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Abstract: 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) is a non-phthalate plasticizer
used as a replacement of di(2-ethylhexyl) phthalate (DEHP) in daily usage items. It is not known
whether continuous exposure to low doses of DINCH can lead to hepatic alterations, the liver being
the organ responsible for its metabolism. The aim of this study was to evaluate the activation of
inflammatory and apoptotic pathways in the liver of lactating dams after DINCH exposure, and
whether these effects may be observed on postnatal day 6 (PND6) offspring. Two doses of DINCH
were tested by oral administration to the following three groups of Long-Evans rats: control, DINCH-
lower dose (LDINCH, 30 mg/kg b.w./day), and DINCH-high dose (HDINCH, 300 mg/kg b.w./day).
Inflammatory mediators (IL-1β, TNF-α, NF-κB), mitochondrial transcriptional factors (PPARγ and
PGC-1α), oxidative stress markers (SOD, CAT, GSSG/GSH), and components of the mitochondrial
apoptotic pathway (PUMA, BAX, BAD, Bcl-2, Bcl-xL, Cytochrome c, APAF-1, Caspase-3, AIF) were
assessed by the gene and protein expression in the liver of lactating dams and offspring. Exposure to
LDINCH promoted the release of pro-inflammatory cytokines such as IL-1β and TNF-α and raised
oxidative stress levels (GSSG/GSH), as well as increased Caspase-3 levels and reduced anti-apoptotic
proteins (Bcl-2 and Bcl-xL), both in lactating dams and PND6 offspring. Thus, constant exposure to
lower doses of DINCH can disrupt inflammatory and oxidant/antioxidant homeostasis, leading to
hepatic tissue damage in lactating dams and having a perinatal effect in PND6 offspring.

Keywords: DINCH; inflammation; oxidative stress; mitochondrial damage; apoptosis; liver; perinatal
offspring

1. Introduction

It is well documented that di(2-ethylhexyl) phthalate (DEHP), a plasticizer used in
the manufacturing of everyday products, may lead to hepatic alterations by dysregulating
the inflammatory response and promoting oxidative and mitochondrial damage [1,2].
Inflammation, which is a biological response of the immune system, is essential for tissue
homeostasis [3]. Primary inflammatory stimuli, including interleukin-1β (IL-1β) and tumor
necrosis factor-α (TNF-α), trigger important regulatory pathways such as the nuclear
factor kappa-B (NF-κB) one [3]. However, overactivation of these pathways results in the
disturbance of the oxidant/antioxidant balance, leading to an increase in oxidative stress,
which can be considered a pathological mechanism that contributes to liver injury [4,5]. In
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addition, the generation of reactive oxygen species (ROS) together with outer mitochondrial
membrane permeabilization (MOMP) may be the initial stage of mitochondrial apoptosis
via both caspase-dependent and caspase-independent mechanisms [6].

Previous studies showed that DEHP led to mitochondrial damage, lipid peroxidation,
and the downregulation of aminotransferases and lipid metabolism-related genes in rat hep-
atocytes [1,2]. Hepatic necrosis and fibrosis were observed in the liver of Sprague Dawley
rats after exposure to DEHP, which has been related to the activation of pro-inflammatory
and apoptotic pathways [1]. Furthermore, the impaired hepatic oxidant/antioxidant bal-
ance was assessed in DEHP-exposed rats, which is thought to mediate hepatocyte apoptosis
via the intrinsic mitochondrial pathway [2,7].

Accumulating evidence about DEHP toxicity has led to strict European regulations
for its use as a plasticizer [8,9], which in turn has increased efforts to develop viable re-
placement compounds to this endocrine disrupting chemical (EDC) [2,10]. An alternative
to DEHP is the non-phthalate plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl
ester (DINCH) [9,11]. This alternative compound, like DEHP, seems to possess endocrine-
disrupting properties that make it a xenoestrogen [12,13]. DINCH is replacing phthalates
in food packaging, medical devices, toys and children’s products, flooring, and wall cover-
ing [8,14], which has led to a very significant increase in its global production and use. Con-
sequently, increasing levels of DINCH metabolites are found in human urine samples [14].

After oral administration and further absorption at the gastrointestinal level, DINCH
is hydrolyzed to monoisononyl cyclohexanedicarboxylate (MINCH), oxidized by the cy-
tochrome P450 enzymes (CYPs), and finally cleaved to 1,2-cyclohexandicarboxylic acid
(CHDA). Alternatively, UDP-Glucuronosyltransferases (UGTs) catalyze its conjugation to
glucuronic acid [8,15]. The liver, where all the mentioned metabolic processes occur, seems
to be more vulnerable to the effects of plasticizers. This is justified by its responsibility for
the metabolism and detoxification of xenobiotics and specifically xenoestrogens, synthetic
compounds which mimic the action of endogenous estrogens. Therefore, liver function is
crucial in maintaining homeostasis under inflammatory and stress conditions [4]. In this
sense, previous studies have reported hepatic alterations under exposure to DINCH [11,14].
It is particularly important to evaluate how exposure to different EDCs, which are either
natural or synthetic compounds that can potently alter the metabolism, cellular signaling,
and excretion of endogenous hormones by mimicking their mode of actions due to struc-
tural similarities, can affect development. This is because the perinatal period is one of the
most sensitive windows for EDC exposure, as enzymes and detoxification pathways at the
liver are still immature, which may lead to severe disruptions in offspring health [12,16].

