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Abstract: In recent years, there has been a growing number of adult orthodontic patients with
periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS).
Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore,
we applied an OS in vitro-model utilizing H2O2 to study its effect on tension-induced mechanotrans-
duction in human osteoblasts (hOBs). Experimental parameters were established based on cell
viability and proliferation. Apoptosis detection was based on caspase-3/7 activity. Gene expres-
sion related to bone-remodeling (RUNX2, P2RX7, TNFRSF11B/OPG), inflammation (CXCL8/IL8,
IL6, PTRGS2/COX2), autophagy (MAP1LC3A/LC3, BECN1), and apoptosis (CASP3, CASP8) was
analyzed by RT-qPCR. IL6 and PGE2 secretion were determined by ELISA. Tension increased the
expression of PTRGS2/COX2 in all groups, especially after stimulation with higher H2O2 concentra-
tion. This corresponds also to the measured PGE2 concentrations. CXCL8/IL8 was upregulated in all
groups. Cells subjected to tension alone showed a general upregulation of osteogenic differentiation-
related genes; however, pre-stimulation with OS did not induce significant changes especially towards
downregulation. MAP1LC3A/LC3, BECN1 and CASP8 were generally upregulated in cells without
OS pre-stimulation. Our results suggest that OS might have considerable impacts on cellular behavior
during OTM.

Keywords: human osteoblasts; tensile strain; oxidative stress; bone remodeling; orthodontic
tooth movement

1. Introduction

Orthodontic tooth movement (OTM) serves as a therapeutic approach to correct
misaligned and/or dispositioned teeth. OTM involves mechanical stimulation, eliciting
intricate aseptic inflammatory cellular and molecular responses that lead to tissue remodel-
ing. This results in bone resorption on the compression side and bone apposition on the
tension side [1]. In recent years, there has been a notable increase in the number of adult
orthodontic patients with preexisting periodontal disease [2]. It is well-established that
both orthodontic force and periodontal disease exert a significant influence on cellular and
tissue homeostasis [3,4]. They stimulate bone remodeling, inflammatory responses, and
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pivotal biological processes such as autophagy and apoptosis [5]. Like various inflamma-
tory diseases, periodontal disease is associated with oxidative stress (OS)—a condition
arising from an imbalance between the production and accumulation of reactive oxygen
species (ROS) in cells and tissues [6–8]. ROS, including hydrogen peroxide (H2O2), are
highly reactive oxygen metabolites produced in living organisms as a by-product of aer-
obic processes [9,10]. Under normal conditions, antioxidants neutralize ROS, preventing
tissue damage. However, during inflammation, ROS production escalates, overloading
the antioxidant defense system and leading to oxidative stress and tissue damage [6,11].
ROS can directly induce tissue damage through lipid peroxidation, DNA damage, pro-
tein damage, and enzyme oxidation [6]. Additionally, they serve as important signaling
molecules or mediators of inflammation [6], indirectly influencing the production of cy-
tokines, chemokines, and enzymes, interplaying with multiple pathways. For example,
oxidative stress can trigger the expression of IL6, CXCL8/IL8, and PTGS2/COX2, which are
involved in inflammatory responses and immune modulation [12]. As a signaling factor,
ROS are known to influence bone metabolism by affecting osteoblasts. Consequently, a
reduced osteoblastogenesis and a disruption in normal cellular signaling pathways might
occur, leading to an imbalance between bone formation and resorption [13].

Clinically, orthodontic treatment should be initiated after periodontal therapy during
remission [4,14]. This is also linked to improved redox balance and a reduction in inflam-
matory parameters, mitigating the damaging effects of oxidative stress on cellular function,
but not completely restoring it [15,16]. While increased oxidative stress is a hallmark of
periodontal disease and is proven to influence many molecular events including bone
remodeling, inflammation and cell destiny [7], its effect on OTM is not fully clarified. There-
fore, this study aims to address this gap by investigating the interplay between OS and
mechanosensitive gene expression in human alveolar osteoblasts (hOBs) under combined
conditions of oxidative and mechanical stress.

To establish an OTM-related OS in vitro model, two well-established in vitro setups
were combined. The effect of OS was simulated by exposing cells to H2O2 [17,18]. Af-
terwards, the cells were mechanically stimulated using tensile strain [19,20] (Figure 1).
Suitable experimental parameters were established based on cell viability and prolifera-
tion. Gene expression related to bone remodeling (RUNX2, P2RX7, TNFRSF11B/OPG),
inflammation (IL6, CXCL8/IL8, PTGS2/COX2), autophagy (MAP1LC3A/LC3, BECN1) and
apoptosis (CASP3, CASP8) was examined.
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2. Results
2.1. Hydrogen Peroxide (H2O2) Concentration Testing

To identify the lowest concentrations causing a cytotoxic effect without affecting cell
viability, different H2O2 concentrations ranging from 20 µM to 500 µM were tested on
primary hOBs. Unstimulated (i.e., 0 µM H2O2) but otherwise identically treated cells served
as controls.

Apoptosis induction and cell viability were assessed qualitatively by caspase-3/7
activity detection using a specific reagent (R37111; Life Technologies, Carlsbad, CA, USA)
and a live/dead cell staining kit (L3224; ThermoFisher Scientific, Carlsbad, CA, USA),
respectively (Figure 2). The higher the concentration of H2O2 applied, the fewer living cells
were observed, while caspase-3/7 positive cells became more prominent. These changes
were especially visible in groups stimulated with 200 µM and 500 µM of H2O2.
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Figure 2. Effects of different hydrogen peroxide concentrations ranging from 0 µM (i.e., control)
to 500 µM on apoptosis induction (upper row) and cell viability (lower row) on primary human
osteoblasts. Upper row: Apoptosis induction was detected using the CellEvent™ Caspase-3/7
Detection Reagent (R37111; Life Technologies, Carlsbad, CA, USA). Caspase-3/7-positive cells were
stained green (overlay of fluorescence and phase contrast). Lower row: Cell viability assessment
using live/dead cell staining. Green cells represent living cells. Dead cells are either detached and
washed away or stained with the red color. (Scale: 200 µm).

The impacts of the different H2O2 concentrations on cytotoxicity and cell viability
were quantitatively determined using a resazurin-based assay (Figure 3). The findings are
in line with the results of the apoptosis and cell viability tests (Figure 2).
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Figure 3. Percentage reduction of resazurin: (a) Cytotoxic effect of H2O2, (b) cell viability calculated as
normalized resazurin reduction relative to the control group. 50 µM and 100 µM were identified as the
lowest concentrations of H2O2 showing a cytotoxic effect; however, these did not have pronounced
effects on cell viability.
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Based on these results, H2O2 concentrations of 50 µM and 100 µM were chosen to
further investigate the effects of higher and lower OS exposure levels.

