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Abstract: Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is
predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is
complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic
inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenviron-
ment that promotes tumour progression and metastasis. In this setting, macrophages make up a
major immune component of the HCC tumour microenvironment, and in this review, we focus on
their contribution to HCC development and progression. Tumour-associated macrophages (TAMs)
are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can
be induced by factors that are found within the tumour microenvironment, such as growth factors,
cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence
suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including
the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour
cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the
underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-
specific immune responses. We discuss the potential for targeting TAMs therapeutically either by
altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking
advantage of their infiltrative properties from the circulation into tumour tissue.
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1. Introduction

Primary liver cancer, also known as hepatocellular carcinoma (HCC), is a major health
burden globally, and is currently the third leading cause of cancer deaths [1] with the
incidence predicted to rise to 1 million people/year by 2025 [2]. HCC often presents at an
advanced stage due to the fact that both cirrhosis and HCC development can be asymp-
tomatic during early stages and there are significant limitations with current screening
approaches. Curative treatments, including liver transplantation, are only an option in
early-stage disease and transplantation specifically is only undertaken in a small minority
(~10%) of patients [3]. Surgical resection is also a highly effective treatment option [4];
however, a large proportion (~90%) of HCC cases develop on a background of chronic
inflammatory liver disease in the form of cirrhosis [5], such as viral hepatitis, alcohol-related
liver disease (ArLD), or metabolic dysfunction-associated steatohepatitis (MASH), thus
significantly limiting patient eligibility. For patients with unresectable HCC tumours, lo-
coregional options, such as ablation, transarterial chemoembolisation (TACE), and selective
internal radiation therapy (SIRT), can offer some level of disease control via downstaging
tumours or bridging to liver transplantation, but levels of recurrence and metastasis remain
high [6,7]. In addition, the existing targeted cancer drugs, such as sorafenib and Lenvatinib,
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only offer a life extension that is measured in months [8,9] and can be associated with a
range of debilitating side effects [10]. Unsurprisingly, the overall 5-year survival rates in
HCC patients are extremely poor with a relative 5-year survival of 10–18% [1,11], and there
is an urgent need for novel approaches to prevent and treat HCC.

In the last few years, immunotherapy has been a major breakthrough and has now been
accepted as the standard of care for patients with advanced HCC [12], but a large majority
of patients still fail to respond to this type of therapy [13]. Currently, most immunotherapies
target T-cell function (e.g., immune checkpoint inhibitors) and there is gathering evidence
that treatment failure is driven by the tumour microenvironment (TME) and, more specifi-
cally, immunosuppressive tumour-associated immune cells. Anti-inflammatory immune
cell subsets are known to directly block the action of effector T cells and promote tumour
growth [13] and are thus proving a major obstacle to effective therapies for the treatment
of HCC. Overcoming these immunosuppressive populations within the TME represents a
major unmet need in cancer medicine today and novel approaches are required to address
this. One of the most abundant immunosuppressive populations present in the HCC TME
are TAMs. Here, we discuss the role of TAMs in HCC pathology and explore the potential
of targeting and utilising macrophages in the therapeutic treatment of HCC tumours.

2. TAMs in the Pathology of HCC
2.1. Macrophage Phenotype and Plasticity

Macrophages have traditionally been classified into two distinct phenotypes: proin-
flammatory and classically activated “M1” macrophages and anti-inflammatory and alter-
natively activated “M2” macrophages [14,15]. Polarisation into these phenotypes is known
to be triggered by stimuli from the microenvironment, such as cytokines and growth factors,
which induce the transcription of genes that determine the phenotype and function of
the macrophage [16]. Unsurprisingly, M1 macrophages are generally induced by proin-
flammatory stimuli, such as IFN-γ, TNF-α, GM-CSF, and lipopolysaccharide (LPS) and
produce immunostimulatory cytokines such as IL-12, IL-1β, IL-6, and TNF-α [16,17]. M1
macrophages further drive inflammatory responses to both intracellular pathogens and
tumourigenic cells through the expression of CD86, iNOS, and MHC-II [18,19] and the
induction of Th1 recruitment through the secretion of chemokines, such as CXCL9 and
CXCL10 [20]. However, if left unregulated to persist over a sustained period, chronic
inflammatory responses can ultimately cause tissue damage, such as fibrosis, to the target
organ [21,22]. Conversely, M2 macrophages are induced by anti-inflammatory cytokines,
such as IL-4, IL-10, and IL-13 [23–25]. M2 macrophages can be further categorised into three
sub-phenotypes: M2a, M2b, and M2c. M2a macrophages are specifically induced by IL-4
and IL-13; M2b are induced by exposure to immune complexes, Toll-like receptor (TLR)
ligands, or IL-1β; M2c are induced by IL-10 [21]. M2 macrophages are known to produce a
repertoire of anti-inflammatory cytokines and chemokines, such as IL-10, TGF-β, CCL17,
and CCL22 and can induce Th2 and Treg development and recruitment [22,26]. Addition-
ally, the expression of CD163, CD206, IL-10, and PD-L1 [18,27] defines the M2 phenotype
which is associated with dampening inflammatory responses, tissue healing, scavenging
debris, and angiogenesis [21,28,29]. Unlike M1s, M2s are poor antigen-presenting cells and
suppressors of Th1 responses.

The M1/M2 paradigm is increasingly being challenged as, due to the plasticity of
macrophages, the classification into distinct “M1” and “M2” phenotypes is a significant
oversimplification and only generally applicable to defined in vitro differentiation exper-
imentation. Therefore, this nomenclature is not fully representative of the spectrum of
macrophage activation in vivo or their ability to re-polarise upon the introduction of oppos-
ing phenotypic stimuli [14,30,31]. To further emphasise the complexity of macrophage phe-
notype and plasticity, recent studies have identified another distinct subset of macrophages,
in both mouse and human fibrotic tissues, whose phenotype is induced by “type 3” inflam-
mation, including factors such as GM-CSF, IL-17A, and TGF-β1. This subset of so-called
“scar-associated macrophages” (SAMs) were shown to actively contribute to fibrotic dis-
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ease pathology, as they were shown to stimulate hepatic stellate cells to produce collagen
I-associated fibrosis but also lack the ability to degrade the collagen I-rich scarring [32].
In addition to this, macrophages found within tumour tissues, termed tumour-associated
macrophages (TAMs), are known to possess a unique anti-inflammatory and immunosup-
pressive phenotype and have been shown to reduce immune surveillance and promote
tumour growth and progression [21,29,33].

