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Abstract: Hepatocellular carcinoma is characterized by high recurrence rates and poor prognosis.
Cancer stem cells contribute to tumor heterogeneity, treatment resistance, and recurrence. This study
aims to identify key genes associated with stemness and immune cell infiltration in HCC. We analyzed
RNA sequencing data from The Cancer Genome Atlas to calculate mRNA expression-based stemness
index in HCC. A weighted gene co-expression network analysis was performed to identify stemness-
related gene modules. A single-sample gene set enrichment analysis was used to evaluate immune
cell infiltration. Key genes were validated using RT-qPCR. The mRNAsi was significantly higher in
HCC tissues compared to adjacent normal tissues and correlated with poor overall survival. WGCNA
and subsequent analyses identified 10 key genes, including minichromosome maintenance complex
component 2, cell division cycle 6, forkhead box M1, NIMA-related kinase 2, Holliday junction
recognition protein, DNA topoisomerase II alpha, denticleless E3 ubiquitin protein ligase homolog,
maternal embryonic leucine zipper kinase, protein regulator of cytokinesis 1, and kinesin family
member C1, associated with stemness and low immune cell infiltration. These genes were significantly
upregulated in HCC tissues. A functional enrichment analysis revealed their involvement in cell
cycle regulation. This study identified 10 key genes related to stemness and immune cell infiltration
in HCC. These genes, primarily involved in cell cycle regulation, may serve as potential targets for
developing more effective treatments to reduce HCC recurrence and improve patient outcomes.

Keywords: hepatocellular carcinoma; cancer stem cells; mRNA expression-based stemness index;
cell cycle genes; tumor microenvironment

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
accounting for nearly 90% of all occurrences. Cirrhosis, hepatitis B virus or hepatitis C
virus infection, and chronic alcohol abuse are the leading causes of liver cancer. Other
risk factors for liver cancer include aflatoxin B1 consumption and metabolic syndrome [1].
HCC has significant intratumor and interpatient heterogeneity. Interpatient heterogeneity
is associated with individualized therapy, and intratumor heterogeneity has a significant
impact on the efficacy of medicines in individuals [2]. Intratumor heterogeneity contributes
to the difficulty of treating HCC, resulting in poor patient outcomes and survival [3].
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Up to 50 to 70% of patients may develop hepatic recurrence after 5 years. Furthermore,
70% of patients with recurrent HCC have an early relapse within two years of surgery,
which is largely incurable and has been associated with a poor outcome [4]. Among the
various factors contributing to tumor refractory, the presence of cancer stem cells (CSCs)
has been notorious.

CSCs account for less than 1% of all tumor cells and are characterized by their ability
to self-renew and differentiate [5,6]. CSCs are formed at the time of tumor onset from differ-
entiated cells or adult tissue-resident stem cells [7]. CSCs are assumed to be responsible for
generating a heterogeneous tumor lesion, and contributing to treatment resistance, tumor
relapse, metastasis, and the avoidance of immunological surveillance [8,9]. CSCs escape
multiple drug actions through various mechanisms, including the activation of DNA repair
pathway, high expression of drug efflux-related proteins, the ability to reconstitute original
tumors, and activation of signaling pathways involved in epithelial–mesenchymal transi-
tion, hypoxia stimulation, and abnormal angiogenesis [10–12]. Recently, several strategies
have been developed with the specific goal of eradicating CSCs and their niche [13]. The
search for biomarkers that characterize these CSCs and enable therapeutic and prognos-
tic prediction or tracking is necessary. Numerous surface and intracellular biomarkers
have been evaluated for CSC purification and correlated with diagnosis, treatment, and
prognosis in various cancer cells [14].

In HCC, a number of markers for liver CSCs have been identified, including CD13,
CD24, CD44, CD47, CD90, CD133, epithelial cell adhesion molecule (EpCAM), oval cell
marker, delta-like non-canonical Notch ligand 1, keratin 19, ATP-binding cassette super-
family G member 2, aldehyde dehydrogenase 1, etc. [10,15,16]. Several clinical trials have
been launched for cancer treatments targeting CSC-specific surface markers or stemness-
related pathways [16,17]. For example, catumaxomab, an FDA-approved chimeric antibody
that binds to antigens CD3 and EpCAM, is used in the treatment of malignant ascites.