2.2. Effect of Oxidative Stress Induction Alone on Gene Expression Immediately After H2O2
Incubation and After Additional 24 h Post-Incubation

Herein, we evaluated the immediate and lasting effects of oxidative stress induction
on gene expression. hOBs were stimulated with either 50 µM or 100 µM H2O2 for 24 h. The
expressions of genes related to bone remodeling, inflammation, autophagy and apoptosis
were determined either immediately after the stimulation (“direct”) or after an additional
24 h post-incubation period in H2O2-free medium (“recovery”) (Figure 4, Table 1).
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results for genes related to autophagy (b,c, MAP1LC3A/LC3, BECN1), apoptosis (d,e, CASP3, CASP8),
inflammation (f–h, CXCL2/IL8, IL6, PTGS2/COX2), and bone remodeling (i–k, RUNX2, P2RX7,
TNFRSF11B/OPG). For each genetic locus, gene expression directly after H2O2 exposure (left panel,
“direct”) and after an additional 24 h cultivation in H2O2-free cell culture medium (right panel,
“recovery”) is depicted. Adjusted p-values based on multiple comparisons within each experimental
group are reported: *, padj. < 0.05; **, padj. < 0.01; ***, padj. < 0.001.

Table 1. Summary statistics and comparisons of the effects of 50 µM and 100 µM H2O2 on gene ex-
pression (CXCL8/IL8, IL6, PTGS2/COX2, CASP3, CASP8, MAP1LC3A/LC3, BECN1, TNFRSF11B/OPG,
and P2RX7) reported as fold change in primary hOBs immediately after H2O2 incubation (“direct”)
and 24 h post-incubation (“recovery”). p-values were obtained with the Kruskal–Wallis test (KW)
and adjusted by Bonferroni correction for multiple tests (adjusted p, padj.).

Analyte Treatment Mean SD Median Min Max K-W of Treatment

p Value Post-Hoc Test vs. Ctrl (padj.) Sig. a

Direct

CXCL8/IL8
(FC)

Ctrl 1.00 0.06 1.00 0.94 1.12 0.004 **
50 µM 0.97 0.17 0.96 0.81 1.26 1.000 n.s.
100 µM 1.41 0.16 1.38 1.26 1.69 0.018 *

IL6 (FC)
Ctrl 1.02 0.24 1.00 0.75 1.37 0.001 **

50 µM 1.49 0.36 1.45 1.01 1.96 0.249 n.s.
100 µM 2.47 0.47 2.65 1.54 2.86 0.001 **

PTGS2/COX2
(FC)

Ctrl 1.01 0.13 1.00 0.86 1.17 <0.001 ***
50 µM 2.15 0.06 2.15 2.08 2.22 0.153 n.s.
100 µM 3.39 0.43 3.23 2.99 4.08 <0.001 ***

RUNX2 (FC)
Ctrl 1.00 0.06 1.00 0.94 1.07 0.003 **

50 µM 0.64 0.14 0.60 0.50 0.83 0.015 *
100 µM 0.61 0.21 0.71 0.31 0.79 0.007 **

CASP3 (FC)
Ctrl 1.02 0.21 1.00 0.76 1.28 0.205 n.s.

50 µM 0.74 0.29 0.64 0.49 1.11 0.350 n.s.
100 µM 0.97 0.31 1.11 0.38 1.19 1.000 n.s.

CASP8 (FC)
Ctrl 1.01 0.19 1.00 0.80 1.31 0.026 *

50 µM 1.35 0.39 1.55 0.81 1.65 0.248 n.s.
100 µM 1.57 0.14 1.60 1.39 1.77 0.024 *

MAP1LC3A/LC3
(FC)

Ctrl 1.00 0.10 1.00 0.90 1.17 0.002 **
50 µM 1.20 0.05 1.20 1.13 1.28 0.144 n.s.
100 µM 1.28 0.05 1.28 1.21 1.34 0.001 **

BECN1 (FC)
Ctrl 1.00 0.10 1.00 0.90 1.19 0.001 **

50 µM 1.17 0.05 1.17 1.08 1.24 0.388 n.s.
100 µM 1.64 0.23 1.52 1.44 1.96 0.001 **

TNFRSF11B/OPG
(FC)

Ctrl 1.01 0.13 0.98 0.86 1.25 0.128 n.s.
50 µM 0.94 0.25 1.05 0.63 1.20 1.000 n.s.
100 µM 0.84 0.11 0.86 0.72 0.95 0.154 n.s.

P2RX7 (FC)
Ctrl 1.01 0.16 1.00 0.83 1.28 0.003 **

50 µM 0.56 0.16 0.60 0.32 0.73 0.024 *
100 µM 0.49 0.07 0.46 0.42 0.58 0.004 **

Recovery

CXCL8/IL8
(FC)

Ctrl 1.00 0.03 1.00 0.96 1.05 <0.001 ***
50 µM 0.83 0.06 0.83 0.73 0.94 0.154 n.s.
100 µM 1.68 0.39 1.51 1.33 2.21 0.154 n.s.
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Table 1. Cont.

Analyte Treatment Mean SD Median Min Max K-W of Treatment

p Value Post-Hoc Test vs. Ctrl (padj.) Sig. a

IL6 (FC)
Ctrl 1.00 0.05 1.00 0.92 1.07 0.142 n.s.

50 µM 0.98 0.09 0.97 0.84 1.09 1.000 n.s.
100 µM 1.07 0.09 1.07 0.98 1.21 0.665 n.s.

PTGS2/COX2
(FC)

Ctrl 1.00 0.04 1.00 0.93 1.07 <0.001 ***
50 µM 0.69 0.09 0.70 0.57 0.78 0.154 n.s.
100 µM 2.10 0.32 2.08 1.73 2.48 0.154 n.s.

RUNX2 (FC)
Ctrl 1.00 0.09 1.01 0.84 1.08 0.024 *

50 µM 0.84 0.09 0.83 0.78 1.02 0.028 *
100 µM 0.86 0.12 0.89 0.64 0.95 0.126 n.s.

CASP3 (FC)
Ctrl 1.00 0.01 1.00 0.99 1.01 0.001 **

50 µM 0.89 0.12 0.88 0.75 1.06 0.575 n.s.
100 µM 2.83 0.68 2.76 2.00 3.66 0.067 n.s.

CASP8 (FC)
Ctrl 1.00 0.01 1.00 0.98 1.01 0.005 **

50 µM 0.91 0.18 0.89 0.69 1.17 1.000 n.s.
100 µM 1.24 0.15 1.24 1.09 1.51 0.038 *

MAP1LC3A/LC3
(FC)

Ctrl 1.01 0.12 1.00 0.88 1.19 0.001 **
50 µM 0.61 0.01 0.61 0.60 0.63 0.091 n.s.
100 µM 1.17 0.05 1.17 1.11 1.24 0.388 n.s.