2.2. Monocyte Recruitment to HCC Tumours

A small subset of TAMs in HCC tumours are thought to be derived from the liver-
resident macrophage populations, known as Kupffer cells [34]; however, the majority origi-
nate from circulating monocytes. Upon entering the tumour microenvironment (TME), the
recruited monocytes encounter a wide array of physical (e.g., hypoxia and ECM proteins),
chemical (e.g., cytokines (e.g., IL-6), and metabolic (e.g., lactic acid, adenosine, and argi-
nine)) factors known to influence monocyte/macrophage phenotypes [35–37]. Ultimately,
these tumour-infiltrating monocytes differentiate into the highly anti-inflammatory and
immunosuppressive TAMs, which help to sustain the TME and can drive tumour growth
and metastasis [38]. Monocytes are recruited to HCC tumours from the systemic circulation
via the rich vascular network present in many HCC tumours and cross the tumour endothe-
lial layer, resulting in both peri- and intratumoural populations of TAMs [15,17,31,39,40].
Currently, little is known about the specific mediators of monocyte recruitment to HCC
tumours. However, several growth factors, chemokines, and leukocyte adhesion molecules
known to play a key role in the recruitment of monocytes to liver tissues during chronic
inflammatory disease are expressed in HCC tumours (Figure 1).
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Figure 1. Monocyte recruitment to tumour endothelial cells and the factors that influence their
differentiation to TAMs in the HCC tumour microenvironment. Monocytes are recruited to the tumour
endothelium via the chemoattractants, CCL2, CX3CL1, and VEGF. Subsequent transendothelial
transmigration is mediated by PLVAP and CD31. Once transmigrated into HCC tumour tissues,
recruited monocytes encounter a range of stimuli, such as ECM proteins, cytokines, and metabolites,
which mediate their differentiation to TAMs. ECM, extracellular matrix; HIF-1α, hypoxia-inducible
factor-1α; PLVAP, plasmalemma-vesicle-associated protein; TAM, tumour-associated macrophage;
VEGF, vascular endothelial growth factor. Created in BioRender. Kennedy, J. (2024) BioRender.com/
l24w527 (accessed 6 November 2024).
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In the pathology of chronic liver diseases, hepatocytes, biliary epithelial cells, endothe-
lial cells, monocytes, and macrophages all secrete significant amounts of the angiogenic
factor, vascular endothelial growth factor (VEGF) [41–43]; in HCC tumours, the tumour
cells themselves also release high levels of VEGF [44–48]. In addition to its potent angio-
genic properties, VEGF has also been shown to possess chemotactic activity, mediating the
migration of monocytes across endothelial cells [49,50]. Indeed, in murine models of skin
cancer, VEGF has been shown to play a key role in the accumulation of TAMs [51–53], but
evidence for this role in HCC tumours is currently lacking. VEGF inhibitors are commonly
utilised clinically [54] but the evaluation of their biological effects is largely centred around
angiogenesis and tumour cell proliferation. However, their use in conjunction with im-
mune checkpoint inhibition has been shown to skew TAM phenotype towards an “M1-like”
phenotype, thus reducing immunosuppression and promoting anti-tumour effects [55].

Circulating bone marrow-derived monocytes express the chemokine receptors, CCR2
and CX3CR1, which are known to play a key role in their migration towards sites of injury
within the body [56–58]. CCR2 is the cognate receptor to the CC-chemokine, monocyte
chemotactic protein 1 (MCP-1), also known as CCL2, which is widely secreted by hep-
atocytes, Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells and HCC
tumour cells [59–63]. The CCL2/CCR2 axis has been widely implicated in the recruitment
of monocytes to the liver in a range of murine models of acute [64] and chronic liver in-
juries [64–67] and HCC [68]. In addition, the expression of CCL2 and the presence of CCR2+

monocytes is indicative of poor prognosis in HCC [69]. Another key mediator of monocyte
recruitment is the CX3C chemokine, CX3CL1, also known as Fractalkine, which regulates
the chemotaxis of inflammatory cells, such as monocytes, which are one of the major cell
types to express the only known receptor, CX3CR1 [70]. The chemotactic role of CX3CL1 is
mediated by the cleavage of CX3CL1 into fragments that act as a monocyte chemoattrac-
tant [71] and it has been demonstrated that CX3CL1, along with the adhesion molecule
vascular adhesion protein (VAP)-1 mediates the adhesion, arrest, and transendothelial
migration of monocytes across the liver sinusoidal endothelium under physiological flow
conditions in vitro [72]. CX3CL1 is known to be upregulated in chronic liver disease and
HCC [71–75]; surprisingly, high CX3CL1 levels in liver cirrhosis and HCC correlated with
better patient prognosis [71,75]. This could potentially be explained by CX3CL1 influencing
the phenotype of infiltrating monocytes [71], or the anti-tumourigenic effect also being
driven by other CX3CR1-expressing cell types [70].

The recruitment and migration of circulating monocytes to the liver during acute
injury or chronic disease is also mediated by the expression of adhesion molecules on the
cell surface of liver endothelial cells. CD31, also known as PECAM-1, is a member of the
immunoglobulin superfamily which is constitutively expressed on both endothelial cells
and monocytes. CD31–CD31 interactions are vital for monocyte recruitment, adhesion,
and paracellular transmigration through endothelial cell tight junctions [76–78]. Recently,
CD31 was shown to play a key role in the transmigration of monocytes across primary liver
endothelial cells under physiological flow conditions in vitro [61]. Plasmalemma vesicle-
associated protein (PLVAP) is an endothelial-specific protein and major component of the
diaphragms spanning the openings of fenestrae and caveolae in endothelial cells [79–81].
PLVAP plays a key role in development, angiogenesis, and vascular permeability, and
has a known role in leukocyte trafficking [61,82,83]. Indeed, PLVAP has previously been
implicated in the foetal seeding of monocyte-derived macrophages in the liver during
development [82] and, more recently, was shown to play a role in monocyte transmigration
across primary liver endothelial cells via the regulation of junctional permeability [61,82].
CD31 and PLVAP are both known to be widely expressed on tumour endothelial cells
in HCC tumours tissues [84–86] and are likely to play [34,87,88] an important role in
monocyte recruitment to the TME. Another molecule likely to play a key role in monocyte
recruitment to HCC tumours is the classical adhesion molecule, vascular cell adhesion
molecule (VCAM)-1. VCAM-1 has previously been implicated in the adhesion of monocytes
to conventional vascular endothelial cells, such as human umbilical vein endothelial cells
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(HUVEC) [89] and human aortic endothelial cells (HAEC) [90], and is highly present on the
vasculature and sinusoids of HCC tumours [91].

2.3. TAM Differentiation in HCC Tumours

Once monocytes are recruited to HCC tumours, they encounter a range of stimuli,
such as cytokines, hypoxia, metabolites, and extracellular matrix proteins, within the TME
which mediate their differentiation from monocytes to the potent anti-inflammatory TAM
phenotype. The cytokines IL-6 and macrophage colony stimulating factor (M-CSF) are key
to this process and are known to be present in significant numbers in the HCC TME. Both
IL-6 and M-CSF can bind to receptors on monocytes/macrophages to promote polarisation
towards the immunosuppressive “M2-like” TAM phenotype [92,93]. Nevertheless, it is
perhaps the more physical aspects of the TME that have the most pronounced effect on
monocyte differentiation and TAM phenotype, and these are discussed below.