Previous studies by our research group have demonstrated that EDCs bisphenol A
(BPA) and bisphenol F (BPF) produce a toxic effect on the liver of pregnant and lactating
rats and their offspring by increasing oxidative stress and inflammation and promoting
apoptosis [17–19]. However, the toxicity of other disruptors, specifically DINCH, has been
barely studied.

The aim of this work was to evaluate whether DINCH oral administration at two
different doses to Long-Evans lactating rats during pregnancy could induce liver alterations
by increasing inflammation, inducing oxidative stress, and triggering apoptosis. Moreover,
it was studied whether this effect could also be observed in the offspring at post-natal day
6 (PND6).

2. Results
2.1. Effects of DINCH Exposure on Inflammatory Response in the Liver of Dams

No significant changes were observed in the mRNA levels of IL-1β and TNF-α due
to treatment (Figure 1A,C). However, a significant increase in the protein levels of these
inflammatory cytokines (Figure 1B,D) was observed in dams treated with the lower dose of
DINCH. The lower dose exposure also resulted in a significant increase in protein levels of
NF-κB-p100 and NF-κB-p65 subunits (Figure 1G,I). On the other hand, only NF-κB-p100
showed significantly increased gene expression in the HDINCH group (Figure 1F). In
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addition, differences between the treated groups were observed for IL-1β protein levels
and NF-κB-p100 gene expression (Figure 1B,F).
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Figure 1. Effects of DINCH exposure on inflammatory response in the liver of dams. mRNA
expression and protein levels of IL-1β (A,B), TNF-α (C,D), NF-κB-p100 (F,G), NF-κB-p65 (H,I), and
PPAR-γ (K,L), and mRNA expression of NF-κB-p105 (E) and PGC-1α (J). Representative images of
the Western blot results (normalized using stain-free gels) for the different proteins studied (M). Data
represent mean ± SEM. * p < 0.05 vs. control, ** p < 0.01 vs. control. # p < 0.05 between treated groups,
## p < 0.01 between treated groups. Three groups are shown: control (in green), LDINCH (in red),
and HDINCH (in blue).

Regarding PGC-1α, mRNA analysis (Figure 1J) revealed a significantly decreased
expression of this transcriptional coactivator in dams treated with the lower dose. Further
measurements of PPAR-γ, a transcriptional factor whose coactivator is PGC-1α, did not
show significant results (Figure 1K,L).

Taken together, these results suggest that DINCH exposure raised some inflammatory
mediators and that this increase resulted in a decreased transcriptional activity of PGC-1α
in the liver of lactating dams.

2.2. Effects of DINCH Exposure on Antioxidant Enzyme Activities and Glutathione
Concentrations in the Liver of Dams

It was shown that a significant decrease in SOD levels in the group of dams treated with
the lower dose of DINCH compared to the control group (Figure 2B) occurred. Moreover,
oxidized glutathione (GSSG) was significantly increased in the liver of LDINCH dams
(Figure 2C), and so was the GSSG/GSH ratio (Figure 2E), which was also statistically
significant after the comparison of both doses of DINCH.

These results suggest that DINCH exposure led to an increase in oxidative stress
associated with a decrease in antioxidant activity in the liver of lactating dams.
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Figure 2. Effects of DINCH exposure on antioxidant enzyme activities and glutathione concentrations
in the liver of dams. Enzymatic activity of catalase (CAT) in nmol/min/mg protein (A) and superox-
ide dismutase (SOD) in U/mg protein (B). Concentration of oxidized glutathione (GSSG) (C) and re-
duced glutathione (GSH) in nmol/mg protein (D). GSSG/GSH ratio (E). Data represent mean ± SEM.
* p < 0.05 vs. control, ** p < 0.01 vs. control. # p < 0.05 between treated groups. Three groups are
shown: control (in green), LDINCH (in red) and HDINCH (in blue).

2.3. Effects of DINCH Exposure on Apoptotic Markers in the Liver of Dams

Significantly elevated levels of the pro-apoptotic mitochondrial protein PUMA after
lower dose exposure of DINCH were observed (Figure 3A), whereas no significant differ-
ences were found in BAX and BAD gene expression (Figure 3B,C). In addition, both gene
and protein expression of Bcl-2 and Bcl-xL and mitochondrial anti-apoptotic and protective
factors were strongly decreased, mainly in the LDINCH group (Figure 3D–F). Significantly
elevated mRNA levels of APAF-1, a cytosolic Cytochrome c binding factor, were also
observed in LDINCH dams (Figure 3I). These results are consistent with the significantly
increased levels of Caspase-3 obtained after lower DINCH exposure (Figure 3K). Moreover,
the levels of this apoptotic protein were statistically significant after the comparison of both
doses of DINCH, with higher levels found in the liver of LDINCH-treated lactating dams
(Figure 3K), implying more intense actions. Significant results for the HDINCH group were
only seen for Bcl-xL (Figure 3F) and APAF-1 (Figure 3I).

Overall, these results suggest that DINCH exposure turned out to increase some of the
measured pro-apoptotic mediators and strongly diminish the anti-apoptotic mediators in
the liver of lactating dams. Moreover, caspase-dependent apoptosis seemed to be enhanced.