Machine learning is already used effectively in several areas, such as diagnosing
cancer, predicting patient outcomes, and informing treatment planning [18]. Stem features
extracted from transcriptome and epigenetic signatures can also be achieved through ma-
chine learning [19]. The mRNA expression-based stemness index (mRNAsi) reflects cancer
stemness was calculated by analyzing RNA sequencing data, and the epigenetic regulation
based-index (EREG-mRNAsi) was calculated by the epigenetic regulation features learned
through a one-class logistic regression (OCLR) algorithm [19]. These stem cell indexes
provide ideas for exploring genes related to the existence and maintenance of CSCs in a
variety of cancers and discovering the unanticipated biomarkers of CSCs [20–22].

In this study, we aimed to establish the stemness-associated CSC genes for HCC.
RNA sequencing data for HCC recurrence tissue were obtained from The Cancer Genome
Atlas (TCGA) database. We evaluated the association between the mRNAsi and HCC.
Next, the differential expression genes (DEGs) between HCC and adjacent normal liver
tissues were analyzed through weighted gene co-expression network analysis (WGCNA).
Using univariate Cox regression analysis, we screened out mRNAsi-related genes. After
survival analysis, 25 key genes were identified. We further evaluated the potential role
of 25 key genes in immune cell infiltration by single-sample gene set enrichment analysis
(ssGSEA). Finally, we identified 10 stemness-associated CSCs genes, including cell division
cycle 6 (CDC6), denticleless E3 ubiquitin protein ligase homolog (DTL), forkhead box
M1 (FOXM1), Holliday junction recognition protein (HJURP), kinesin family member
C1 (KIFC1), minichromosome maintenance complex component 2 (MCM2), maternal
embryonic leucine zipper kinase (MELK), NIMA-related kinase 2 (NEK2), protein regulator
of cytokinesis 1 (PRC1), and DNA topoisomerase II alpha (TOP2A). Functional enrichment
analysis revealed that these genes are involved in cell cycle regulation. Key genes were
validated using RT-qPCR in prospectively collected HCC samples vs. adjacent liver tissues
in 20 individuals.
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2. Results
2.1. mRNAsi and EREG-mRNAsi in HCC

mRNAsi and EREG-mRNAsi are important indexes to evaluate the overall stemness
of tumor cells. The mRNAsi and EREG-mRNAsi scores varied from 0 to 1 based on the
OCLR method, representing stemless and stemness. The mRNAsi and EREG-mRNAsi
were compared between 141 HCC tissues and 21 adjacent normal tissues. The mRNAsi
and EREG-mRNAsi were higher in the HCC group than in the adjacent normal group
(Figure 1A,B). We also evaluated the correlation between the mRNAsi and clinicopatho-
logical characteristics. The mRNAsi values for the pathologic tumor stage I group were
significantly lower than the stage II group (p < 0.05). However, no difference in the mRNAsi
values was seen between the stages I and III groups (Figure 1C). The pathologic T1 stage
had considerably lower mRNAsi values compared to the pathologic T2 and T4 stages
(p < 0.05); however, there was no difference with the T3 stage (Figure 1D). The difference in
mRNAsi values was not observed for different pathologic N or M stages. (Figure 1E,F). The
results showed that the mRNAsi did not have a significant correlation with the tumor stage
of HCC. Next, a Kaplan–Meier curve was used to assess the impact of mRNAsi values on
the prognosis of HCC patients. Patients with lower mRNAsi values had prolonged overall
survival (p = 0.011) (Figure 1G). These results indicated that the mRNAsi is significantly
related to the occurrence and overall survival of HCC.
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Figure 1. Relationships between the mRNAsi and the clinicopathological characteristics and prognosis
of HCC patients. (A) mRNAsi score and (B) EREG-mRNAsi score in HCC group and adjacent normal
group. (C) Relationship between mRNAsi and clinical stage. (D–F) Relationship between mRNAsi
and tumor status. (G) Kaplan–Meier analysis of the relationship between mRNAsi and overall
survival of HCC. mRNAsi: mRNA expression-based stemness index; EREG-mRNAsi: epigenetic
regulation based-index.
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2.2. mRNAsi Evaluated in the Context of the Tumor Mutation