BECN1 (FC)
Ctrl 1.00 0.02 1.00 0.96 1.02 0.003 **

50 µM 0.87 0.19 0.86 0.66 1.12 1.000 n.s.
100 µM 2.71 0.42 2.68 2.21 3.19 0.028 *

TNFRSF11B/OPG
(FC)

Ctrl 1.00 0.02 1.00 0.97 1.03 <0.001 ***
50 µM 0.70 0.14 0.69 0.52 0.88 0.154 n.s.
100 µM 1.75 0.04 1.75 1.70 1.80 0.154 n.s.

P2RX7 (FC)
Ctrl 1.00 0.03 1.00 0.96 1.03 <0.001 ***

50 µM 0.86 0.05 0.87 0.78 0.92 0.154 n.s.
100 µM 0.57 0.03 0.57 0.52 0.62 0.154 n.s.

a Sig., significance; *, padj. < 0.05; **, padj. < 0.01; ***, padj. < 0.001; n.s., not significant.

The autophagy or apoptosis-related genes MAP1LC3A/LC3, BECN1 and CASP8
showed dose-dependent upregulation patterns immediately after H2O2 stimulation. Simi-
lar gene expression regulation patterns were observed after 24 h post-incubation concerning
the apoptosis-related gene CASP3 (padj. = 0.001) and the autophagy-related gene BECN1
(padj. = 0.028) stimulated with 100 µM H2O2 (Figure 4b–e).

In all three inflammation-related genes, CXCL8/IL8, IL6 and PTGS2/COX2, a concen-
tration-dependent upregulated expression was observed directly after H2O2 stimulation
(Figure 4f–h). After 24 h post-incubation, a recovery effect was observable. While IL6 gene
expression was downregulated to control level, pre-stimulation with 100 µM H2O2 led
to a persistent upregulation of CXCL8/IL8 and PTGS2/COX2 after 24 h post-incubation
(CXCL8/IL8—padj. < 0.001; PTGS2/COX2—padj. < 0.001).

The genes related to bone remodeling were concentration-dependently downregulated
directly after H2O2 stimulation depending on the concentration (Figure 4i–k). After 24 h
post-incubation, a recovery of RUNX2 and P2RX7 expression was observed, but still
below the corresponding controls. This contrasted with TNFRSF11B/OPG, which was
downregulated directly after H2O2 stimulation, showing partially contradicting results
24 h post-exposure; 50 µM H2O2 resulted in a more pronounced downregulation, whereas
100 µM H2O2 led to an upregulation compared to the control (mean FC: 1.75).
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2.3. Expression of Genes and Metabolites Related to Inflammation, Bone Remodeling, Apoptosis
and Autophagy in Mechanically Stimulated Cells with and Without Previous OS Stimulation

Next, we investigated the effects of the static tension on hOBs with and without
previous H2O2 stimulation focusing on the gene expression related to inflammation, bone
remodeling, apoptosis and autophagy (Figure 5a, Table 2). Based on a previously published
review [22], our initial intention was to test two different tensile strains—10% as the most
frequently used one in studies applying static tension, and 15% to simulate a more tensile
strains. However, due to almost identical gene/protein expression patterns, we decided to
present only results derived from the 15% tensile strain setup. Nevertheless, results derived
from the 10% tension setup are summarized in Supplementary Materials S1.
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Figure 5. Expressions of genes and metabolites related to inflammation and bone remodeling
in mechanically stimulated cells with and without previous H2O2 stimulation. (a) Experimental
setup: the control group (ctrl) received neither H2O2 nor tension stimulation. The tension (T10%,
T15%) group was stimulated by static tension after 24 h non-stimulation. The H2O2/tension group
was stimulated for 24 h with 50 µM or 100 µM H2O2 followed by 24 h static tension at 10% or
15% stretching. Shown here are the results from 15% tension stimulation. (b–f) The expression of
inflammation-related genes and metabolites and (g–i) genes related to bone remodeling are reported.
Shown are the adjusted p-values based on multiple comparisons between each experimental treatment
(*, padj. < 0.05; **, padj. < 0.01; ***, padj. < 0.001). Results derived from 10% tension are reported in
Supplementary Materials S1.
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Table 2. Summary statistics and comparison of the expression of genes and metabolites in mechani-
cally stimulated cells with and without previous H2O2 stimulation. Data from RT-qPCR experiments
are given as fold change, and data from ELISA (PGE2 and IL6) as “pg/100,000 cells”. p-values were
obtained with the Kruskal–Wallis test (K-W) and adjusted by Bonferroni correction for multiple tests
(adjusted p, padj.).

Analyte Treatment Mean SD Median Min Max K-W of Treatment

p Value Post-Hoc Test vs. Ctrl (padj.) Sig.a

CXCL8/IL8 (FC)

Ctrl 1.00 0.03 1.00 0.96 1.05 <0.001 ***
T15% 2.74 0.34 2.85 2.08 3.00 0.001 **

50 µM/T15% 2.37 0.90 2.36 1.19 3.38 0.010 *
100 µM/T15% 1.55 0.30 1.49 1.25 1.91 0.397 n.s.

IL6 (FC)

Ctrl 1.00 0.05 1.00 0.92 1.07 <0.001 ***
T15% 2.01 0.42 1.93 1.55 2.55 0.022 *

50 µM/T15% 1.17 0.08 1.17 1.06 1.30 0.989 n.s.
100 µM/T15% 0.45 0.06 0.42 0.40 0.58 0.784 n.s.

PTGS2/COX2 (FC)

Ctrl 1.00 0.04 1.00 0.93 1.07 <0.001 ***
T15% 2.03 0.34 2.13 1.56 2.35 0.024 *

50 µM/T15% 1.49 0.08 1.48 1.38 1.59 0.754 n.s.
100 µM/T15% 3.06 0.48 2.83 2.66 3.69 <0.001 ***

RUNX2 (FC)

Ctrl 1.00 0.09 1.01 0.84 1.08 <0.001 ***
T15% 1.09 0.12 1.07 0.95 1.25 1.000 n.s.

50 µM/T15% 0.52 0.10 0.50 0.42 0.71 0.042 *
100 µM/T15% 0.49 0.07 0.51 0.40 0.56 0.042 *

CASP3 (FC)

Ctrl 1.00 0.01 1.00 0.99 1.01 <0.001 ***
T15% 2.86 0.09 2.89 2.69 2.93 <0.001 ***

50 µM/T15% 1.63 0.34 1.69 1.21 2.06 0.326 n.s.
100 µM/T15% 1.89 0.49 1.96 1.24 2.57 0.075 n.s.