TAMs and hypoxia in HCC: A key hallmark of the TME in HCC tumours is hypoxia.
Chronic inflammation and cirrhosis both cause damage to the liver’s vascular network
and disrupt blood flow and oxygen delivery to the tissue [94,95]. Additionally, high HCC
cell proliferation depletes the oxygen levels in the surrounding microenvironment and
exacerbates local hypoxic conditions [94,96] A key transcription factor regulated in response
to hypoxia, hypoxia-inducible factor-1α (HIF-1α), is significantly upregulated in HCC and
correlates with poor patient outcome [45,97]. It has previously been shown that chronic
hypoxic conditions, such as those found within a large majority of HCC tumours, are
able to induce the TAM “M2-like” phenotype, resulting in an upregulation and secretion
of IL-1β [98]. Increased IL-1β drives the further upregulation of HIF-1α in HCC cells,
mediating an epithelial-to-mesenchymal transition (EMT), leading to more aggressive
tumours and metastasis [98]. In addition, hypoxia induces HMGB1 expression in mouse
and human HCC cells in a HIF-1α-dependent manner, driving TAM recruitment and
polarisation and elevating IL-6 concentrations, which further exacerbates EMT, vascular
invasion, and the metastasis of HCC tumours [99]. Hypoxic HCC cells also have altered
adenosine metabolism, with the production of adenosine monophosphate (AMP) being
inhibited; consequently, adenosine accumulates intracellularly and, eventually, is passively
excreted into the TME [100,101]. Adenosine is a potent polarising agent in macrophages
and is also known to dampen T lymphocyte proliferation [101], has been implicated in the
establishment of the immunosuppressive TME in HCC, and has been shown to reduce the
efficacy of immune checkpoint inhibitors [95,100,102].

Hypoxia-induced glycolytic metabolism also causes the accumulation of lactic acid
within the microenvironment of solid tumours, such as HCC [103,104]. It has only recently
been recognised that lactate possesses potent bioactivity and is now known to be able
to metabolically reprogramme monocytes/macrophages to the highly anti-inflammatory
“M2-like” TAM phenotype [105,106]. Increased and hypoxia-induced lactate production
by HCC cells is highly likely to be a major contributor to the upregulation of VEGF and
arginase (ARG1) expression in HCC TAMs, pushing their polarisation towards the highly
anti-inflammatory “M2-like” phenotype [45,107]. The importance of lactate signalling in
HCC TAMs was recently highlighted by Han et al. who showed that nanoparticles targeted
specifically to TAMs and loaded with d-lactate, the gut microbe-derived isomer of lactate,
were able to reprogramme the immunosuppressive microenvironment of HCC tumours in
mice [95,108].

TAM metabolism in HCC: In addition to the cellular responses to the hypoxic microen-
vironment, the inherent rapid division of cancer cells also actively contributes to the levels
of a number of key metabolites within the HCC TME, thus further influencing TAM phe-
notypes. Rapidly dividing cancer cells alter their metabolism to utilise aerobic glycolysis,
over oxidative phosphorylation, as their source of energy to facilitate their high nutrient
demand and proliferation [109]. This change in respiration pathway leads to a depletion
of extracellular metabolites, such as glucose, ATP, lipids, amino acids, and nucleotides,
and the further accumulation of lactate within the TME [109,110]. To circumvent com-
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petition for glucose and other nutrients, immune cells are known to undergo metabolic
reprogramming and phenotypic changes, with macrophages being no exception to this.
Through the activation of the mammalian target of the rapamycin (mTOR) pathway, anti-
inflammatory TAMs downregulate their glucose metabolism which further perpetuates
their anti-inflammatory phenotype and increases glucose availability for cancer cells to
utilise, thus promoting tumour proliferation and progression [15,111]. Additionally, TAMs
characteristically express CD36 [112–114] which allows for the efficient uptake of lipids
from the TME and facilitates fatty acid oxidation. Furthermore, “M2-like” TAMs express
nuclear receptors, such as peroxisome proliferator-activated receptors (PPAR) and liver x
receptors (LXR) [115–117], which also enable increased fatty acid oxidation, further driving
polarisation towards the “M2-like” phenotype and sustaining the protumour phenotype of
the TME [115,116,118]. As mentioned above, the accumulation of lactate within the HCC
TME is likely to drive the anti-inflammatory phenotype of TAMs [107]. Under normal
homeostatic conditions, systemic lactate concentrations are stringently maintained around
1–2 mM; however, within the TME of some solid tumours, lactate levels can reach up to
40 mM [119]. High lactate concentrations are known to correlate with adverse outcomes in
some cancers [119,120] and its profound effects on TAM metabolism and epigenetics [121]
inevitably play a key role in this. Nevertheless, the effects of lactate on HCC TAMs are
currently woefully understudied. A number of other key metabolites, such as amino acids,
are also known to drive the anti-inflammatory TAM phenotype in HCC and this topic has
been extensively reviewed recently by Huang et al. [15]; however, other tumour-derived
secretory factors are also known to directly influence TAM metabolism. One key study
demonstrated that tumour-derived hyaluronan fragments induced the upregulation of
a key glycolytic enzyme, PFKFB3, in tumour-infiltrating monocytes/macrophages [122].
This study noted that, along with the metabolic switch to glycolysis, tumour-derived
hyaluronan also induced increased expressions of PD-L1 on the tumour-infiltrating mono-
cytes/macrophages in HCC tumours and peritumoural infiltration with PFKFB3+CD68+

cells correlated with poorer survival in HCC patients [122].
TAMs and the extracellular matrix in HCC: Another major factor known to contribute

to TAM differentiation within the TME is the ECM. The ECM is a three-dimensional,
non-cellular structure in which cells reside in all tissues and organs. As HCC generally de-
velops on a background of chronic liver disease with associated fibrosis, the synthesis and
breakdown of ECM proteins are dysregulated, leading to the excessive deposition of ECM
proteins, such as collagens and fibronectin [123]. This creates a highly stiff tumour-prone
microenvironment, and it has been shown that patients with increased levels of fibrosis
have a significantly higher predisposition to developing hepatocellular carcinoma [124].
Increased tissue stiffness, from collagen deposition, and the activation of transcriptional
co-activator with a PDZ-binding motif (TAZ) in pre-tumoural hepatocytes drives tumouri-
genesis [125]. Additionally, the increased stiffness of the ECM in HCC tumours acts as
a physical barrier to the migration and infiltration of anti-tumour immune cell subsets,
such as NK cells and CD8+ T cells [123]. As a result, the dysregulation of the ECM creates
the ideal environment for HCC tumourigenesis and distorts the normal movement and
functioning of the immune system to respond to tumour development and growth.