We further analyzed the relationship between the mRNAsi and the mutation profiles
of HCC with the expression of tumor mutational burden (TMB), a numeric index that
expresses the number of mutations per megabase (muts/Mb) carried by tumor cells in a
neoplasm [23]. The results showed that missense mutations, single-nucleotide polymor-
phisms, and C > T transitions predominated among the variant classifications, variant
types, and SNV categories of HCC, respectively (Figure 2A–C). The number of altered
bases from each patient is shown in Figure 2D. According to the mutation frequency, the
top 10 mutated genes were displayed in Figure 2E, including TP53 (36%), TTN (24%),
CTNNB1 (26%), ALB (16%), MUC16 (11%), PCLO (11%), APOB (11%), OBSCN (10%), MUC4
(10%), and FLG (11%). A waterfall plot was used to illustrate the mutation information
for the top 30 mutated genes in each patient (Figure 2G). These genes were mutated in
94.29% of HCC. Finally, we analyzed the correlations between somatic mutations in the
top 10 mutated genes and the mRNAsi. The result showed that the mRNAsi values of the
high TMB group were significantly higher than those of the low TMB group (Figure 2F).
These results indicated that the mRNAsi is related to the tumor mutation of HCC.
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Figure 2. Summary of the TMB information. (A) Missense mutation was the most common variant
classification and had the highest frequency. (B) SNP occurred most frequently in variant types.
(C) C > T accounted for the most fraction in SNV. (D) The number of tumor mutation burdens in
specific samples. (E) The top 10 mutated genes in HCC. (F) Relationship between mRNAsi and TMB.
(G) Landscape of mutation profiles in HCC. SNP: single-nucleotide polymorphism; INS: insertion;
DEL: deletion; SNV: single-nucleotide variant.



Int. J. Mol. Sci. 2024, 25, 11969 5 of 15

2.3. Identification of mRNAsi-Related Key Genes by WGCNA

To construct the mRNAsi-related modules by WGCNA, the differential analysis was
first performed using RNA sequencing data from 21 HCC tissues and 21 adjacent normal
tissues. From this analysis, a total of 2799 DEGs (|log2 fold change| > 1, p < 0.05) were
screened. We extracted the top 108 DEGs (|log2 fold change| > 3, p < 0.05) and visualized
them in a volcano plot (Figure 3A) and heat map (Figure 3B). Then, WGCNA was used to
analyze the filtered DEGs to construct a co-expression network (Figure 3C,D). The most
critical parameter of the soft threshold power was set at 6 to ensure the integral connectivity
of co-expression modules. The distribution of genes in every module was visualized as
shown in (Figure 3E). There were seven modules in the WGCNA results, and the blue
module (0.61, p < 0.05) and the yellow module (–0.82, p < 0.05) were closely related to the
mRNAsi (Figure 3F). Then, we investigated the key genes that were highly associated with
HCC in each module, using the threshold values Module Membership > 0.8 and Gene
Significance > 0.3 (Figure 3G,H).

As a result, we adopted 103 genes from blue and yellow modules as the target genes. To
narrow down the target genes, we improved the criteria of DEGs (|log2 fold change| > 2,
p < 0.05) and intersected them with 103 target genes. A total of 43 target genes were identified
for subsequent studies (Figure 3I). Next, we displayed the survival curve for each gene and
obtained 25 key genes closely related to the survival of HCC (Supplemental Figure S1).

