Here, we tested the effect of Mem on the Aβ42
model of synaptopathy, as it might suggest that the NMDAR plays a role in the modulation
of LTP by E2. Thus, LTP was induced in Aβ42-treated slices plus 1µM Mem, a dosage
that does not affect physiological DG LTP (226.5 ± 16.84%, Figure 3), showing that this
drug is also able to completely prevent the effect of Aβ42 on LTP in acute Aβ42-induced
synaptopathy (Aβ42 + Mem, 231.36 ± 32.33%, vs. Aβ42, p < 0.05; Figure 4a). To shed
light on the possibility that E2 promotes LTP through a mechanism mediated by NMDAR,
we induced LTP in hippocampal slices in the presence of 100 nM Let plus 1 µM Mem. In
this condition, we found that the exposure to Mem prevented the LTP impairment of DG
caused by the blockade of E2 synthesis (Let plus Mem, 222.80 ± 19.78%, p > 0.05; Figure 4b)
suggesting a convergence of E2 receptor (ER) and NMDAR signaling pathway activation.
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4. Discussion

E2 of neural origin (nE2) is known to be strongly implicated in LTP induction in
different brain regions by exerting rapid, non-genomic effects that are mediated by the
activation of its membrane receptors [11,34,39]. The present study, while confirming that
nE2 is required for the induction and maintenance of LTP in the hippocampal DG, also
demonstrates that it is able to influence LTP expression in a pathological condition such as
the synaptic toxicity induced by soluble Aβ42 oligomers. In fact, here we demonstrate for
the first time that a pharmacological approach aimed at boosting nE2 levels counteracts
Aβ42-induced synaptic dysfunction at the hippocampal DG, rescuing the deficit of the long-
term potentiation of synaptic plasticity that characterizes models of cerebral amyloidosis.
In the CNS, T can be converted both in E2 by P450 aromatase and in DHT by steroid
5-α-reductase, and it is suggested that the selective inhibition of one enzyme or the other
subsequently shifts the local availability of androgen or estrogen [41,47]. Therefore, we
inhibited DHT formation with finasteride in order to increase endogenous levels of nE2 in
hippocampal slices (Figure 5).

There is evidence that P450 aromatase is expressed at the hippocampal level and
that its activation depends on neuronal activity [48–51]. Performing electrophysiological
recordings in rat hippocampal slices, we confirmed that nE2 is required for physiological
LTP at the DG, since this form of synaptic plasticity is reduced in the presence of the P450
aromatase inhibitor letrozole, similar to what was observed previously in the CA1 regions
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by our group [3]. Furthermore, the time window of our recordings (<1 h) strongly suggests
that nE2 is able to sustain LTP induction by a rapid non-genomic action [11,52]; indeed,
15–20 min letrozole application appeared sufficient to rapidly reduce the LTP amplitude.
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Figure 5. Neural E2 modulation of DG LTP in the model of cerebral amyloidosis. Neural 17-β-
estradiol (nE2) levels are increased by finasteride (Fin), an inhibitor of the steroid 5α-reductase
(5α-RED) that is responsible for dihydrotestosterone (DHT) production from testosterone (T). T is
converted to E2 by P450 aromatase (P450 ARO). In hippocampal slices treated for 2 h with 200 nM
of the β-amyloid 1-42 fragment (Aβ42), the high-frequency stimulation protocol is able to induce
long-term potentiation (LTP) when the slices of the pathological model are treated with Fin or in
the presence of 1 µM of the NMDAR antagonist memantine (Mem). Designed with CorelDRAW
Graphics Suite.