CASP8 (FC)

Ctrl 1.00 0.01 1.00 0.98 1.01 0.008 **
T15% 1.64 0.33 1.68 1.19 2.00 0.009 **

50 µM/T15% 1.25 0.36 1.32 0.74 1.78 1.000 n.s.
100 µM/T15% 1.45 0.17 1.42 1.27 1.72 0.086 n.s.

MAP1LC3A/LC3 (FC)

Ctrl 1.01 0.12 1.00 0.88 1.19 <0.001 ***
T15% 2.14 0.27 2.18 1.80 2.43 <0.001 ***

50 µM/T15% 1.77 0.43 1.63 1.37 2.45 0.033 *
100 µM/T15% 1.47 0.22 1.45 1.14 1.80 0.345 n.s.

BECN1 (FC)

Ctrl 1.00 0.02 1.00 0.96 1.02 <0.001 ***
T15% 2.98 0.14 2.97 2.80 3.15 <0.001 ***

50 µM/T15% 2.65 0.21 2.64 2.34 2.98 0.037 *
100 µM/T15% 2.44 0.24 2.44 1.99 2.69 0.396 n.s.

TNFRSF11B/OPG (FC)

Ctrl 1.00 0.02 1.00 0.97 1.03 <0.001 ***
T15% 1.81 0.28 1.77 1.49 2.25 <0.001 ***

50 µM/T15% 1.25 0.12 1.24 1.06 1.39 0.037 *
100 µM/T15% 0.84 0.16 0.83 0.61 1.11 0.396 n.s.

P2RX7 (FC)

Ctrl 1.00 0.03 1.00 0.96 1.03 <0.001 ***
T15% 1.45 0.12 1.44 1.31 1.66 0.119 n.s.

50 µM/T15% 1.11 0.20 1.05 0.90 1.35 1.000 n.s.
100 µM/T15% 0.40 0.06 0.37 0.34 0.51 0.272 n.s.

PGE2 (pg/100,000 cells)

Ctrl 91.91 6.85 93.31 82.88 100.73 <0.001 ***
T15% 139.88 4.20 140.10 135.10 145.15 0.850 n.s.

50 µM/T15% 169.36 10.80 166.20 157.58 186.22 0.012 *
100 µM/T15% 185.15 7.16 184.72 177.37 193.31 <0.001 ***

IL6 (pg/100,000 cells)

Ctrl 230.68 16.07 236.51 205.93 245.50 <0.001 ***
T15% 281.39 27.81 281.23 253.51 313.45 0.086 n.s.

50 µM/T15% 301.51 19.78 304.30 270.36 329.25 0.009 **
100 µM/T15% 226.57 13.24 225.64 207.95 248.14 1.000 n.s.

a Sig., significance; *, padj. < 0.05; **, padj. < 0.01; ***, padj. < 0.001; n.s., not significant.

2.3.1. Inflammation

After tension force application, IL6 expression was significantly more strongly up-
regulated in cells without prior OS induction than in the groups with OS preinduction,
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especially in the experimental group stimulated with 100 µM H2O2 (padj. < 0.001). This
was also confirmed by ELISA (padj. = 0.042). Tension force also increased the expression
of the inflammatory gene PTGS2/COX2 in all groups, especially in the group previously
stimulated with 100 µM H2O2 concentration (padj. < 0.001). These results correspond
to the measured PGE2 concentrations in supernatants reflecting PTGS2/COX2 activity.
CXCL8/IL8 was also upregulated in all groups, with the highest upregulation in cells
without previous OS induction (Figure 5b–f).

2.3.2. Bone Remodeling

The general stimulatory effect of tension force on genes related to bone formation was
observed in groups of cells without H2O2 pre-stimulation (Figure 5g–i). This effect was
either less pronounced or even caused downregulation in groups previously subjected to
H2O2 stimulation compared to control.

2.3.3. Apoptosis and Autophagy

Apoptosis- and autophagy-related genes were upregulated in all experimental groups
compared to the control; however, this was considerably stronger in cells without previous
H2O2 stimulation (Figure 6).
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2.3.4. Effect of Static Tension on Viability and Proliferation

To estimate the cell number, a standard curve was established based on resazurin re-
duction (Figure 7). Generally, tensile strain seemed to have a positive effect on proliferation;
however, the groups previously exposed to H2O2 showed a slower proliferation tendency.
This is also in line with live/dead staining results (Figure 8).
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Figure 7. Establishment of a standard curve to assess cell growth of the hOBs used in the experiments.
The resazurin standard curve was prepared as described in materials and methods. hOBs of the
5th passage were seeded in triplicate (70,000; 100,000; 200,000; 300,000; 400,000; 500,000) or duplicate
(800,000 and 900,000 cells per well). Exponential regression was used to calculate the standard curve
(red line) (Microsoft Excel). The cellular growth of hOBs in the different experimental setups (legend:
lower right) is shown with violet diamonds (♦) on the fitted curve.
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Figure 8. Qualitative assessment of cell viability of cells belonging to the different experimental
groups using live/dead cell staining. Independent of the experimental group, cells proved to be
viable (green staining). Dead cells were rarely observed (red staining). (Scale bar: 200 µm). (Data
from experiments with 10% tension are provided in Supplementary Materials S1.

3. Discussion

With the rising number of adult patients seeking orthodontic treatment in recent years,
orthodontists are more frequently encountering individuals with periodontal disease [2].
The dysregulation of redox homeostasis under pathological conditions characterized by
chronic inflammation, such as periodontal disease, results in the excessive generation of
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reactive oxygen species (ROS), leading to oxidative stress (OS). Although it is known that
OS has an important influence on processes that are also affected by mechanical stimulation,
such as inflammation, bone metabolism, autophagy and apoptosis, the role of OS in relation
to orthodontic tooth movement (OTM) is still largely unknown.

Therefore, this in vitro study aimed to elucidate this topic focusing on cells centrally
involved in OTM, human osteoblasts derived from the alveolar bone, and static tension
force, as one of the most dominant forces during OTM. For the simulation of oxidative
stress, we applied H2O2 as an ROS stimulus.

3.1. Experimental Parameters and Viability and Proliferation Assessment in Relation to
OS Stimulation

There are several ways to experimentally study OS in cell cultures, where OS is in-
duced by exposure to various chemicals that promote ROS generation, such as menadione,
paraquat, and potassium bromate, or by exposure to ROS directly, such as H2O2, superoxide
anion, hydroxyl radical, and peroxynitrite [23]. Menadione primarily generates superoxide
and has been widely used to study ROS-related cell damage and proliferation [23,24].
Potassium bromate induces oxidative stress through distinct pathways, while other oxi-
dants, such as hydroxyl radicals and peroxynitrite, have been employed to study specific
cellular effects, including apoptosis and mitochondrial dysfunction [23,25,26]. H2O2 is
both an ROS and an inducer of further ROS formation, playing a dual role in oxidative
stress and cellular signaling. Its use as a stressor is well-established across various cell
types, including osteoblasts [27] and periodontal ligament cells [28–31]. The widespread
application of H2O2 in experimental setups and its reliability as a model for simulating
oxidative stress were key factors in our decision to use it in this study.