ECM scaffolds derived from tumour tissues have recently been shown to actively po-
larise macrophages into TAMs. Utilising decellularised human omental ovarian metastatic
tissues, a recent study showed that monocytes from healthy donor peripheral blood could
be cultured with the ECM scaffolds to stimulate a TAM-like macrophage phenotype with
significant shared transcriptomic similarities to the actual TAMs found within omental
ovarian metastatic tissues [126]. This demonstrates that the extracellular matrix alone can
educate macrophages and alter their phenotype. In addition, the physical constraint of
macrophages by ECM components, particularly collagens, has also been shown to mod-
ulate monocyte/macrophage phenotype. In vitro models have shown that the spatial
confinement of macrophages leads to a significant downregulation of proinflammatory
responses, in contrast to unconstrained macrophages demonstrating a more proinflamma-
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tory phenotype [127]. This has been confirmed by more recent studies that have shown
that macrophages grown on softer substrates, i.e., that are less constrained, are primed
towards a proinflammatory phenotype [128,129]. Furthermore, a study in breast cancer
tissues demonstrated that the stiffness of the TME correlated with the number of TAM
infiltrations, with a greater number in more aggressive tumour subtypes [130]. This changes
the paradigm that the ECM is merely an inert bystander that acts as a physical support in
the TME and highlights that the ECM could significantly contribute to the generation of
TAMs in HCC tumours. Thus, the ECM–TAM relationship could be a key driver of the
immunosuppressive microenvironment associated with poor prognosis in HCC [131].

2.4. The Role of TAMs in HCC Pathology

TAMs represent a major immune component of the TME and it is widely under-
stood that high levels of TAMs correlate with poor patient prognosis and survival in a
range of solid tumour cancers, including HCC [45,132–135]. In addition, the “M2-like”
TAMs express low levels of major histocompatibility complex (MHC) class II, conferring
low antigen-presenting capabilities, immune stimulation, and cytotoxic abilities [136,137].
TAMs can also actively suppress cytotoxic T-cell activity by hindering trafficking to the
tumour site [138] and inducing the upregulation of T-cell checkpoint molecules [139]. In
addition, TAMs can deplete key metabolites required for T-cell activation and proliferation
from the TME, such as arginase-1 which depletes arginine [140], and actively secrete potent
anti-inflammatory cytokines, such as IL-10 and TGF-beta, which inhibit T-cell activation and
cytotoxic activity and potentiate the differentiation of regulatory T cells (Tregs) [141]. Taken
all together, these elements of TAM phenotype play a significant role in the generation and
maintenance of the immunosuppressive TME with HCC tumours [142].

Another key protumoural trait of TAMs is their promotion of tumour cell proliferation,
survival, and metastasis via paracrine signalling. TAMs are known to secrete a vast array
of cytokines, chemokines, and growth factors, such as IL-6, IL-8, VEGF, and TGFβ-1, which
all promote HCC cell proliferation, EMT, tumour cell migration, and metastasis [133].
TAMs have also been shown to promote HCC cell migration through the activation of the
TLR4/STAT3 signalling pathway [143,144]. TLR4 is a tumour stem cell marker and has
been found to be upregulated in HCC cells by the secretome of M2 macrophages [144].
The upregulation of TLR4 in HCC cells activates the STAT3 signalling pathway which
promotes tumour progression, aggressiveness, and chemoresistance, thereby conferring
poor patient prognosis [145–147]. TAMs also facilitate the metastasis of HCC cells by
producing enzymes, such as MMPs, serine proteases, and cathepsins, which degrade
components of the ECM, facilitating tumour cell migration and metastases [148].

TAMs are also known to play an important role in angiogenesis within the TME,
producing key angiogenic growth factors, such as vascular endothelial growth factor (VEGF)
and platelet-derived growth factor (PDGF) [149,150], and several matrix metalloproteases
(MMPs) involved in neovascularisation [151,152]. CCR2+ TAMs, which possess a more
angiogenic phenotype, are largely present in the dense stromal margins of HCC tumours
and are associated with more vascular areas [153]. Furthermore, in a murine model of
HCC on a background of fibrosis, the pharmacological inhibition of TAM recruitment via
CCL2 showed a significant reduction in the extent of angiogenesis within tumours and,
consequently, tumour progression, as measured by tumour volume [153]. TAMs have been
identified as a major source of IL-23 in hepatitis B virus (HBV)-mediated HCC, which
subsequently drives angiogenesis [154].

TAMs have also been implicated in limiting the effectiveness of HCC treatments and
facilitating the development of resistance to therapies. In mice, the depletion of TAMs has
been shown to significantly enhance the efficacy of the multikinase inhibitor, sorafenib,
against HCC [155]. Moreover, hepatocyte growth factor (HGF) secretion by TAMs has been
shown to mediate the development of resistance to sorafenib in HCC cells [156]. In patients
with advanced HCC, TACE is a commonly used treatment to try and downstage tumours
and the density of TAMs has been shown to correlate with the efficacy of TACE [157]. TACE
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often employs oxaliplatin-based chemotherapies, and TAMs drive resistance by triggering
autophagy in HCC cells, thus circumventing the apoptosis-inducing cytotoxity activity of
oxaliplatin [157]. Immune checkpoint blockade in the treatment of HCC has shown limited
efficacy to date; consequently, the role of TAMs in this resistance has been investigated.
TAMs were recently shown to confer resistance to a programmed cell-death ligand (PD-L1)
blockade in a murine model of HCC, driving a highly immunosuppressive TME via the
recruitment of Tregs [158].

TAM/HCC tumour cell crosstalk: TAMs are known to interact with a range of other cell
types within the HCC TME, including the tumour cells themselves [159]. The majority of
TAM/tumour cell interactions explored within the literature are largely mediated through
the secretion of soluble factors, such as cytokines. For example, TAMs are known to
produce IL-6, which promotes the expansion of CD44+ HCC cancer stem cells (CSCs)
in vitro and xenograft tumour growth in vivo [160]. In this study, the tumour-promoting
effects of the TAM-derived IL-6 could be abrogated in these models with the addition of
the anti-IL-6-receptor therapeutic antibody, Tocilizumab [160]. TAMs also release a number
of other inflammatory cytokines, such as IL-1β, IL-8, and TGF- β1, which have been shown
to drive the EMT of HCC cells, contributing to more aggressive tumour phenotypes and
metastasis [98].

In addition to secreted cytokines, there is increasing interest in the interactions of
TAM-derived extracellular vesicles (EVs) with tumour cells, and evidence suggests that
they could also promote tumour growth and cancer “stemness” in HCC. The transfer of
miRNAs within TAM-derived EVs has been shown to promote the proliferation and stem
cell-like properties of HCC cells in vitro [161]. A recent study also implicated TAM-derived
EVs in the immune escape and immunotherapy resistance of HCC tumours [162]. In their
study, Wang et al. demonstrated that EVs derived from anti-inflammatory macrophages
were able to promote the expression of PD-L1 in HCC cells in vitro, via the MISP/IQGAP1
axis, and further confirmed that they facilitated immune escape in vivo in murine HCC
models [162]. Furthermore, the TAM/tumour cell crosstalk via EVs is now known to be
bidirectional, with emerging evidence indicating that tumour cell-derived EVs and their
associated miRNAs contribute to HCC progression by significantly contributing towards
the potent anti-inflammatory TAM phenotype. HCC tumour cell-derived EVs have been
shown to be enriched in miRNAs, such as miR-146a-5p and miR-23a-3p, which are able to
mediate the polarisation of TAMs towards the anti-inflammatory phenotype and upregulate
their expression of PD-L1 [163].