2.4. Effects of DINCH Exposure on Inflammatory Response in the Liver of PND6 Offspring

Results showed a significant increase in the protein levels of pro-inflammatory media-
tors TNF-α, NF-κB-p100, and NF-κB-p65 (Figure 4D,G,I), as well as in TNF-α mRNA levels
(Figure 4C). Moreover, statistically significant differences were found after the comparison
of both doses of DINCH for TNF-α (Figure 4D) and NF-κB-p65 (Figure 4I), meaning more
pronounced perinatal effects of lower doses of DINCH in the offspring occurred. Similarly
to dams, it was observed a significantly reduced gene expression of PGC-1α in lower
dose-treated offspring (Figure 4J), which was consistent with the raised NF-κB-p65 levels
(Figure 4I). In addition, a significant decrease in PPAR-γ gene expression was obtained
(Figure 4K).
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Figure 3. Effects of DINCH exposure on apoptotic markers in the liver of dams. Protein levels of
PUMA (A), mRNA expression of BAX (B), BAD (C), and Bcl-2 (D), protein levels of Bcl-2 (E) and
Bcl-xL (F), mRNA expression and protein levels of Cytochrome c (G,H), and APAF-1 (I,J), and protein
levels of Caspase-3 (K) and AIF (L). Representative images of the Western blot results (normalized
using stain-free gels) for the different proteins studied (M). Data represent mean ± SEM. * p < 0.05 vs.
control, ** p < 0.01 vs. control. # p < 0.05 between treated groups. 3 groups are shown: control (in
green), LDINCH (in red) and HDINCH (in blue).
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Data represent mean ± SEM. * p < 0.05 vs. control, ** p < 0.01 vs. control. # p < 0.05 between treated
groups. Three groups are shown: control (in green), LDINCH (in red) and HDINCH (in blue).
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Taken together, these results suggest that DINCH exposure augmented some inflam-
matory mediators, and this increase resulted in a decreased transcriptional activity of
PGC-1α and PPAR-γ in the liver of PND6 offspring.

2.5. Effects of DINCH Exposure on Antioxidant Enzyme Activities and Glutathione
Concentrations in the Liver of PND6 Offspring

Unlike dams, pups treated with both doses of DINCH showed significantly decreased
CAT activity (Figure 5A). However, no differences were observed in SOD activity levels
(Figure 5B). Moreover, oxidized glutathione was significantly higher in LDINCH offspring
(Figure 5C), resulting in the increasing tendency of the GSSG/GSH ratio in this group
(Figure 5E).
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Figure 5. Effects of DINCH exposure on antioxidant enzyme activities and glutathione concen-
trations in the liver of PND6 offspring. Enzymatic activity of catalase (CAT) in nmol/min/mg
protein (A) and superoxide dismutase (SOD) in U/mg protein (B). Concentration of oxidized glu-
tathione (GSSG) (C) and reduced glutathione (GSH) in nmol/mg protein (D). GSSG/GSH ratio (E).
Data represent mean ± SEM. * p < 0.05 vs. control, ** p < 0.01 vs. control. Three groups are shown:
control (in green), LDINCH (in red) and HDINCH (in blue).

These results suggest that DINCH exposure provoked an increase in oxidative stress
associated with a decrease in antioxidant activity in the liver of PND6 offspring.

2.6. Effects of DINCH Exposure on Apoptotic Markers in the Liver of PND6 Offspring

Mitochondrial apoptotic pathway assessment showed a very significant decrease in an-
tiapoptotic factors Bcl-2 and Bcl-xL in pups exposed to both doses of DINCH (Figure 6D–F),
being the effects on protein levels (Figure 6E,F) stronger for the high dose. These re-
sults, together with the increasing tendency of proapoptotic factors in the LDINCH group
(Figure 6A–C) indicated enhanced apoptosis in liver cells in the LDINCH-exposed offspring.
This was observed by significant increases in Cytochrome c protein levels (Figure 6H) and
APAF-1 mRNA values (Figure 6I). Moreover, statistically significant differences were found
in Bcl-2 and AIF mRNA levels after comparison of both doses of DINCH (Figure 6D,L),
with higher levels indicating more intense actions of LDINCH in the liver of pups.

These results suggest that DINCH exposure resulted in strongly decreased anti-
apoptotic mediators in the liver of PND6 offspring. Moreover, caspase-dependent apoptosis
seemed to be enhanced.

2.7. Correlation Between Values in Dams and Pups

A moderate to strong positive correlation between the parameters analyzed in dams
and pups was observed, suggesting that alterations observed in dams are often reflected
in pups (Table 1). Also, strong interconnections between inflammatory, apoptotic, and
oxidative stress processes for both dams and pups were observed (Table 2).
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Figure 6. Effects of DINCH Exposure on Apoptotic Markers in the Liver of PND6 Offspring.
Protein levels of PUMA (A), mRNA expression of BAX (B), BAD (C), and Bcl-2 (D), protein lev-
els of Bcl-2 (E) and Bcl-xL (F), mRNA expression and protein levels of Cytochrome c (G,H), and
APAF-1 (I,J), and protein levels of Caspase-3 (K) and AIF (L). Representative images of the Western
blot results (normalized using stain-free gels) for the different proteins studied (M). Data represent
mean ± SEM. * p < 0.05 vs. control, ** p < 0.01 vs. control, *** p < 0.001 vs. control. # p < 0.05 between
treated groups. Three groups are shown: control (in green), LDINCH (in red) and HDINCH (in blue).

Table 1. Pearson correlation coefficients between dams and pups.

Marker Correlation

IL1-β (prote) 0.65

TNF-α (prote) 0.72

NFκB-p65 (prote) 0.68

NFκB-p (prote) 0.70

PGC-1α (mRNA) 0.60

BCL-2 (prote) 0.75

BCL-XL (prote) 0.70

CASP-3 (prote) 0.78

APAF-1 (mRNA) 0.65

Cyt-c (mRNA) 0.62

CAT 0.55

SOD 0.58

GSSG/GSH 0.67

GSSG 0.64
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Table 2. Associations between inflammatory, apoptotic, and oxidative stress parameters.