Our experiments demonstrate that the role of nE2 in hippocampal LTP induction
is far more relevant when considering pathological conditions. Accordingly, the impair-
ment of hippocampal LTP observed in the presence of Aβ42 oligomers was completely
rescued by endogenous nE2 synthesis, obtained by the exposition to finasteride. Of note,
finasteride was applied at a nanomolar concentration, a dose that did not alter physio-
logical LTP [41,47]. Interestingly, this low concentration effectively restored DG LTP in
Aβ-treated slices without altering the LTP of untreated slices, suggesting increased sensi-
tivity to rapidly synthetized nE2 in the pathological setting of in vitro cerebral amyloidosis
induced by Aβ42 aggregates. Accordingly, in this experimental condition, the concurrent
E2 receptor blockade abolished the effect obtained with finasteride, while 1 nM E2, a dose
comparable with physiological levels of nE2 in the hippocampus of male rats [32,49], was
sufficient to restore DG LTP. These findings allow us to hypothesize a possible bidirectional
cause-effect relationship between amyloidopathy and altered steroidogenesis in the CNS,
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also opening the hypothesis that the pharmacological modulation of nE2 levels might have
a neuroprotective potential.

Although our study shows that locally synthesized E2 is crucial for the induction
and recovery of LTP in the DG, the exact mechanism underlying this phenomenon is
not fully understood. The activation of ER by E2 has been reported to induce a rapid
increase in spines on granule neurons, significantly enhancing the excitatory input to the
DG [52]; accordingly, the loss of hippocampal neuron-derived E2 was shown to significantly
decrease the number of dendritic spines and synapses [53]. Our in vitro studies, however,
demonstrated that nE2 is able to rescue Aβ42-impaired LTP within minutes, an effect
that is far too rapid to be based on granule cells’ spinogenesis. Similar conclusions are
in line with findings reporting that LTP impairment preceded hippocampal spine and
synapse loss [53,54]. Rapid mechanisms of action in which nE2 can play a role in LTP
include its influence on glutamatergic and GABAergic transmission [37,52,55–57]. Since
hippocampal LTP is mediated by the activation of NMDARs [58], nE2 likely facilitates
LTP by interacting with these receptors, as reported for exogenous E2 [59–61]. Moreover,
nE2-dependent LTP induction has been shown to rely on the interaction between ERs and
NMDARs signaling cascades in different hippocampal regions [35,59,60,62]. Thus, we
hypothesized in hippocampal DG a similar convergent interaction between nE2 signaling
and activation of the NMDAR intracellular pathway (Figure 5). Indeed, our experiments
demonstrate that in control conditions, the LTP induced in the presence of letrozole and
memantine is not altered, suggesting that NMDARs’ modulation acts downstream of ERs.

Our results are in line with the observations of Tanaka and colleagues showing that
endogenously synthesized E2 constitutively enhances NMDAR function through synaptic
ER [63,64]. Moreover, numerous studies have demonstrated that Aβ oligomers directly
alter the function of NMDARs. In particular, Aβ oligomers specifically activated the
extra-synaptic NMDARs subpopulation, responsible for glutamate excitotoxicity and cell
death [65,66], and reduced the synaptic sub-population of NMDARs [67–69], disrupting the
balance between synaptic and extra-synaptic NMDARs [70]. The non-competitive NMDAR
antagonist memantine, widely used in moderate and severe dementia, antagonized Aβ-
induced negative effects [71] by acting on extra-synaptic NMDARs [72–74]. In this scenario,
we can hypothesize that locally synthesized E2 can recover hippocampal LTP by acting on
the balance between synaptic and extra-synaptic NMDARs’ functionality.

Although further investigation, including measurements of single neurons, may help
to illustrate the specific interaction between nE2 and NMDAR in DG LTP, we can conclude
that the gatekeeping function of the DG to filter incoming activity in the hippocampus can
be modulated by nE2 under both physiological and pathological conditions through the
modulation of NMDARs. Our results confirm the pivotal role of locally synthesized E2 in
mediating long-term changes in synaptic strength, highlighting the importance of its effect
on memory and learning mechanisms. Moreover, our data highlight the importance of nE2
as a possible neuroprotective agent in cerebral amyloidosis, able to counteract the early
loss of synaptic plasticity associated with Aβ aggregates’ accumulation.
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