TAM interactions with other cells within the HCC microenvironment: In addition to inter-
actions with HCC tumour cells themselves, TAMs are also known to interact with other
tumour-resident cell types, such as cancer-associated fibroblasts (CAFs). One study showed
in vitro that TAM-derived osteopontin mediated the subsequent secretion of oesteopontin
from CAFs which, in turn, promoted HCC cell line migration and invasion [164]. It is
highly likely that TAMs also influence other key tumour-resident cell types within the
HCC TME, such as tumour endothelial cells (TECs); however, studies into such interactions
are currently lacking. More widely studied are the interactions between TAMs and other
tumour-infiltrating immune cells (TIICs) (reviewed recently by Sung [159].

TAMs express an array of immunosuppressive molecules and cytokines to dampen
the anti-tumour activity of cytotoxic natural killer (NK) cells and T cells and maintain
a protumourigenic microenvironment [15,165]. For example, TAMs in HCC are known
to express CD48 which directly binds to 2B4 (CD244) on NK cells, resulting in NK cell
dysfunction [166]. Furthermore, HCC TAMs can directly regulate the tumouricidal activity
of CD8+ T cells by their expression of PD-L1 [165]; indeed, TAMs are the major expressor
of PD-L1 within the HCC TME [122,167,168] and are spatially located in close proximity
to infiltrating PD-1highTIM3+ CD8+ T cells [169]. Additionally, TAMs are key players in
the failure of immune checkpoint blockade therapy (i.e., anti-PD-L1) in HCC, as they
secrete the chemokine CCL20, a potent chemoattractant of CCR6+FoxP3+ regulatory T cells
(Tregs) [158]. Nevertheless, although the majority of TAMs within the HCC TME possess
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a potent anti-inflammatory phenotype, there is a small population of proinflammatory
“M1-like” macrophages that play a vital role in promoting NK, Th1, and cytotoxic T-cell anti-
tumour responses [15,170]. These “M1-like” TAMs secrete proinflammatory cytokines, such
as IL-15 and IL-18, which has been shown to induce NK cell activity and the secretion of
IFN-γ to promote inflammatory responses and M1-like macrophage polarisation [170,171].

3. Macrophage-Based Therapies for HCC

The pivotal role TAMs play in the pathology of HCC highlights their potential as tar-
gets for the development of therapies (Table 1). In addition, the capability of macrophages
to infiltrate tumours could then act as potential therapeutic targets and drug delivery sys-
tems. Below, we discuss the different approaches utilised to develop a macrophage-based
therapy for the potential treatment of HCC.

3.1. TAM Reduction/Depletion

A common strategy aiming to reduce or deplete TAM populations within solid
tumours is the prevention of initial monocyte recruitment to the TME. Targeting the
CCL2/CCR2 axis has previously been shown to inhibit HCC tumour growth and metastasis
by reducing monocyte and TAM infiltration and increasing CD8+ T-cell cytotoxic activ-
ity [68]. Examples of CCL2/CCR2 axis antagonists undergoing early phase clinical trials
include trabectedin, a CCL2 antagonist used to treat ovarian cancer [172], and cenicriviroc,
a CCR2 (and CCR5) inhibitor currently progressing through clinical trials for MASH and
fibrosis [173]. Cenicriviroc has previously demonstrated some efficacy in murine models of
fatty liver injury [65]; however, it was recently reported to show no efficacy for treating liver
fibrosis in MASH patients [174]. Targeting the CCL2/CCR2 has shown some promise in
preclinical murine models of HCC, with the CCR2 antagonists, RDC018 and 747, exhibiting
good efficacy in an orthotopic liver tumour model, significantly restricting tumour growth
and metastasis [68,69]. However, the translatable relevance of the orthotopic liver tumour
model utilised in these studies is limited and so blocking the CCL2/CCR2 axis in additional
models that more accurately recapitulate human HCC will likely prove more challenging.
This is largely due to the fact that Kupffer cells, the tissue-resident macrophage population
within the liver, have been shown to self-renew to replenish TAM numbers in mice [175].
Therefore, a therapeutically beneficial level of TAM reduction may not be reached by tar-
geting monocyte recruitment alone. This could potentially be overcome by combination
therapies with those targeting Notch signalling [39], chemotherapy, radiation therapy, or
other immunotherapies [176,177]. Indeed, an early phase clinical trial (Phase II) is currently
ongoing in which the CCR2 antagonist, BMS-813160, is being used in conjunction with the
anti-PD-1 monoclonal antibody (mAb), Nivolumab (NCT04123379) [178].

An alternative strategy to reduce levels of TAMs may be to trigger their apoptosis
in situ. Bisphosphates, such as clodronate, can be utilised to deplete TAMs as they are
toxic to myeloid cells and induce apoptosis upon engulfment [179–181]. In addition to
depleting TAMs, bisphosphates have added anti-tumour properties such as the inhibition
of cell proliferation, tumour cell adhesion, and invasion [182]; the induction of tumour
cell apoptosis [183]; and enhancing immune surveillance [184,185]. Recently, the use
of clodronate, combined with doxorubicin, showed some efficacy in a murine model of
HCC [186], thus providing some evidence that this therapeutic approach could be viable
in the context of HCC. In addition, alkylating agents, such as trabectedin, approved for
the treatment of liposarcoma and leiomyosarcoma, and lurbinectedin, approved for small
cell lung cancer, could hold some promise in the treatment of HCC. They have been
shown to modulate the immunosuppressive TME of other tumours by inducing monocyte
and TAM apoptosis, decreasing inflammatory molecule expression, and reducing tumour
angiogenesis [187–189]. Therefore, the depletion of TAMs, combined with cytotoxic activity
against liver cancer cells, suggests the potential for alkylating agents, such as trabectedin, as
a treatment for HCC [142]. The in situ depletion of TAMs could prove an effective strategy
for reducing the immunosuppressive microenvironment in tumours, if specifically targeted
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to TAMs. However, current approaches to TAM depletion, such as bisphosphate treatment,
are relatively indiscriminate in nature and inherently pose significant risks of off-target
effects, the primary risk being the inadvertent depletion of immunoprotective cells, which
greatly increases host susceptibility to infections [190].