Inflammatory Markers

Dams Pups

IL1-β (prot) and TNF-α (prot) 0.85 0.80

TNF-α (prot) and NFκB-p65 (prot) 0.92 0.88

NFκB-p65 (prot) and NFκB-p (prot) 0.78 0.75

Apoptotic Markers

BCL-2 (prot) and BCL-XL (prot) 0.80 0.78

CASP-3 (prot) and APAF-1 (mRNA) 0.75 0.72

cytc (mRNA) and CASP-3 (prot) 0.70 0.68

Oxidative Stress Markers

CAT and SOD 0.65 0.62

GSSG/GSH and GSSG 0.72 0.70

CAT and GSSG/GSH 0.60 0.58

3. Discussion

The present study is motivated by the increasing use of 1,2-cyclohexane dicarboxylic
acid diisononyl ester (DINCH) as a substitute for endocrine-disrupting phthalates in the
manufacture of products whose everyday use can disturb human health due to possible
contaminations. These contaminations are known to occur since DINCH metabolites
have been detected in the urine samples of young adults, pregnant women, and children
who, similarly to what happens with DEHP, are 5 times more exposed to DINCH than
adults [12,20–22]. Since DINCH exposure occurs mainly through ingestion, the effects of
this chemical administered orally at 2 different doses, a lower dose of 30 mg/kg (LDINCH)
and a high dose of 300 mg/kg (HDINCH), were evaluated in the liver of lactating rats, and
the perinatal effects on the livers of their PND6 offspring were assessed.

Prior studies of our group have revealed that low doses of other EDCs (BPA and BPF)
have hepatotoxic effects on lactating Long-Evans rats and their offspring through increased
inflammation, oxidative stress, and apoptosis [17–19]. Furthermore, exposure to phthalates
has been linked to numerous adverse pregnancy outcomes, potentially through oxidative
stress-mediated mechanisms; specifically, DINCH metabolites have been reported to be
not only associated with increased oxidative stress but also with enhanced inflammation
in pregnant women [5]. During inflammation, NF-κB reduces PGC-1α expression and
activity, which leads to mitochondrial ROS accumulation [22]. Increased oxidative stress
is considered a triggering mechanism of liver pathology [4]. Hence, possible alterations
of pro-inflammatory pathways and hepatic oxidant/antioxidant mechanisms are the first
issue addressed in this study.

In accordance with our results, DEHP-driven inflammatory processes have been
observed in the liver of Sprague Dawley rats and humans [1]. Also, other authors
have seen significantly upregulated inflammatory markers after DINCH exposure in the
mammary gland of adult female rats [12]. Furthermore, NF-κB activation and TNF-α
and IL-1β release are known to be triggered by DINCH and its metabolite MINCH in
human macrophages [23].

In dams, the significant decrease observed in the expression of PGC-1α is consistent
with increased NF-κB-p65 (Figure 1H,I), as low PGC-1α levels would promote NF-κB acti-
vation [21,22]. Although no alterations were seen in the measured PPAR-γ gene expression
and protein levels, PPARs signaling dysregulation after DINCH exposure have also been
observed by other authors in different tissues [12,24]. In addition, it has been reported
that increased hepatic oxidative stress and inflammation might be reduced by PPAR-γ
agonists via the regulation of NRF-2 and NF-κB pathways in rats [25,26], so that activated
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NF-κB (Figure 1F,G,I) would mean PPAR-γ impairment (Figure 1K,L). However, further
experiments are needed to elucidate DINCH effects on PPAR-γ hepatic expression and
activity, in which the translocation ratio nucleus/cytoplasm should be considered towards
measuring the active fraction of this transcription factor.

Previous studies have related an inflammatory state to high levels of oxidative stress
in the liver of rodents [2]. Our results exhibited alterations in hepatic oxidant/antioxidant
homeostasis [4], such as SOD, which catalyzes the dismutation of superoxide anion rad-
icals (O2) into hydrogen peroxide (H2O2) and molecular oxygen, was significantly de-
creased in dams treated with the lower dose of DINCH (Figure 2B). Moreover, an increased
GSSG/GSH ratio (Figure 2E) in the LDINCH group, both with respect to the control and
the HDINCH groups, may indicate that lower doses of DINCH cause oxidative damage in
liver cells [4].

Similar alterations in hepatic antioxidant defense have been reported both in murine
models and humans, including SOD activity depletion in the liver of Sprague Dawley
rats after DEHP exposure [1] as well as modifications in SOD protein levels, especially at
low doses, in rat dams and zebrafish [14,27]. Also, both DEHP and DINCH are known to
induce oxidative stress on human mature adipocytes [24], and DINCH has been associated
with oxidative stress, mitochondrial dysfunction, and apoptosis in human macrophages,
leading to the activation of pro-inflammatory pathways [23].

Xenobiotic-induced apoptosis has been reported numerous times, and it is known that
the presence of EDCs, like DINCH, may impair hepatic mitochondrial function, which,
together with high ROS levels (Figure 2C,E), may result in the activation of mitochondrial
apoptosis pathways [6,23]. Therefore, the levels of different components of the mitochon-
drial apoptotic cascade were assessed.

Although very little is known about the changes in apoptosis that take place when sub-
jects are exposed to DINCH, previous studies have confirmed mitochondrial dysfunction
and promotion of apoptosis, with underlying dysregulation of the pro-apoptotic/anti-
apoptotic protein ratio [23]. Moreover, Bcl-2 downregulation (Figure 3D,E) has been linked
to PPAR-γ disruptions [25,28].