2.4. The Immune Cell Infiltration Analysis by ssGSEA

To evaluate the potential role of 25 key genes in the tumor immune microenvironment,
the immune cell infiltration level of 28 immune cell types was inferred using ssGSEA
(Figure 4A). According to the unsupervised learning, the 141 HCC samples were clustered
into two groups (cluster 1 and cluster 2) (Figure 4B). The samples in cluster 1 were char-
acterized by a significantly higher immune score and ESTIMATE score, but the stromal
score did not increase significantly (Figure 4C–E). This result revealed that the samples
in cluster 1 had a higher level of immune cell infiltration. Cluster 2 showed a reduced
connection with immune infiltration. As a result, cluster 1 was designated as the “high”
group, whereas cluster 2 was designated as the “low” group. We further investigated the
25 key gene expressions between the high and low groups. As a result, the expression of
10 genes was significantly upregulated in the low group (Figure 5), including CDC6, DTL,
FOXM1, HJURP, KIFC1, MCM2, MELK, NEK2, PRC1, and TOP2A. This result indicated
that these 10 key genes were associated with immune cell infiltration in HCC.

2.5. Validation and Functional Enrichment Analysis of Key Genes

A heat map depicted the expression levels of ten critical genes in 141 HCC and 21 adja-
cent normal tissues (Figure 6A). Real-time qPCR was used to determine the expression levels
of 10 key genes (20 adjacent normal and 20 HCC samples). Figure 6C demonstrates that all
10 key genes were significantly upregulated in HCC tissue. In addition, the expression of
10 key genes was significantly higher in the advanced stage of HCC (stage III) than in the early
stage (stage I+II) (Table 1). These results indicated that these 10 key genes were associated
with the pathological stage of HCC. To explore the interactions between the 10 key genes, we
developed protein–protein interaction networks by STRING. As a result, the 10 nodes and
44 edges were formed in the network (Figure 6B). These genes were biologically connected as
a group. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. As shown in Figure 6D, the most distinguished pathway was
related to the cell cycle. We further performed a gene ontology analysis of 10 key genes. For
biological processes, the key genes were mainly enriched in chromosome segregation and cell
cycle G2/M phase transition (Figure 6E). In the cellular component, key genes are enriched in
spindles, condensed chromosomes, and the midbody (Figure 6F). In molecular function, the
key genes were associated with ATPase activity, DNA-dependent ATPase activity, catalytic
activity, and acting on DNA (Figure 6G). Functional enrichment analysis revealed that cell
cycle regulation may be relevant for HCC cancer cell stemness pathways.
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Figure 3. The mRNAsi index associated with WGCNA of HCC. (A,B) A volcano plot and heat
map of DEGs in HCC; green indicates downregulated genes and red indicates upregulated genes.
|Log2FoldChange| >3, p < 0.05. (C,D) Determination of soft threshold for the similarity matrix.
The scale-free correlation coefficient and the mean connectivity for soft threshold powers were
analyzed. The number represents the power value and the horizontal axis represents the soft threshold
power = 6. (E,F) Gene clustering and gene module partition results. The different branches of the
cluster dendrogram correspond to different gene modules that are represented by different colors.
(G,H) The correlation between the gene modules and mRNAsi. The Pearson correlation coefficient
of the gene module and the traits was plotted as a heat map. (I) The intersection of the DEGs and
mRNAsi-related WGCNA-derived genes. DEG: differential expression genes; WGCNA: weighted
gene co-expression network analysis.
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and cluster 2) using unsupervised learning. (C–E) Differences in immune score, stromal score, and
ESTIMATE score between clusters 1 and 2.
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Figure 6. Functional enrichment analysis of 10 key genes in HCC. (A) The clustered heat map in HCC
and adjacent normal tissue. (B) PPI networks were performed for the key genes by STRING. (C) RT-
qPCR was performed to measure the expression of 10 key genes. The enrichment analysis of the
10 key genes of (D) KEGG pathway, (E) biological process, (F) cellular component, and (G) molecular
function. * indicated a significance of p < 0.05.
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Table 1. The expression of 10 key genes in different pathological stages of HCC.