3.2. Reprogramming TAMs

Macrophages, including TAMs, are highly plastic and responsive to stimuli within
their local microenvironment. Leveraging this plasticity to repolarise TAMs within HCC
tumours, from their immunosuppressive and protumourgenic phenotype towards a more
proinflammatory and tumouricidal phenotype, may present a realistic therapeutic ap-
proach [191]. For example, the highly specific CSF-1R tyrosine kinase inhibitor, PLX3397,
has been shown to repolarise TAMs to a more proinflammatory phenotype [192], as well
as inhibit macrophage proliferation and increase cytotoxic T-cell tumour infiltration in
HCC tumours in mice [193]. In addition, the repolarisation of TAMs in HCC tumours may
also be achieved through the targeting of known phenotypic markers. Mannose receptor
(MR) is considered to be a definitive marker of TAMs in general [194] and is known to
be abundantly expressed on TAMs within HCC tumour tissues; indeed, the presence of
MR+ TAMs is highly indicative of poor patient prognosis [195,196]. The MR-targeted
reprogramming of TAMs, using the synthetic 10-mer RP-182, has shown efficacy in several
murine cancer models [197], thus demonstrating the potential for targeting TAM-expressed
MR in the context of HCC and the possibilities for future studies.

Another scavenger receptor that has been linked to TAM expression is stabilin-1 [198].
TAM-expressed stabilin-1 positively correlates with immune checkpoint therapy resistance
and T-cell dysfunction in various cancers [199] and, mechanistically, has been shown to pro-
mote tumour progression in an in vivo model of breast cancer by scavenging anti-tumour
factor, and secreted protein, acidic and rich in cysteine (SPARC) [198]. Murine studies
have demonstrated a genetic deficiency of stabilin-1 leads to reduced intratumoural “M2”
macrophages and FoxP3+ Tregs, highlighting the role of TAM-expressed stabilin-1 holds in
promoting the immunosuppressive TME [200]. Furthermore, macrophage-specific genetic
deletion stabilin-1 gene reduces tumour growth and metastatic spread [200]. A recent
Phase I/II first-in-man clinical trial in advanced solid tumour cancer patients, including
HCC, targeted stabilin-1 with a humanised function blocking antibody (bexmarilimab)
and demonstrated a significant switch in phenotypes of circulating monocytes and intratu-
moural macrophages in treatment responders, when compared with non-responders [201].
Promisingly, early results indicate that HCC tumours are particularly responsive to bexmar-
ilimab, with 4 out of 11 (36%) HCC patients demonstrating disease control and exhibiting
reduced intratumoural anti-inflammatory and increased proinflammatory/adaptive im-
mune cell subsets [201,202].

Although TAM repolarisation therapies have shown some promise in a range of pre-
clinical settings, their translation to clinical use against HCC may be slightly more complex.
This is due largely to the ability of proinflammatory monocyte/macrophages to aid HCC
tumour evasion of the host immunity [167]. The repolarisation of anti-inflammatory TAMs
to a proinflammatory phenotype will likely induce their intrinsic expression of PD-L1
and potentially induce PD-L1 expression on HCC cells [203]. PD-L1 is a member of the
B7 co-signalling molecule family with roles in naïve T-cell stimulation and effector T-cell
inhibition [204,205]. PD-L1+ monocytes/macrophages present in the stroma of HCC tu-
mours have been shown to bind PD-1+ tumour infiltrating cytotoxic T cells and impair their
proliferation, activation, and expression of proinflammatory cytokines (e.g., IL-2, IFN-γ),
thus suppressing cytotoxic responses and promoting tumour evasion and progression [167].
Consequently, the expression of PD-L1 on TAMs is strongly correlated to increased disease
progression and the reduced survival of HCC patients [167]. Therefore, it is likely that
TAM repolarisation therapies would need to be used in combination with PD-L1/PD-1
checkpoint inhibitors to increase the efficacy of treatment [203].
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Table 1. Summary of preclinical studies and clinical trials targeting TAMs in HCC.

Approach Target Therapeutic Agent Outcome Reference(s)

TAM reduction/depletion

CCL2/CCR2 axis 747
(+sorafenib)

Preclinical study in mice.
747 exhibited good efficacy of
tumour growth suppression in an
orthotopic liver tumour model.
Effect was mediated by significant
reduction in TAMs and expansion of
CD8+ T cells. 747 also potentiated
the anti-tumour effects of sorafenib
in the same model.

[68]

RDC018

Preclinical study in mice.
RDC018 effectively inhibited the
recruitment of tumour-infiltrating
monocytes and the “M2-like”
polarisation of TAMs in an
orthotopic liver tumour model. This
resulted in reversal of the
immunosuppression status of the
TME and activation of an
anti-tumour CD8+ T-cell response.

[69]

BMS-813160
(+anti-PD-1 monoclonal
antibody (mAb),
Nivolumab)

Phase II clinical trial (currently
recruiting). [176]

TAM apoptosis Clodronate
(+doxorubicin)

Preclinical study in rats.
Clodronate was able to significantly
inhibit tumour growth in
diethylnitroamine (DEN) model of
HCC. Clodronate and doxorubicin
had a synergistic effect on tumour
growth through a combination of
macrophage depletion and tumour
cell apoptosis.

[184]

Reprogramming TAMs

CSF-1R PLX3397

Preclinical study in mice.
PLX3397 skewed TAM phenotype
towards “M1-like” phenotype and
increased tumour infiltration of
cytotoxic CD8+ T cells, effectively
reducing tumour burden in an
orthotopic liver tumour model.

[191]

Stabilin-1 Bexmarilimab

Phase I/II clinical trial.
HCC tumours amongst the most
responsive to bexmarilimab, with 4
out of 11 (36%) of HCC patients
demonstrating disease control and
exhibiting reduced intratumoural
anti-inflammatory immune cell
subsets and increased
proinflammatory/adaptive
immune cells.

[199,200]



Int. J. Mol. Sci. 2024, 25, 13167 12 of 26

3.3. Macrophage-Based Cell Therapies

To our knowledge, macrophage-based cell therapies have not yet been employed
for the treatment of HCC and, currently, macrophage-based cell therapy clinical trials
have primarily focused on the regenerative treatment of tissue-destructive diseases, such
as osteonecrosis (NCT00505219), critical limb ischemia (NCT01483898), cardiomyopa-
thy (NCT01670981, NCT01020968, and NCT00765518), and stroke (NCT01845350) [206].
These studies all utilised ex vivo polarisation and the subsequent adoptive transfer of
macrophages and consisted of Phase II or Phase III clinical trials. The majority of these
trials reported positive outcomes, and some also noted a decrease in adverse events in
the treatment groups, when compared with the control groups [207–209]. A more directly
liver-related study undertaken recently has been the MATCH (ISRCTN10368050) Phase
I/II clinical trial that utilised autologous monocyte-derived macrophages in patients with
compensated liver cirrhosis. The Phase I trial demonstrated the safety of this approach
with patients receiving a macrophage infusion remaining transplant-free over the 12-month
period of the trial and no adverse effects were recorded [210]. The results from the Phase
II randomised controlled trial [211] were recently reported but did not show any signifi-
cant differences in the primary or secondary outcomes (i.e., a reduction in liver fibrosis)
between the macrophage infusion and control groups. However, 5 out of 24 patients in the
control group developed severe liver-related complications, whereas none occurred in the
26 patients of the treatment group [211]. These data emphasise the safety of this therapeutic
approach in patients with compensated liver cirrhosis. Furthermore, a follow-up Phase I/II
study, the EMERALD study (NCT03847428), is due to start recruiting in 2024 which aims to
investigate the safety and efficacy of autologous monocyte-derived macrophage infusion
in patients with decompensated liver cirrhosis following hospitalisation due to their first
decompensation event. Therefore, the use of autologous patient macrophages may present
a viable approach in the treatment of HCC. Nevertheless, the isolation of monocytes from
HCC patients and the subsequent macrophage replicative potential may hinder scalability,
which will potentially limit therapy development and production [212].