In accordance with the mentioned results for dams, increased inflammation in PND6
offspring was also observed (Figure 4C,D,G,I). Likewise, we saw a decrease in hepatic
antioxidant activity (Figure 5A) and a subsequent increase in oxidative stress levels (Fig-
ure 5C). Furthermore, gene expression and levels of anti-apoptotic proteins also declined in
the offspring (Figure 6D–F).

These results are consistent with previous reports in which hepatic alterations and
impaired liver metabolic capacity were observed in rat offspring [11]. Disturbing homeosta-
sis by an inflammatory environment and an increased oxidant/antioxidant imbalance can
potentially lead to serious or permanent effects, especially when exposure occurs during
fetal development, childhood, and puberty [29].

There are not many studies in the literature showing the effects of DINCH at the
offspring level, but it is very important and necessary to study exposure during the early
stages of development. The prenatal period is a critical phase in which exposure to
exogenous compounds can affect fetal development [29]. The fetus is extremely vulnerable
due to its still immature metabolic pathways, which limit its capacity to metabolize, detoxify,
and eliminate chemical compounds such as xenoestrogens [30]. Hepatic glucuronidation
pathways are known to be very weak in fetal livers as well as in newborn offspring, both in
rodents and humans. In addition, human neonates have lower levels of pancreatic lipase
than adults, suggesting a reduced metabolic capacity in babies. Perinatal exposure and
placental transfer, which in rats occurs late in gestation, can also produce developmental
changes that contribute to adverse health consequences in adulthood [16,30–32].

In order to properly evaluate the adverse effects of EDCs and specifically DINCH,
both the adult organism and offspring perinatal effects must be considered, since they may
be affected in different ways due to different time windows and vulnerabilities [29,30].
Furthermore, evaluating the effects at different doses is essential. According to a study by
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Vanderberg et al. [33], EDCs can have effects at low doses that are not expected from the
effects at higher doses. Greater intensity of effects when using lower doses is common in
studies with natural hormones and EDCs. When the dose–response curves produced are
non-monotonic, the effects at low doses cannot be predicted from the effects observed at
higher doses. Moreover, it is also important to study the effects on both sexes under similar
exposure conditions, since differences have been found for other EDCs due to variability in
the metabolism, storage, and excretion of xenobiotics [34,35]. Likewise, different animal
models should be employed as previous studies have shown greater vulnerability to the
effects of BPF in females than males [19]. On top of all that, it is important to note that
DINCH has a non-uniform composition among different production lots, which might
result in varying mixtures of differentially biologically active compounds [14].

According to our results, more significant effects on inflammatory pathways, PGC-
1α/NFκB-p65 interaction, antioxidant enzyme activity, and activation of mitochondrial
apoptotic pathways, were observed after exposure to lower doses of DINCH in both lactat-
ing dams and offspring. In this group, the statistical association analysis revealed significant
correlations between the same parameters analyzed in dams and pups, indicating that the
effects of DINCH exposure observed in lactating dams are often mirrored in their offspring
at postnatal day 6. In addition, strong correlations were observed between inflammatory
markers such as IL1-β, TNF-α, NFκB-p65, and NFκB-p, apoptotic markers such as BCL-2,
BCL-XL, CASP-3, APAF-1, and Cytc, and oxidative stress markers such as CAT, SOD,
GSSG/GSH, and GSSG for both dams and pups. Overall, consistent correlations between
parameters in dams and pups highlight the transgenerational effects of DINCH exposure
on liver inflammation, apoptosis, and oxidative stress. However, it is important to consider
that to enhance result robustness, a wider range of DINCH doses should be assessed.

The present study faces some limitations. Firstly, considering the 3Rs (Replacement,
Reduction, and Refinement) principle formulated by Russel and Burch in the 1960s for
more humane animal research, the study could only be performed including two doses of
DINCH, since exploring a wide range of doses was not viable in terms of animal models,
and it was not economically feasible either. Furthermore, the fact that the in vitro-assessed
effects of EDC are not usually reproduced in vivo makes it difficult to estimate a possible
dose range. Nevertheless, greater effects after exposure to lower doses could be explained
by the endocrine system response to low hormone concentrations, or because response
mechanisms become saturated before full receptor occupancy. Although this process is
difficult to interpret, other authors have reported similar results, showing a non-monotonic
dose–response relationship [36]. Our group has also observed similar non-monotonic effects
with the administration of other EDCs, including BPA and BPF [17,18]. Another limitation
of our study is that some of our results do not present significant differences, but they show
tendences instead. This happens, for instance, when observing the results about BAD and
BAX expressions in both dams and offsprings. In these cases, LDINCH animals show higher
expressions than control animals, but these differences are not statistically significant. We
consider that increasing the number of animals would be helpful in achieving the required
statistical power.

The fact that a non-monotonic dose–response relationship exists for the effects of
DINCH and the possible differences on them between sexes, together with the limited
literature on the impact of this compound on health, emphasizes the need for continued
research to truly elucidate the effects of low, but environmentally relevant, doses, both in
adulthood and following perinatal exposure to this chemical.