Gene Stage I+II Stage III p-Value

n = 16
(Median [Q1, Q3])

n = 4
(Median [Q1, Q3])

PRC1 6.71 [3.31, 8.66] 18.61 [12.87, 24.48] 0.005

DTL 7.75 [2.37, 13.44] 31.78 [25.79, 36.07] 0.021

TOP2A 10.76 [2.80, 13.55] 27.94 [23.77, 30.31] 0.016

NEK2 4.80 [1.39, 10.95] 18.88 [12.66, 27.07] 0.028

CDC6 9.11 [4.03, 12.13] 30.80 [15.03, 57.51] 0.009

HJURP 6.99 [2.37, 10.26] 17.47 [10.17, 29.12] 0.036

MCM2 4.46 [2.46, 6.50] 9.80 [8.37, 11.20] 0.036

KIFC1 6.55 [2.94, 10.92] 18.34 [15.06, 23.55] 0.012

MELK 4.34 [2.15, 9.91] 17.70 [12.77, 25.05] 0.021

FOXM1 8.06 [2.58, 9.54] 15.32 [13.34, 17.82] 0.016
CDC6: cell division cycle 6; DTL: denticleless E3 ubiquitin protein ligase homolog; FOXM1: forkhead box M1;
HJURP: Holliday junction recognition protein; KIFC1: kinesin family member C1; MCM2: minichromosome
maintenance complex component 2; MELK: maternal embryonic leucine zipper kinase; NEK2: NIMA-related
kinase 2; PRC1: protein regulator of cytokinesis 1; TOP2A: DNA topoisomerase II alpha.

3. Discussion

HCC is an aggressive disease with poor outcomes. According to the CSC concept,
tumor growth is driven by a subpopulation of tumor stem cells within malignancies.
This concept explains clinical data in HCC and other cancers, such as tumor recurrence
after chemotherapy or radiotherapy and treatment resistance [17]. Understanding and
targeting CSCs is essential for developing more effective treatments that can reduce the
high recurrence rate of HCC, ultimately improving outcomes for HCC patients [24].

The mRNAsi is a metric used in cancer research to quantify the stemness of tumor
cells based on their gene expression profiles. mRNAsi is used to identify genes associated
with tumor stemness in many cancers, including gastric cancer [25], breast cancer [26], pan-
creatic ductal adenocarcinoma [27], and HCC [28]. In this study, we explored the difference
between the mRNAsi in HCC samples and adjacent normal samples, and their relation-
ship to the clinicopathological characteristics of HCC patients. As expected, HCCs had
significantly higher mRNAsi than adjacent normal tissues. Patients with the high mRNAsi
scores have lower survival rates than patients with low mRNAsi scores. These results were
consistent with the current studies that show that an increase in tumor stemness was closely
associated with the poor prognosis and the disease progression of HCC patients [29–31].
Furthermore, we established that mRNAsi is associated with tumor mutations in HCC
using TMB analysis. The high TMB group had considerably higher mRNAsi values than
the low TMB group. Current studies have shown that there can be a positive correlation
between TMB and mRNAsi in certain cancers [25,32]. High-risk HCC patients with a poor
prognosis had a higher TMB and mRNAsi than those in the low-risk group [33].