Although H2O2 is widely used in in vitro experiments, its cytotoxicity varies between
different cell cultures and thus has to be individually defined for different experimental
cell models [32]. Therefore, in all experimental procedures applied in this study, special
attention was paid to monitoring cell viability and proliferation. Herein, the experimental
parameters were chosen to identify the lowest concentrations of H2O2 showing a relevant
cytotoxic effect, but without pronounced negative effects on cell viability. H2O2 is a non-
radical ROS, lacking an unpaired electron, and thus exhibits moderate reactivity [33]. The
ability of H2O2 to easily penetrate membranes, to migrate significant distances from its
production site, and to maintain high stability, enables it to exert its effects at various cellular
locations [34]. Physiologically, H2O2 demonstrates dual roles in cells, both as a toxic agent
and a signaling molecule critical for cellular defense and regulation [34,35]. This dual role is
concentration-dependent and exhibits a biphasic effect. At low concentrations, H2O2 acts as
a signaling molecule that supports cellular proliferation, differentiation, and survival [35].
It achieves this by modulating intracellular redox status, upregulating glutathione, and
activating DNA-binding proteins like those targeting the antioxidant response element.
These actions contribute to maintaining cellular homeostasis and enhancing adaptive
responses to mild oxidative stress [11,35,36]. In contrast, at high concentrations, H2O2 is
known to have negative effects on cell proliferation, and inflict severe cellular damage
through oxidative modifications of proteins and DNA, leading to cell death [33,37].

Clinically, this dual role could have significant implications. Under inflammatory
conditions or during aging, where dysregulated ROS levels exacerbate tissue damage,
understanding and harnessing the dose-dependent effects of H2O2 could guide the de-
velopment of antioxidant-based treatments to restore redox balance without disrupting
essential signaling pathways.

OTM induces differential responses in osteoblast activity, with the stimulation of
tissue formation expected on the tension side [38]. According to a recent systematic
review [39], tension signals can increase the proliferation in hOBs. In line with these
findings, we observed stronger proliferation in cells subjected to tension. However, this
was less pronounced if the cells were previously exposed to higher H2O2 concentrations,
suggesting a potential inhibiting influence of OS on cell proliferation during mechanical
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stimulation with tensile strain. These results indicate that oxidative stress may affect
orthodontic treatment outcomes in periodontal patients, as an impaired proliferation of
osteoblasts could limit the desired response to mechanical forces.

3.2. Gene and Protein Expression Related to Inflammation

Herein, we investigate the expression of three different regulatory genes known to
have a critical role in the regulation of inflammation: IL6, CXCL8/IL8, and PTGS2/COX2.
The latter is an enzyme that converts arachidonic acid into prostaglandins, including PGE2.
It has been shown that both PGE2 and PTGS2/COX2 regulate inflammation-associated
processes by modulating the secretion of cytokines. PGE2 can enhance the synthesis
of IL6, a pro-inflammatory cytokine, which, if not properly controlled, may result in
chronic inflammation and the progression of many inflammatory diseases, including
various oral entities, i.e., periodontitis [40,41]. Similarly, PGE2 can also promote the
synthesis of CXCL8/IL8, which is crucial for attracting neutrophils to sites of infection or
inflammation [42]. These cytokines are also essential for coordinating the resorption and
formation of bone during OTM, ensuring that the teeth can be moved effectively [43].

It is generally accepted that H2O2 at micromolar levels can function as a second mes-
senger, initiating inflammatory responses [44]. Gene expression in hOBs cell culture directly
after H2O2 incubation showed dose-dependent increases in the proinflammatory gene ex-
pressions of all three genes. Although less expressed, this proinflammatory effect was still
observable in cells treated with higher H2O2 concentrations after 24 h post-incubation. On
the contrary, in cells exposed to lower H2O2 concentrations, proinflammatory markers
were found to be non- or downregulated after 24 h post-incubation. These results suggest a
diminishing, but still present, dose-dependent altering effect of OS on cellular function in
hOBs. Although these in vitro findings presented here are in line with clinical observations
linking oxidative stress marker levels to the severity of periodontal inflammation [15,45–47],
they should not be overinterpreted.

Despite being related to anabolic processes during OTM, like OS, tensile strain is also
known to induce proinflammatory responses within the surrounding tissues [22]. This
is confirmed by many in vitro studies, which were reviewed recently with special focus
on human primary PDL cells [22]. However, information derived from studies using
hOBs is limited [48,49], and to our knowledge, this is the first study investigating this
topic in relation to OS stimulation. Based on our results, the mechanical stimulation of
cells previously exposed to oxidative stress (OS) appeared to have a different effect on
proinflammatory gene expression. Specifically, for genes like IL6 and CXCL8/IL8, tension
seems to induce less proinflammatory gene expression in cells previously exposed to OS
compared to cells exposed to tension alone. IL6 and CXCL8/IL8 are central cytokines
in the inflammatory response, and their dysregulation has been strongly implicated in
the pathogenesis of periodontal diseases such as gingivitis and periodontitis [50,51]. In
periodontitis, the upregulation of IL6 and CXCL8/IL8 contributes to tissue destruction and
bone resorption, processes that are also regulated during orthodontic tooth movement
(OTM) [51–55]. This underscores the importance of understanding how mechanical forces
interact with oxidative stress in modulating these cytokines, especially in periodontal
tissues, where both factors are at play during inflammation and tissue remodeling [54,56].
Also, contrary to these findings, in the case of PTRGS2/COX2 gene expression and the
related PGE2 secretion, tensile strain induced significantly higher gene expression in cells
pre-exposed to higher dose of H2O2. Nevertheless, the current results indicate that the
response towards tensile strains in cells pre-stimulated with H2O2 is considerably different
to that of unstimulated cells.

3.3. Gene Expression Related to Bone Remodeling

Bone homeostasis involves bone formation and bone resorption, which are processes
that maintain skeletal health. Osteoblasts are crucial for bone formation, and the expression
of specific genes like RUNX2, P2RX7 and TNFRSF11B/OPG plays a significant role in
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this process. The activation of RUNX2 and P2RX7 is known to enhance the expression of
osteoblast markers and promote mineralization, while the TNFRSF11B/OPG protein acts as
a decoy receptor for RANKL, inhibiting its osteoclast differentiation-inducing effect [57,58].