Finally, since humans are constantly exposed to a large number of EDCs, and current
evidence together with in vivo animal models and epidemiological studies posit a clear
link between exposure to EDCs and neurodevelopmental adversity [37], the causal links
between endocrine disruption and developmental neurotoxicity, which would be required
for regulatory action, are still largely missing [38]. We consider that further research is
needed as its results could be of interest to obstetricians, pediatricians, epidemiologists, as
well as to governmental agencies.
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4. Materials and Methods
4.1. Animal Model and Treatment

Eight-week-old female and ten-week-old male Long-Evans rats (Janvier Labs, Le Gen-
est-Saint-Isle, France) were housed for 10 days in the animal house facilities of the School
of Medicine of the Complutense University of Madrid. During this time, animals were
housed in special polypropylene cages (Sodispan Research, Coslada, Madrid, Spain) that
were manufactured with the lowest chemical composition of Makrolon, a polycarbonate
with bisphenol A. Water bottles were made of glass. Animals were maintained at 22 ± 2 ◦C,
with automatic light cycles (12 h light/dark), and all had free access to diet and drink-
ing water. As previously described, this time period allowed the animals to familiarize
themselves with the facilities and the staff of the animal house [17–19]. Animals were then
randomly divided into three groups as follows: control group (non-treated), lower dose
(30 mg/kg body weight/day; LDINCH) group of DINCH, and high dose (300 mg/kg
body weight/day; HDINCH) group of DINCH. Doses were chosen according to preceding
in vivo studies, in the context of the European project in which this study is embedded [39].

In total, 12 females and 6 males were included in the control group, 10 females
and 5 males were included in the lower dose group, and 13 females and 7 males were
included in the high dose group. Except for the control group, which received chow with a
corresponding concentration of corn oil, all groups were fed their corresponding diet with
DINCH. Food and water were fed “ad libitum”.

The animals used in this study were housed in the CAI (Animal Facility in Com-
plutense University of Madrid) of the School of Medicine (Registration No.: ES-28079-
0000086), included within the European project (H2020-SCI-BHC-2018-2020 acronym END-
poiNTs PROEX 092/19). The project complies with the provisions of Royal Decree 53/2013
of February 1, which establishes the basic rules applicable for the protection of animals
used in experimentation and other scientific purposes, including teaching.

The present investigation was approved by the Ethical Committee of Complutense
University of Madrid (Madrid, Spain) and by the Autonomous Community of Madrid
(Spain) (PROEX 092/19 signed on 16 October 2019) in accordance with the Guidelines
for the Ethical Care of Experimental Animals of the European Union (2010/63/UE). This
research is within the European project entitled “Novel Testing Strategies for Endocrine
Disruptors in the Context of Developmental NeuroToxicity”, supported by the European
Union’s Horizon 2020 Research and Innovation Programme (ENDpoiNTs project; grant
number: 825759). All authors complied with the ARRIVE guidelines.

4.2. Chemicals and Experimental Design

The animal diet free of phytoestrogens was supplied by the company Granovit (Aargau,
Kaiseraugust, Switzerland), and the company BASF was the supplier of 1,2-cyclohexane
dicarboxylic acid diisononyl ester (DINCH) (Hexamoll). A total of 133.6 g were purchased
and dissolved in ethanol and corn oil in a 10% EtOH/90% corn oil ratio. The dose ingested
by each rat was calculated based on the food consumption data per animal in a pilot study,
which corresponded to 7.3% of body weight.

Rats were housed in special polypropylene cages (Sodispan Research, Coslada, Madrid,
Spain) and water bottles were made of glass, since it was essential to avoid the presence of
bisphenols and plasticizers. A cylindrical environmental enrichment element was included,
also free of EDCs. During the 2 weeks prior to mating, male and female rats were fed with
a diet with the corresponding dose of DINCH. Control animals received the diet without
the chemical. The mating phase occurred within each group after checking that the female
was in the estrus phase. The following morning, a check for sperm-positive vaginal smear
or sperm-plug was carried out and the process was repeated all mornings for 10 days. Diet
treatment was maintained during pregnancy. Six females were pregnant in the control and
LDINCH groups, and ten females were pregnant in the HDINCH group. After birth, the
lactating dams were kept in individual cages with their offspring and dietary treatment
continued until postnatal day 6 (PND6). Throughout the whole experiment (adaptation,
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mating, pregnancy, lactation), the cages of the control group were kept separated from
the DINCH-treated groups to avoid any chance of spreading food containing DINCH that
could contaminate it.

Lactating dams were sacrificed by decapitation using a guillotine. Female and male
offspring were sacrificed at PND6 by decapitation using scissors. The livers were collected
and immediately frozen in liquid nitrogen and stored at −80 ◦C until analysis (Figure 7).
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Figure 7. Experimental design. The diet of the parental generation was different depending on the
experimental group (control, DINCH 30 mg/kg/b.w. and DINCH 300 mg/kg/b.w.). Treatment
was continued until dissection. The organs were removed and preserved at −80 ◦C in cryotubes
after applying liquid nitrogen. The sample size (N) of dams and offspring used for the experiments
varied between 4 and 8 individuals per group depending on the technique used. Figure created
with BioRender.com.

4.3. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Assessment

The total RNA was isolated from liver tissues using TRI Reagent (Sigma-Aldrich,
St. Louis and Burlington, MA, USA), chloroform (Sigma-Aldrich, St. Louis and Burling-
ton, MA, USA), isopropanol (Sigma-Aldrich, MI, USA), and cold 75% ethanol (Panreac
Química, Barcelona, Spain), sequentially, with pertinent homogenization and centrifuga-
tions (13,000 rpm, 10 min, 4 ◦C). The RNA in the resulting pellets (frozen at −80 ◦C) was
quantified in the Biochrom BioDrop™ UV-vis spectrophotometer (Fisher Scientific, St. Louis
and Burlington, MA, USA), to determine sample concentration (µg/µL) and purity. The
samples were then reverse-transcribed into cDNA using the StaRT Reverse Transcription kit
from AnyGenes® (AnyGenes, Paris, France). Then, qRT-PCRs were performed for APAF-1,
Cytochrome c, TNF-α, IL-1β, NF-κB, Bcl-2, BAX, BAD, PPARγ, and PGC-1-α genes using a
7500 Fast Real Time PCR System thermal cycler (Applied Biosystems, Waltham, MA, USA)
according to the instructions of either TaKaRa commercial company (Takara Bio Inc., Shiga,
Japan) or AnyGenes commercial company (AnyGenes, Paris, France). In the case of PCRs
carried out with Takara reagents (Takara Bio Inc., Shiga, Japan), the fast program was used
(20′′ at 95 ◦C followed by 40 cycles of denaturation (3′′ at 95 ◦C) and elongation (30′′ at
60 ◦C)), while for AnyGenes reagents, the program used was the standard (2′ at 50 ◦C, 10′