Another emerging and exciting macrophage-based cell therapy for the treatment
of solid tumours, such as HCC, is the utilisation of chimeric antigen receptor (CAR)-
macrophages [213]. This approach uses genetic engineering to express receptors against
tumour-expressed antigens, thus specifically targeting macrophages against tumour
cells [214,215]. The use of CAR technology in T cells (CAR-T cells) has been success-
fully employed to treat a number of blood cancers, in particular B-cell lymphoma and B-cell
acute lymphoblastic leukaemia [216]. However, the success of CAR T-cell therapies for the
treatment of solid tumours remains severely limited, mainly owing to the complexities of
the TME and the difficulty in delivering the CAR T cells to the tumour itself [217]. Given the
increased propensity for macrophages to be able to readily transmigrate across endothelial
barriers and traffic through the matrix-rich and anti-inflammatory TME, it is thought that
CAR-macrophages may present a more viable approach to treating solid tumours, such
as HCC [213,214]. Indeed, two such studies utilising CAR-macrophages have reached
early phase clinical trials (Phase I) [206]. One ongoing clinical trial aims to target human
epidermal growth factor receptor (HER)2 solid tumours (NCT04660929), whilst another
(now terminated) aimed to target mesothelin in advanced ovarian cancer and peritoneal
mesothelioma (NCT03608618). However, to our knowledge, no data have currently been
reported from either CAR-macrophage trial. Whilst CAR-macrophages may present a
promising therapeutic approach for the treatment of HCC tumours, the efficacy may be
restricted by the limited expansion of CAR-macrophages both in vitro during production
and in vivo following administration. One potential method to overcome this limitation is
the production of induced pluripotent stem cells (iPSCs)-derived macrophage cells (CAR-
iMac), which can be rapidly expanded in vitro and have shown efficacy both in vitro and
in vivo in mice [186]. As with CAR-T-cell therapies [216], the use of CAR-macrophages
comes with significant potential risk of off-target toxicity and adverse effects. CAR-targeted
tumour antigens are often also expressed on small subsets of healthy cells, thus creating
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the potential for the unwanted damage of non-tumourous tissues [213,214]. In addition,
anti-CAR immune responses may occur [218], significantly contributing to therapy failure
and possibly predisposing to adverse events, such as cytokine-release syndrome [219];
although, there is little conclusive evidence to support the latter [218]. The administration
of CAR-macrophages has recently shown efficacy in a range of murine models of liver fibro-
sis [220] and therefore lays the foundation for the preclinical testing of CAR-macrophages
in murine models of HCC.

3.4. Macrophages for Therapy Delivery

Macrophages are also promising candidates for the development of drug delivery sys-
tems, as they are easily loaded with cargo and possess the ability to infiltrate tumours. Due
to their inherent phagocytic capabilities, they can engulf drugs and nanoparticle-based drug
carriers, such as liposomes [221–223], polymers [221,224], and micelles [221,225,226], and
subsequently transport them across tumour endothelia to specifically deliver their payload
directly to tumours. Therefore, the use of macrophages as a drug delivery mechanism could
circumvent the off-target toxicity issues encountered with conventional chemotherapy drug
administration. For example, macrophages can be targeted to tumours to release their
drug payloads more locally, thus minimising adverse reactions and maximising therapeutic
dose [227]. Nevertheless, there are various factors to consider when utilising macrophages
as drug delivery systems; (1) nanoparticle uptake; (2) the effects of cargo on macrophage
function and phenotype; (3) specifically targeting macrophages to the tumour site; and
(4) the targeted release of the drug at tumour site. Current studies present limited and
varying conclusions for these aspects.

1. Nanoparticle uptake

To maximise drug delivery in cancer-targeting studies, nanoparticle-based drug carri-
ers (nanocarriers), such as liposomes and micelles, are often employed to improve both
the passive targeting of tumours and the active targeting of tumour cells [228]. As many
chemotherapy agents are highly cytotoxic, a major benefit of pre-loading them inside
nanocarriers when using macrophages as a targeted delivery method is a significant re-
duction in the chances of macrophage dysfunction or death before delivery to the tumour
site [223,227]. In addition, it has been shown that the uptake of encapsulated drugs by
macrophages is increased when compared with the free drugs alone [223]. Furthermore,
the level of nanoparticle uptake can be further enhanced with an increase in surface charge
of the nanoparticle (positive or negative), with the greatest uptake seen with positively
charged nanoparticles [229]. Initially, nanoparticle size was also thought to play a key
role in their uptake by macrophages, with larger nanoparticles showing the greatest rate
of uptake [229,230]. However, this was directly contradicted by a study from Chang
et al. [231] which demonstrated that smaller nanoparticles were more effectively taken up
by macrophages. Nevertheless, a more recent study, which also included a meta-analysis
of particle uptake by macrophages, determined that macrophages do not display any
preferential uptake of particles of a particular size over others when challenged with a
polydisperse emulsion [232]. However, they did note that, regardless of particle size, the
total surface area of internalised particles remains relatively constant and suggested that
membrane surface availability was the limiting factor of uptake [232].

2. Effects of cargo on macrophage function and phenotype

There is an increasing body of evidence that macrophage/TAM-targeted nanoparticles
can have profound effects upon macrophage phenotype and function [233]. However, the
consequences of preloading macrophages with nanoparticles for the intended delivery of
cargo to tumour tissues is less well understood. Despite anti-inflammatory macrophages
being considered more phagocytic in nature, the specific loading of macrophages with
nanoparticles does not appear to be influenced by the phenotype or polarisation status
of the macrophage [234]. An early study by Chang et al. [231] investigated the effects of
nanoparticle size on macrophage function, specifically migration. This study determined
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that larger nanoparticles increased macrophage migration by increasing CSF-1 receptor
expression [231]. The increased expression of CSF-1 receptors will increase responsiveness
to the cytokine CSF-1, which is released by HCC tumour cells and is known to mediate
macrophage differentiation to the immunosuppressive and protumourigenic “M2-like”
TAM phenotype [235]. It was also shown that larger internalised nanoparticles increased the
expression of integrins on macrophages, which increases cell migration and adhesion [231].
Conversely, a more recent study by Li et al. [223] determined there was no evidence
nanoparticle uptake interfered with or increased the dynamic distribution of macrophages
or tumour-targeting ability. This finding is similar to Choi et al. [236] in which macrophages
loaded with liposomes containing Doxorubicin were able to migrate and infiltrate lung
carcinoma xenograft tumours. In addition, Wendler et al. [234] demonstrated that loading
macrophages with nanoparticles (POlyhedrin Delivery System; PODS®) had no effect on the
motility or migration of macrophages in vitro, and loaded macrophages retained the ability
to migrate through narrow pores (8 µm) in response to a chemoattractant, an important
consideration for a chemotherapeutic drug delivery system in which macrophages are
required to infiltrate tumours.