Oxidative stress is known to cause dysfunctional bone homeostasis, including osteoblast-
induced osteogenesis and thus favoring bone resorption [59,60]. According to our results,
OS generally had a negative effect on the expression of genes related to bone remodeling
with a recovery tendency after 24 h post-incubation.

On the contrary, tensile strain is known to promote bone formation, which was also
found herein. However, this stimulatory effect was not observable in groups of cells
previously subjected to OS, suggesting and confirming a negative influence of OS on bone
remodeling [22,61].

3.4. Apoptosis and Autophagy Related Gene Expression

Herein, we investigated the expressions of genes related to autophagy (MAP1LC3A/LC3
and BECN1) and apoptosis (CASP3 and CASP8). Growing evidence suggests that ROS
can act as signaling molecules involved in cellular processes that regulate cell destiny,
such as autophagy and apoptosis [60,62]. ROS activate autophagy, which helps cellular
adaptation and reduces oxidative damage by breaking down and recycling damaged
macromolecules and dysfunctional organelles [37,63]. In the same manner, it is also proven
to influence apoptosis, maintaining tissue homeostasis by eliminating damaged cells [37].
Our results from the “direct”/“recovery” groups comparison support these findings by
showing the upregulation of genes related to autophagy and apoptosis. Nevertheless, to
draw more conclusions on how exactly OS triggers the regulation of signaling pathways
that culminate in the regulation of autophagy and apoptosis, especially in relation to OTM,
more studies are needed.

3.5. Study Limitations

To our knowledge, this is the first study examining the effects of oxidative stress on
mechanically stimulated hOBs by combining established experimental setups for OS and
mechanical tension application. However, it should be noted that OS and mechanical
stimulation are much more complex, and this study is an in vitro simplification of more
intricate processes. Our in vitro setup allowed us to break down complex in vivo situations
by focusing on a single cell type (hOBs), one type of force (static tension), and one type of
ROS, namely, H2O2. Nevertheless, this simplification did not consider confounding factors
derived from the external environment, including but not limited to interactions with
other cell types, the extracellular matrix, and the influence of various signaling molecules,
including other reactive oxygen species/molecules and antioxidants [64,65]. Additionally,
biological diversity should be considered, including cells from multiple donors of different
sex and age groups. To address these complexities, more studies are needed. Nonetheless,
this study serves as a valuable milestone for future research in this field.

3.6. Clinical Relevance

For periodontal patients, a distinct approach is imperative due to altered molecular
responses. Therefore, studying and understanding molecular events in this population
becomes crucial for comprehending therapeutic responses at the cellular and tissue levels.
The results of this project can offer a good foundation for future clinical projects, espe-
cially in terms of novel methods in periodontal disease treatment combining orthodontic
mechanical stimulation as a regenerative stimulus.

4. Materials and Methods
4.1. Primary Cell Culture

This study was conducted in accordance with the Declaration of Helsinki. Approval
for the collection and use of human alveolar bone-derived osteoblasts (hOBs) was ob-
tained from the ethics committee of the Ludwig-Maximilians-Universität München (project
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number 21-0931). Cells were obtained anonymously from a male donor undergoing or-
thognathic surgery exclusively for medical indications according to commonly accepted
therapeutic standards. Written informed consent was obtained prior to cell sampling. The
cells were isolated according to established procedures [66,67] and cultivated in low-glucose
DMEM (21885025; Gibco/Life Technologies, Carlsbad, CA, USA) supplemented with 10%
FBS (F7524; Sigma-Aldrich, St. Louis, MO, USA), 1 × MEM vitamins (M6895; Biochrom,
Berlin, Germany) and 1% of antibiotic/antimycotic (15240-062; Life Technologies, Carlsbad,
CA, USA). Cells were grown in a humidified atmosphere with 5% CO2 at 37 ◦C. Cell pas-
saging was performed in regular intervals of 3 to 4 days using 0.05% trypsin-EDTA solution
(59417C; Sigma-Aldrich, St. Louis, MO, USA). In all experiments cells from passages 5 or 6
have been seeded at a density of 2 × 105 cells/well on 6-well collagen-I coated BioFlex®

culture plates (Flexcell Intl. Corp., Hillsborough, NC, USA).

4.2. Selection of H2O2 Concentration

To induce an oxidative stress-like environment, H2O2 (9681.4; Carl Roth GmbH +
Co. KG, Karlsruhe, Germany) was added to the cell culture medium [17,18,28]. A dose–
response experiment was carried out to determine the optimal H2O2 concentration, defined
as the highest H2O2 concentration that can be applied in the experiments without affecting
cell viability and proliferation [17,18,28]. For this purpose, concentrations ranging from
20 to 500 µM H2O2 were tested in hOB cell culture. Cells were seeded as described above
and incubated over night to support equilibration. On the next day, the cell culture media
was replaced by one containing different concentrations of H2O2 (20 µM, 50 µM, 100 µM,
200 µM, 500 µM) and cells were stimulated for an additional 24 h in the CO2 incubator.
Wells with cells containing normal cell culture medium but otherwise treated identically
served as controls.

The cytotoxic effect of H2O2 on cell viability was assessed as below. Addition-
ally, cell viability was visually assessed using a live/dead viability/cytotoxicity assay
as described below.

Cell cytotoxicity/viability assay. Cell culture supernatants were replaced with 2 mL/well
of a resazurin-stock solution (alamarBlue™; Bio-Rad AbD Serotec GmbH, Puchheim, Ger-
many) according to a previously published protocol [68]. After 2 h of incubation, cell culture
supernatants and medium controls were collected and centrifuged, and the resazurin fluo-
rescence of collected supernatants was determined using a fluorescence microplate reader
(Varioscan; Thermo Electron Corporation, Vantaa, Finland) (560 nm excitation, 590 nm
emission). For each measurement, “percentage reduction of resazurin” was calculated ac-
cording to the manufacturer’s instructions [68]. Cell viability was calculated as normalized
resazurin reduction relative to the control group.

Live/dead and apoptosis staining assays. The viability of hOBs incubated with the
different H2O2 concentrations was assessed using a live/dead cell staining kit (L3224;
ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer’s instructions as pre-
viously published [20]. For apoptosis detection, one membrane of each experiment group
was stained using the CellEvent™ Caspase-3/7 Green ReadyProbes® reagent (R37111; Life
Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. After
30 min of incubation at room temperature in the dark, fluorescence microscopy was per-
formed for all membranes using an EVOSfl fluorescence microscope (Invitrogen, Carlsbad,
CA, USA) with 10× and 20× objectives.