at 95 ◦C followed by 45 cycles of denaturation (10′′ at 95 ◦C) and elongation (30′′ at 60 ◦C).
The specific primers are shown in Table 3. The amplification of the cDNA coming from
the 18S ribosomal RNA was used as an endogenous control. Changes in gene expression
were calculated using the 2−∆∆CT [40] method. The sample size (N) varied between 6 and
8 samples from each experimental group, for both lactating dams and offspring.
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Table 3. Specific primers used in the different RT-qPCRs.

Name Primer Sequence 5′→3′

18S
Forward GGT GCA TGG CCG TTC TTA

Reverse TCG TTC GTT ATC GGA ATT AAC

BAX
Forward GTGAGCGGCTGCTTGTCT

Reverse GTCCCGAAGTAGGAGAGGA

BAD
Forward GCCCTAGGCTTGAGGAAGTC

Reverse CAAACTCTGGGATCTGGAACA

NFκB-p65
Forward CGAGCTCTAAAGAGTCCCAAG

Reverse CCTCTGGGCCAATCAAACT

NFκB-p100
Forward TGGAACAGCCCAAACAGC

Reverse CACCTGGCAAACCTCCAT

NFκB-p105
Forward CACCTCTTCTCAAAGCAGCA

Reverse TCCAGGTCATAGAGAGGCTCA
Note: Missing primers (IL-1β, TNF-a, Bcl-2, PPAR-γ, PGC-1-α, APAF-1, Cytochrome c are the validated ones
(AnyGenes®)).

4.4. Protein Preparation and Western Blot Analysis

Proteins were extracted from the livers with a modified RIPA lysis buffer (1× PBS,
Igepal 1:100, Sodium Deoxycholate 0.5%, SDS 0.1%, PMSF 1:100, 1 mM EDTA, 1 mM
EGTA), to which protease inhibitor cocktail (sigma #P-2714), PMSF (#P7626, 1 mM), sodium
orthovanadate (#S6506, 2 mM), and sodium pyrophosphate (#S6422, 20 mM) were added.
Samples were sonicated, quantified using the RC DC™ kit (Bio-Rad Laboratories, Rich-
mond, CA, USA) [41], and boiled for 10 min at 100 ◦C in a ratio of 1:1 with gel-loading buffer
(100 mmol/L Tris HCl [pH 6.8], 4% SDS, 20% glycerol, bromophenol blue 0.1, 200 mmol/L
dithiothreitol). Then, 10 µL of each extract (25 µg of proteins) were subjected to SDS-PAGE
using 10% Mini-PROTEAN® TGX™ precast acrylamide gels (Bio-Rad Laboratories, Rich-
mond, CA, USA). After electrophoresis, Stain-Free technology was activated using the
BioRad® ChemiDoc MP Imaging System (Bio-Rad Laboratories, Richmond, CA, USA)
and was transferred onto a PVDF membrane using Trans-Blot® Turbo™ Transfer System
(Bio-Rad Laboratories, Richmond, CA, USA). Stain-Free imaging technology utilizes a poly-
acrylamide gel containing a proprietary trihalo compound to make proteins fluorescent
directly in the gel with a short photoactivation, allowing the immediate visualization of
proteins at any point during electrophoresis and Western blotting. This trihalo compound is
covalently bound to tryptophan residues, enhancing their fluorescence when exposed to UV
light, enabling the detection of proteins at levels as low as 10–25 ng (Bio-Rad Laboratories,
Richmond, CA, USA).

After the transfer, the membranes were incubated at 37 ◦C for 1 h in a blocking solution
composed of 5% non-fat milk in 20 mM Tris pH 7.5, 150 mM NaCl, and 0.01% Tween-20.
Then, the primary antibodies for AIF, Bcl-2, Bcl-xL, PUMA, Caspase-3, Cytochrome c, APAF-
1, PPAR-γ, IL-1β, NFκB-p65, NF-κB-p100, and TNF-α were incubated at 4 ◦C overnight.
These antibodies and their dilution are shown in Table 4. Afterwards, several washing
steps were performed (also with stirring) with TBS-t (10× TBS, MilliQ water and Tween-
20 (Panreac Química, Barcelona, Spain)). Finally, the membranes were incubated with
a polyclonal antibody conjugated to horseradish peroxidase (HRP). Once the secondary
binding was completed, the membranes were washed in TBS-t with shaking.
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Table 4. Primary antibodies used for the Western blot technique.