3. Specifically targeting macrophage to the tumour site

Specifically targeting macrophages to the site of solid tumours would be challeng-
ing to achieve without some form of genetic manipulation or pre-programming of the
macrophages prior to administration. CAR-macrophage-based technologies could po-
tentially be used to home macrophages in on tumour-expressed antigens; however, as
mentioned previously, this approach may also come with some off-target toxicity is-
sues [213,214,237]. In mice, the effective tumour targeting of macrophages has previously
been achieved by the use of so-called “microrobots” [238]. In this study, primary mouse
macrophages were loaded with superparamagnetic nanoparticles (MNPs), intravenously
injected in tumour-bearing mice and guided to the tumour site by a combination of external
electromagnetic field and chemical gradients released by the tumour cells [238]. Neverthe-
less, in the context of HCC tumours, the difficulties associated with specifically targeting a
therapy towards the liver can be somewhat negated by the method of delivery used. Dur-
ing transarterial chemoembolisation (TACE) treatment, the hepatic artery is catheterised,
allowing for the specific delivery of chemotherapies direct to the liver tissues and HCC
tumour(s) present. Macrophage-based therapies could potentially be administered using
a similar delivery method, thus directly administering the therapy via the blood vessels
supplying the HCC tumour.

4. Targeted release of the cargo at the tumour site

A vital aspect of utilising macrophages as a drug delivery system is the targeted
release of the cargo at the tumour site. Nanocarriers, taken up by phagocytic cells such as
macrophages, have shown the potential to provide targeted drug delivery. This can occur
via two distinct methods: (1) the internalised drug is released from the nanocarrier into the
cytoplasm of the macrophage and then released into the TME by exocytosis or cell lysis
from the macrophage, or (2) the nanocarrier itself is expelled from the macrophage at the
tumour target site and the drug is directly released into the TME [223]. It has previously
been shown that nanocarrier-entrapped drugs release in a more controlled manner and
are more likely to be delivered intact. Therefore, drugs contained within nanocarriers are
more likely to reach the tumour site when compared with free drugs [223]. Cargo release
from some nanocarriers has been shown to be sustained over several days [234] and even
weeks [239], thus allowing for more sustained and long-lasting therapeutic effects, rather
than a more acute and transient “hit” often associated with some therapies.
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4. Conclusions

The treatment of HCC is complicated by the fact that a large majority of tumours
form on the background of chronic inflammatory liver disease and patients generally
present clinically at a late stage. Tumour-infiltrating macrophages (TAMs) are highly
abundant in HCC tumours and are known to be key players in the highly complex and
immunosuppressive microenvironment that fosters tumour maintenance and growth
and, finally, metastatic spread to other sites in the body. Numerous studies have proven
that TAMs are instrumental to HCC pathology; therefore, therapeutically targeting them
is an attractive prospect (Figure 2). TAMs are largely derived from infiltrating monocytes
and one approach to targeting TAMs in HCC is to prevent the migration of monocytes
across the tumour endothelial layer. The exact molecular mechanisms involved in this
process are yet to be elucidated; however, blocking the CCL2/CCR2 axis has shown
some limited efficacy in preclinical studies. Another viable therapeutic approach would
be to exploit the highly plastic nature of macrophages to reprogramme TAMs from the
immunosuppressive “M2-like” phenotype to a more proinflammatory and anti-tumour
phenotype. This approach has recently shown some success in late-stage HCC patients
in early phase (Phase I/II) clinical trials, with the scavenger receptor, stabilin-1, targeted
by the monoclonal antibody therapy, bexmarilimab. With the recent development of
more advanced ‘omics’ technologies such as single-cell RNA sequencing and spatial
transcriptomics, which allow the in-depth characterisation of monocyte/macrophage
populations in HCC tumours, it is hoped that more TAM-specific targets for the treatment
of HCC can be identified. Macrophage-based cellular therapies, such as autologous
macrophage infusion or CAR-macrophages, also present a realistic therapeutic approach
to the treatment of HCC. Nevertheless, these approaches are extremely expensive and
are not without risk of off-target toxicity issues. Finally, utilising macrophages as a
therapy delivery system has shown some promise in a range of preclinical studies
but has yet to be considered in the treatment of HCC. This method would effectively
circumvent the off-target toxicity issues commonly encountered with more conventional
treatments (e.g., chemotherapies); however, there are several logistical issues, such as
cargo loading/unloading, to consider if this approach is to be utilised.

Overall, it is evident that novel therapeutics for the treatment of HCC are required
imminently, with HCC incidence set to rise globally over the next few years and patients
currently exhibiting relatively poor prognosis. However, in addition to the development
of potential macrophage-based therapies for the treatment of HCC, it is important to
consider how these therapies can subsequently be utilised to improve HCC treatment
outcomes. This is especially pertinent as most patients fail to respond to current im-
munotherapy and it is likely macrophage-based therapies will be combined with other
therapeutic strategies to boost their synergistic effect. Therefore, whilst we envisage
that macrophage/TAM-based therapies will be at the forefront of the emergence of the
next wave of immunotherapy technologies for the treatment of HCC, they are likely be
utilised in conjunction with existing treatments, such as immune checkpoint blockade
and anti-VEGF therapies, to significantly boost the efficacy of these approaches. More
specifically, macrophage therapies may be used as a central part of an arsenal, used in
combination, priming the TME to boost currently established and future therapeutic
targets’ effectiveness and efficiency, overall improving HCC patient outcomes. This has
been observed in other solid organ tumours, such as ovarian cancer [240], and is likely
to be translated to HCC treatment strategies [240].
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the inhibition/blockade of surface receptors, such as stabilin-1, CSF-1R, and mannose receptor.
Bottom left TAM populations can be reduced by the induction of apoptosis in situ by reagents
such as clodronate or trabectedin or depleted by the prevention of monocyte recruitment to the
tumour by blockade of the CCL2/CCR2 axis. Bottom right Macrophages can be utilised as a drug
delivery system to specifically target tumours. Macrophages can be preloaded with therapeutic
agents and directed to migrate across tumour endothelium and into the tumour tissues, where they
release their cargo, e.g., drugs, nanocarriers, micelles, or liposomes. CAR, chimeric antigen receptor;
CSF-1, Colony-stimulating factor 1; CSF-1R, Colony-stimulating factor 1 receptor (CSF-1R); TLR,
Toll-like receptor. Created in BioRender. Kennedy, J. (2024) BioRender.com/l82y775 (accessed 6
November 2024).
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