4.3. Effect of Oxidative Stress Induction on Gene Expression in “Direct” and “Recovery” Setups

To investigate the effects of H2O2 treatment directly after 24 h of stimulation (“direct”
group) and after additional 24 h post-incubation (“recovery” group), cells were seeded
on collagen-I coated BioFlex® plates in two identical setups in triplicates and incubated
overnight as described above (Figure 4a). On the next day, cells were treated with cell
culture medium containing 0 µM (i.e., control), 50 µM or 100 µM H2O2 and incubated in
the CO2 incubator as described above. After 24 h, the cell lysates of the “direct” group
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were collected from each well using 750 µL RNA lysis buffer (R0160-1-50; Zymo, Irvine,
CA, USA) according to the manufacturer’s instructions. Cell lysates were stored at −80 ◦C
for RT-qPCR analysis. For the “recovery” group, fresh normal cell culture medium was
added to all wells. After 24 h post-incubation, cell lysates were prepared as described and
stored for RT-qPCR analysis.

4.4. Tensile Strain Application During the H2O2 “Recovery” Phase

To investigate the effects of H2O2 and tension force, for each experimental condi-
tion combination (control, 10%/15% tension, 50 µM/100 µM H2O2 + 10%/15% tension)
two identical setups were used and processed in parallel: one set to assess cell proliferation
and cell viability, the other one for gene expression measurement and ELISAs.

4.4.1. Tensile Strain Application

After overnight incubation, cells were stimulated with or without 50/100 µM H2O2
and incubated for 24 h. Afterwards, the culture medium was removed, and wells were
carefully washed twice with PBS. Fresh cell culture medium was then added as described
previously [20]. The static tensile force application of 10% or 15% was conducted for
an additional 24 h using a previously published in vitro tension model [20]. Controls
were defined as wells without stretching and H2O2. For each experimental group, three
biological replicates were allocated.

4.4.2. Cell Proliferation and Cell Viability

After completion of the tensile force application, cell growth was assessed in triplicate
using resazurin reduction in all experimental samples and their corresponding controls
following the disassembly of tension setup as previously described with a shortened incu-
bation time of 2 h [20,68]. For each measurement, the “percentage reduction of resazurin”
was calculated.

In parallel with the tensile force application experiments, a resazurin standard curve was
prepared as described previously to estimate cell proliferation during this experiment [68].
Briefly, hOBs from the 5th passage were diluted and seeded in triplicate (70,000/100,000/
200,000/300,000/400,000/500,000 cells per well), in duplicate (800,000 cells per well) or in
a single replication (900,000 cells per well). The cells were allowed to adhere overnight.
The resazurin test was performed as described above [68]. For each measurement, the
“percentage reduction of resazurin” was calculated. A standard curve (cell number vs. per-
centage reduction of resazurin) was established utilizing exponential regression (Microsoft
Excel for Windows 365 MSO Version 2404, Microsoft Corporation, Redmond, WA, USA)
(Figure 7), and the cell number was calculated for each well. The cell viability of hOBs from
all experimental groups was then qualitatively assessed using a live/dead cell staining kit
as described above.

4.4.3. Sample Preparation

After completion of the experiment, the respective setup was disassembled, and cell
culture supernatants were collected from the setup. Next, the adherent cells were washed
twice with sterile PBS, and cell lysates were prepared as described in Section 4.3. Mean-
while, ELISA-specific aliquots were prepared from cell culture supernatants as previously
published [20].

4.5. Gene Expression Analysis

The analysis of PTGS2/COX2, IL6, CXCL8/IL8, RUNX2, CASP3, MAP1LC3A/LC3,
BECN1, TNFRSF11B/OPG and P2RX7 gene expression following H2O2 stimulation and/or
tensile strain application was carried out for all experimental groups according to previously
described protocols [68]. In the following, a short summary of the sample preparation and
quantitative RT-PCR process is given. A checklist based on the “Minimum Information for
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Publication of Quantitative Real-Time PCR Experiment” (MIQE) guidelines [69] is provided
in Supplementary Materials S2.

Total RNA preparation and cDNA synthesis: RNA isolation and cDNA synthesis were
performed as described previously [20,68] using the QuickRNA™ MicroPrep Kit (R1051;
Zymo, Irvine, CA, USA) and SuperScript™ IV First-Strand Synthesis System (18091050,
Thermo Fisher Scientific, Waltham, MA, USA), respectively.

PCR primer selection: Generally, primer sequences were selected from public sources
for both genes of interest and potential reference genes (Supplementary Materials S2). All
primer pairs used were tested in silico according to the MIQE guidelines [70] as previously
published [68] (Supplementary Materials S2). Unmodified primers were synthesized by TIB
Molbiol Syntheselabor GmbH (Berlin, Germany). Optimal annealing temperatures were de-
termined with gradient PCR (TProfessional Gradient; Biometra, Göttingen, Germany) using
the qPCR cycling program as specified in the MIQE checklist (Supplementary Materials S2).
Primer specificity was confirmed by agarose gel electrophoresis. Primer efficiencies were
evaluated using standard curves prepared from serial dilutions of cDNA, as specified in
Supplementary Materials S2 and quantified in the LightCycler® 480 (Roche Molecular Diag-
nostics, Basel, Switzerland) using the primer pairs detailed in Supplementary Materials S2.

Reference gene selection: A set of reference genes (EEF1A1, GAPDH, POLR2A, PPIB,
RNA18SN5, RPL0, RPL22 and YWHAZ) was selected from public sources [19,71]. The
evaluation of these reference genes was carried out using cDNA sampled from control,
tension application (15%), H2O2 stimulation for 24 h followed by 24 h recovery (50 µM
and 100 µM H2O2), and H2O2 stimulation for 24 h followed by 24 h tension applica-
tion (15%/50 µM H2O2, and 15%/100 µM H2O2). RT-qPCR was performed as described
below using gene-specific primers (Supplementary Materials S2). The raw Cq values
(Supplementary Materials S3) were analyzed using RefFinder [72,73]. This web-based tool
integrates four different algorithms (BestKeeper [74], NormFinder [75], geNorm [76], and
comparative ∆Ct method [77]) to compare and rank candidate reference genes. Based on
the rankings and the two most stable genes (PPIB, EEF1A1) were used as reference genes in
RT-qPCR (Figure 9).

Quantitative PCR was carried out using the LightCycler® 480 SYBR Green I Master
kit (04887352001; Roche Diagnostics GmbH, Mannheim, Germany) as per the manufac-
turer’s protocol, with 5 µL of cDNA (1:10 prediluted) in each PCR reaction. Further
details regarding the RT-qPCR reaction conditions are outlined in the MIQE checklist
(Supplementary Materials S2). The PCR primer specification is summarized in Table 3.

Table 3. Specification of the PCR primers used for gene quantification.