Based on WGCNA mining, for the gene modules closely related to mRNAsi and
subsequent ssGSEA analysis, we obtained 10 key genes related to immune cell infiltration
in HCC, including CDC6, DTL, FOXM1, HJURP, KIFC1, MCM2, MELK, NEK2, PRC1, and
TOP2A. These 10 key genes were associated with the pathological stage of HCC. MCM2
is an important regulator of DNA replication. The dysfunction of MCM2 results in the
occurrence and progression of multiple cancers [34]. The expression of MCM2 in HCC
tissue is higher than in normal liver tissue. MCM2 enhances the stemness of HCC cells,
while the downregulation of MCM2 inhibits resistance towards sorafenib [35]. CDC6
plays an important role in DNA replication and cell cycle regulation. The dysregulation of
CDC6 may negatively impact genome integrity and induce malignant cell proliferation [36].
The expression levels of CDC6 are higher in HCC tissues compared to adjacent normal
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tissues. The expression of CDC6 is closely related to the infiltrating levels of CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC tissues [36]. FOXM1 is
a proliferation-associated transcription factor that plays a critical role in cancer develop-
ment and progression. FOXM1 is a master regulator of the G1–S and G2–M phases of the
cell cycle and mitotic spindle integrity [37]. FOXM1 is overexpressed in human HCC tissues
and is an important risk factor for HCC recurrence and survival [38]. NEK2 is a member of
the NEK serine/threonine kinase and plays a significant role in cell cycle progression in
the interphase and M phase. NEK2 enhances HCC metastasis and is correlated with recur-
rence [39]. HJURP, a chaperone protein of centromere protein A, is upregulated in HCC and
associated with poor survival in patients [40]. TOP2A is a topoisomerase IIα that regulates
DNA synthesis, transcription, and chromosome segregation during mitosis. A high expres-
sion of TOP2A in HCC is associated with disease progression and metastasis [41]. DTL,
also known as CDT2 (chromatin licensing and DNA replication factor 2), regulates CDT1
degradation following DNA damage. DTL is overexpressed in HCC, and high levels of
DTL expression are associated with poor clinical outcomes and increased somatic mutation
rates [42]. MELK modulates intracellular signaling and influences various cellular and
biological processes, including the cell cycle. MELK is highly overexpressed in HCC and
its overexpression strongly correlates with early recurrence and poor survival in patients.
MELK siRNA decreased HCC cell proliferation, invasion, stemness, and tumorigenicity via
triggering apoptosis and mitosis [43]. PRC1 is involved in cytokinesis and plays key roles in
microtubule organization. PRC1 is upregulated in HCC and its expression correlates with
early HCC recurrence. PRC1 exerts oncogenic effects by promoting cancer proliferation,
stemness, metastasis, and tumorigenesis [44]. KIFC1 belongs to the C-type kinesin of the
kinesin-14 family and plays important roles in intracellular transport and cell division.
KIFC1 is highly overexpressed in HCC and positively associated with advanced stages and
poor prognosis [45]. In summary, most of these key genes of HCC in this study are closely
related to cancer progression, metastasis, cancer recurrence, and cell cycle regulation of
HCC. It is consistent with functional enrichment analysis, which shows that these genes
are mainly involved in the cell cycle.

Through ssGSEA, we found that these 10 key genes were significantly highly expressed
in the low immune cell infiltration group. Current research demonstrated that the HCC
group with the best prognosis had higher CD4+ T cell infiltration. The HCC group with
the worse prognosis had a low CD8+/regulatory T cell ratio [46]. HCC exhibits reduced
immune cell infiltration, which may be partly due to cell cycle-influenced changes in the
tumor microenvironment.

4. Materials and Methods
4.1. Data Acquisition and Processing

Fragments Per Kilobase of transcript per Million (FPKM) of RNA sequence data of
the HCC were obtained from TCGA database [Project ID = “TCGA-LIHC” (https://portal.
gdc.cancer.gov/ accessed on 1 October 2023)], including 371 HCC tissues and 50 adjacent
normal tissues. HCC was defined as 141 HCC tissues and 21 adjacent normal tissues with
overall survival greater than disease-free survival. All FPKM data were transformed into
transcripts per million and normalized. The mRNAsi and EREG-mRNAsi scores were
obtained using OCLR algorithm, which was published by Malta et al. [19]. The immune
scores, stromal scores, and estimate scores were calculated by applying the ESTIMATE
algorithm, where R package = estimate.

4.2. Mutation Analysis

Simple Nucleotide Variation data from TCGA database (project = TCGA-LIHC) were
analyzed using R package “maftools” (v2.8.0). We performed comprehensive mutation pro-
filing, including mutation frequency calculation, classification into categories (e.g., missense,
nonsense), and spectrum analysis. TMB was calculated as non-synonymous mutations
per megabase. An oncoplot visualized the mutation landscape across samples for the
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top 30 mutated genes. Co-occurrence and mutual exclusivity of gene mutations were
assessed using pairwise Fisher’s exact tests. To correlate with stemness, samples were
divided into high and low TMB groups based on median TMB, and mRNAsi values were
compared between groups using Wilcoxon rank-sum test. All analyses used R (v4.0.3),
with p < 0.05 considered significant.