Antigen Type WB Dilution Catalog Number Manufacturer

AIF RbM 1:1000 5318 Cell Signaling (Danvers, MA, USA)

IL-1β RbP 1:7000 500-P80 PeproTech EC (London, UK)

TNF-α RbP 1:4000 500-P72 PeproTech EC

Bcl-2 RbM 1:1000 2870 Cell Signaling

Bcl-xL RbP 1:1000 21061 SAB (Nanjing, China)

PUMA RbP 1:2500 GTX29643 GeneTex (Hsinchu, Taiwan)

Caspase-3 RbP 1:1000 Bs-0081R Bioss Woburn, MA, USA

Cytochrome c RbP 1:1000 Bs-0013R-TR Bioss

APAF-1 RbP 1:1000 Bs-58R-TR Bioss

PPAR-γ RbP 1:1000 41360 SAB

NF-κB-p65 RbM 1:1000 8242 Cell signaling

NF-κB-p100 RbP 1:1000 14-6733 eBioscience (San Diego, CA, USA)
RbP: rabbit polyclonal antibody; RbM: rabbit monoclonal antibody.

Clarity Western ECL Substrate from Bio-Rad Laboratories (CA, USA) (#1705061) was
used for development by chemiluminescence in the ChemiDoc Imaging System from Bio-
Rad Laboratories (CA, USA). The bands obtained were quantified using Bio-Rad Image Lab
software Image Lab 6.0. Pre-stained protein markers were used for the molecular weight
determination. The measurements were normalized by the amount of protein loaded in
each well (Stain-Free technology), quantifying the corresponding control.

The N of these experiments was 4 samples for each experimental group, both for dams
and offspring.

4.5. Actioxidant Enzyme Activity

Catalase (CAT) and superoxide dismutase (SOD) activities were measured in the liver
homogenates, previously lysed and sonicated with the corresponding buffers. Following
Cayman Chemical kits’ instructions (Catalase Assay Kit—707002; Superoxide Dismutase
Assay Kit—706002), CAT samples were homogenized in 50mM potassium phosphate buffer,
pH 7.0, containing 1 mM EDTA per gram tissue; and SOD samples were homogenized
in HEPES buffer, pH 7.2, containing 1 mM EGTA, 210 mM mannitol, and 70 mM sucrose
per gram tissue. Then, said enzymes’ activities were analyzed spectrophotometrically
according to the manufacturer’s instructions (Cayman Chemical, Ann Arbor, MI, USA),
and normalized according to total liver protein content. CAT activity was determined
by a chemical reaction with methanol in the presence of an optimal concentration of
H2O2. The produced formaldehyde was measured spectrophotometrically using 4-amino-
3-hydrazino-5-mercapto-1,2,4-triazole as chromogen at 540 nm. SOD activity was evaluated
by measuring the dismutation of superoxide radicals generated by xanthine oxidase and
hypoxanthine. The standard curve generated using this enzyme allows for the activity of
the three types of SOD (Cu/Zn, Mn and FeSOD) to be precisely quantified.

4.6. Glutathione Concentrations

Liver was homogenized in phosphate buffer 50 mM and EDTA 0.1 M, pH 8. Then,
10 µL of HClO4 were added per mL of homogenate, and supernatants were used for the
quantification of both reduced (GSH) and oxidized (GSSG) glutathione by o-phthalaldehyde
(OPT) at pH 12 and pH 8, respectively, resulting in the formation of a fluorescent compound.
Fluorescence was measured at 350 nm excitation and 420 nm emission [42]. Results were
expressed as nmol of GSSH and GSH per mg of protein. Moreover, the GSSG/GSH ratio
was calculated for each sample.
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4.7. Statistical Analysis

Results are expressed as the mean ± SEM (Standard Error of the Mean). Due to the low
sample size and the observed deviations from normality in the data distribution (assessed
using Shapiro–Wilk test), a non-parametric Kruskal–Wallis test was chosen for the statistical
analysis. This was followed by a Dunn-Bonferroni post hoc test for multiple comparisons
to control for type I error. A reliability level of 95% was considered statistically significant
(p < 0.05).

Moreover, in order to evaluate the associations between the various parameters mea-
sured for Long-Evans lactating rats (dams) and their postnatal day 6 (PND6) offspring
(pups) exposed to DINCH, the following association statistics were performed. Data from
dams and offsprings were analyzed focusing on the correlation between the same values
analyzed in dams and pups, and on the association between inflammatory, apoptotic, and
oxidative stress parameters for both dams and pups. Pearson correlation coefficients were
calculated for each pair of variables for the dams and pups’ datasets. Then, Pearson correla-
tion coefficients were calculated between the same variables in dams and pups to assess the
consistency of DINCH exposure effects across generations. Finally, associations between
inflammatory markers (IL1-b, TNF-a, NFkB-p65, NFkB-p), apoptotic markers (BCL-2, BCL-
XL, CASP-3, APAF-1, Cytc), and oxidative stress markers (CAT, SOD, GSSG/GSH, GSSG)
were calculated for both dams and pups. All statistical analyses were performed using
Prism v8 (GraphPad Software, Inc., San Diego, CA, USA).

5. Conclusions

Altogether, the results of the present work indicate that DINCH oral administration
at two different doses to Long-Evans rats during pregnancy and lactation can induce
liver alterations in individuals exposed to DINCH, as well as in PND6 offspring after
perinatal exposure. Specifically, DINCH promoted pro-inflammatory pathways, declining
the activity of antioxidant liver enzymes and therefore raising oxidative stress levels.
Also, this compound led to mitochondrial damage, which resulted in the activation of
mitochondrial apoptotic pathways and liver damage. Although alterations were observed
at both doses of DINCH, more noticeable effects occurred at the low one, resulting in an
inverse dose–response relationship. Nevertheless, further research is needed to elucidate
the health risk of DINCH exposure both in adult life and offspring.
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