Gene GenBank Accession
Number

Primer Sequence
(f: 5′-Forward Primer-3′;
r: 5′-Reverse Primer-3′)

Annealing Temp.
(◦C)

Amplicon Size
(bp) Reference

PTGS2/COX2 NM_000963.4 f: AAGCCTTCTCTAACCTCTCC
r: GCCCTCGCTTATGATCTGTC 58 234 [68,78]

IL6 NM_000600.5 f: TGGCAGAAAACAACCTGAACC
r: TGGCTTGTTCCTCACTACTCTC 58 168 [68,78]

CXCL8/IL8 NM_000584.4 f: CAGAGACAGCAGAGCACACAA
r: TTAGCACTCCTTGGCAAAAC 55 170 [79]

RUNX2 NM_001015051.4 f: GCGCATTCCTCATCCCAGTA
r: GGCTCAGGTAGGAGGGGTAA 58 176 [67,68]

BECN1 NM_003766.5 f: AGGTTGAGAAAGGCGAGACA
r: AATTGTGAGGACACCCAAGC 58 196 [80]

MAP1LC3A/LC3 NM_032514.4 f: CGTCCTGGACAAGACCAAGT
r: TCCTCGTCTTTCTCCTGCTC 58 183 [80]

CASP3 NM_004346.4 f: TGGAGGCCGACTTCTTGTAT
r: ACTGTTTCAGCATGGCACAA 58 111 [81]
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Table 3. Cont.

Gene GenBank Accession
Number

Primer Sequence
(f: 5′-Forward Primer-3′;
r: 5′-Reverse Primer-3′)

Annealing Temp.
(◦C)

Amplicon Size
(bp) Reference

CASP8 NM_001228.5 f: GGAGGAGTTGTGTGGGGTAA
r: CCTGCATCCAAGTGTGTTCC 58 207 [82]

TNFRSF11B/OPG NM_002546.4 f: TCAAGCAGGAGTGCAATCG
r: AGAATGCCTCCTCACACAGG 64 342 [83]

P2RX7 NM_002562.6 f: AGTGCGAGTCCATTGTGGAG
r: CATCGCAGGTCTTGGGACTT 58 143 [67]

EEF1A1 NM_001402.6 f: CCTGCCTCTCCAGGATGTCTAC
r: GGAGCAAAGGTGACCACCATAC 61 105 [19,20]

PPIB NM_000942.5 f: TTCCATCGTGTAATCAAGGACTTC
r: GCTCACCGTAGATGCTCTTTC 55 88 [19,20]
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higher gene stability (Supplementary Materials S3).

Gene expression calculation: The expression level of target genes was quantified apply-
ing the 2−∆∆Cq method [76,84] using the average (geometric mean) of the selected reference
genes (PPIB and EEF1A1). For each tension/H2O2 concentration combination, six RT-
qPCR reactions were analyzed, representing three biological replicates with two technical
replicates each (n = 3, n = 6).
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4.6. Enzyme-Linked Immunosorbent Assay

Cell culture supernatants from all wells were collected for ELISA as described above.
IL6 and PGE2 concentrations were determined using specific ELISA systems; for IL6, the
DuoSet human IL6 ELISA kit (DY206-05; R&D Systems, Minneapolis, MN, USA) was
used, whereas PGE2 was determined using the “PGE2 High Sensitivity ELISA kit” (ADI-
931-001; Enzo Life Sciences AG, Lausen, CH). All measurements were conducted using a
microplate reader (Varioscan, Thermo Electron Corporation, Vantaa, Finland). For each
marker molecule/experimental condition combination, three biological replicates were
measured twice. The measurements were reported as “pg per 100,000 cells” using the
well-specific cell numbers determined above.

4.7. Statistics

Descriptive statistics of the gene expression and ELISA results are reported as mean
and standard deviation (SD), median and minimum/maximum. All calculations were
based on three biological replicates with two technical replicates for each gene/experimental
condition combination. For each gene locus and marker molecule, differences between the
different tensile strain magnitudes and durations were evaluated using the Kruskal–Wallis
test followed by multiple comparisons with Bonferroni correction applied (padj.). All statis-
tical procedures were carried out using IBM SPSS Statistics 29 (IBM Corp., Armonk, NY,
USA) and were two-tailed considering padj values < 0.05 as significant.

5. Conclusions

Our results suggest that OS might have a significant impact on OTM through the
regulation of bone remodeling-, inflammation-, autophagy-, and apoptosis-related genes.
Additionally, this study highlights the necessity of considering the complexity of OS and
mechanical stimulation in a more comprehensive manner and environment, accounting
for interactions with various cell types, extracellular matrix components, and a range
of other signaling molecules, normally present in in vivo situation. Despite its in vitro
limitations and the simplified nature of the model, this work provides a valuable milestone
for improving our understanding of these complex processes and guiding further clinical
studies in the field. Understanding the interplay between OS and mechanical stimulation
in these patients is essential for improving clinical outcomes and minimizing risks such as
delayed healing, compromised bone remodeling, and exacerbated inflammatory responses.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms252413525/s1, Supplement 1: Influence of tension during recovery
(Table S1 and Graphics) and Live/Dead Cell Staining (Images), Supplement 2: MIQE Reporting
(Table S2.1: MIQE Checklist for the RT-qPCR Workflow, Table S2.2: In Silico Analysis of the RT-qPCR
Primer, Table S2.3: Primer Validation by RT-qPCR), References [19,20,66–68,71,78–83] are cited here,
Supplement 3: RefFinder Results (1: Raw data, Cq Values, 2: RefFinder Summary, 2.1.: Delta CT, 2.2.:
BestKeeper, 2.3.: normFinder, 2.4.: Genorm), References [72–77] are cited here.
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BECN1 Beclin 1
CASP3 Caspase 3
CASP8 Caspase 8
ELISA Enzyme-linked immunosorbent assay
FC Fold change
H2O2 Hydrogen peroxide
hOBs Human osteoblasts
IL6 Interleukin 6
CXCL8/IL8 C-X-C Motif Chemokine Ligand 8 (aka: IL8, interleukin-8)
MAP1LC3A/LC3 Microtubule Associated Protein 1 Light Chain 3 Alpha (aka: LC3)
MIQE Minimum Information for Publication of Quantitative Real-Time

PCR Experiment
TNFRSF11B/OPG TNF Receptor Superfamily Member 11b (aka: OPG, osteoprotegerin)
OS Oxidative stress
OTM Orthodontic tooth movement
P2RX7 Purinergic Receptor P2X 7
padj. Adjusted p-value
PGE2 Prostaglandin E2
PTGS2/COX2 Prostaglandin-Endoperoxide Synthase 2 (aka: COX2, cyclooxygenase 2)
ROS Reactive oxygen species
RT-qPCR Reverse-transcriptase quantitative polymerase chain reaction
RUNX2 RUNX Family Transcription Factor 2
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