4.3. DEGs of HCC

The DEGs between HCC and adjacent normal liver tissues in HCC were analyzed
using the “FindMarkers” in the R package. In WGCNA, the cut-off thresholds employed for
identifying DEGs were |log2 fold change| > 1 and p value < 0.05. In CSC genes selection,
the cut-off thresholds were |log2 fold change| > 2 and p-value < 0.05.

4.4. WGCNA

The “WGCNA” in the R package was used to construct the co-expression network
of the DEGs in HCC. We chose 6 as the optimal soft threshold (power) to enhance matrix
similarity and construct a co-expression network. The module–trait correlations with
mRNAsi and EREG-mRNAsi were constructed by R software. We chose the two modules
with the highest mRNAsi correlation, ran correlation analyses on each, and screened for
key genes associated with the module and the mRNAsi index. Key genes were intersected
with DEGs (|log2 fold change| > 2 and p vaule < 0.05) to narrow down the candidates
of CSC genes.

4.5. The Kaplan–Meier Survival Analysis

In the Kaplan–Meier survival analysis section, we evaluated the impact of mRNAsi
values on the overall survival of HCC patients. The Kaplan–Meier method was employed
to generate survival curves, comparing patients with high and low mRNAsi scores. The log-
rank test was used to assess statistical significance between the groups. The Kaplan–Meier
survival analysis was evaluated using the “survival” and “surviminer” in R package.

4.6. Single-Sample Gene Set Enrichment Analysis

In the ssGSEA section, the “ssGSEA” in the R package was used to calculate the
representative immune cell score for each sample. Gene expression data from TCGA were
used as input, and immune cell reference datasets were obtained from the TISIDB database
Version 4.0 (http://cis.hku.hk/TISIDB/ accessed on 2 November 2023). Each sample was
scored based on the enrichment of immune cell-specific gene signatures, allowing us to
assess the relative abundance of immune cell types in each tumor. These scores were
then used to categorize the samples into distinct immune cell infiltration profiles. This
approach provided a comprehensive overview of the immune landscape within the tumor
microenvironment of HCC.

4.7. Enrichment Analysis of CSCs Genes and Protein–Protein Interaction Network

Gene ontology and KEGG pathway enrichment were performed to explore the biolog-
ical functions and pathways associated with the identified CSC genes using the R packages
“clusterProfiler”, focusing on biological processes, cellular components, and molecular
functions. The PPI network was constructed using the Search Tool for Retrieval of Interact-
ing Genes (STRING, https://string-db.org/ accessed on 2 November 2023, version11.0b)
online database [47] to identify potential interactions among the CSC-related genes. The
PPI network was visualized to highlight the key nodes and edges, allowing us to infer the
functional connectivity and molecular mechanisms underpinning CSCs in HCC.

4.8. RT-PCR

This study included 20 individuals with HCC who underwent tumor excision (IRB
number, 202201394B0). Clinical information of these 20 individuals is summarized in
Supplemental Table S1. Tissue specimens from both HCC and adjacent normal tissues were
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obtained and stored using RNAprotect Tissue Reagent (Qiagen, Hilden, Germany). Total
RNA was extracted from each tissue sample using miRNeasy Mini Kit (Qiagen) and reverse
transcribed to cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, Foster City, CA, USA). The gene expression level was assessed using Power SYBR
Green PCR Master Mix (Applied Biosystems) and 7500 Real-Time PCR System (Applied
Biosystems). The sequences of the primers used are listed in Supplemental Table S1.

4.9. Statistical Analysis

All results were presented as the median value with interquartile range in box plot.
Nonparametric statistics were performed using the Wilcoxon or Kruskal–Wallis test. In
RT-PCR, the results were presented as the mean ± standard error. Pairwise comparisons
were performed using the Mann–Whitney test. The differences were considered signifi-
cant at p < 0.05.

5. Conclusions

In summary, we established 10 key genes of the cell cycle pathway that are associated
with tumor cell stemness and immune cell infiltration. This provides a new possibility for
investigating the mechanism of tumor cell stemness and immune cell infiltration in HCC.
However, this study was based on bioinformatics analysis results, and further experiments
are needed to confirm how these genes regulate CSCs, which influence HCC prognosis.
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