Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
- -
- 15 (58%) were non-comparative studies and the mean score was 12/16 which represents a moderate quality;
- -
- 11 (42%) were comparative studies and the mean score was 19/24 which represents a very high quality.
4. Discussion
- -
- ctRNA Prognostic Value
- -
- ctRNA Monitoring Role
- -
- ctRNA Diagnostic Value
- -
- Ewing Sarcoma and ctRNA: Liquid or Bone Marrow Biopsy?
- -
- ctRNA as Target-to-Target Therapy
- -
- ctRNA and Soft Tissue Sarcoma
- -
- ctRNA and Its Use with Different Types of Cancer
- -
- Liquid Biopsy, Pros and Cons
- -
- Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wunder, J.S.; Nielsen, T.O.; Maki, R.G.; O’Sullivan, B.; Alman, B.A. Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol. 2007, 8, 513–524, Erratum in Lancet Oncol. 2007, 8, 670. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, T.G.; Alonso, M.; Avnet, S.; Banito, A.; Burdach, S.; Cidre-Aranaz, F.; Di Pompo, G.; Distel, M.; Dorado-Garcia, H.; Garcia-Castro, J.; et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol. Med. 2020, 12, e11131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence—SEER 9 Regs Research Data, Nov 2010 Sub (1973–2008)—Linked To County Attributes—Total U.S., 1969–2009 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2011, Based on the November 2010 Submission. Available online: www.seer.cancer.gov (accessed on 21 October 2024).
- Cancer.gov. Available online: https://www.cancer.gov/types/soft-tissue-sarcoma/hp (accessed on 21 October 2024).
- Burningham, Z.; Hashibe, M.; Spector, L.; Schiffman, J.D. The epidemiology of sarcoma. Clin. Sarcoma Res. 2012, 2, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ilié, M.; Hofman, P. Pros: Can tissue biopsy be replaced by liquid biopsy? Transl. Lung Cancer Res. 2016, 5, 420–423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fulchignoni, C.; Cianni, L.; Matrangolo, M.R.; Cerrone, M.; Cavola, F.; Pataia, E.; Vitiello, R.; Maccauro, G.; Farsetti, P.; Rovere, G. A Two-Step Approach to the Surgical Treatment of Soft-Tissue Sarcomas. Curr. Oncol. 2024, 31, 2805–2816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perisano, C.; Vitiello, R.; Sgambato, A.; Greco, T.; Cianni, L.; Ragonesi, G.; Malara, T.; Maccauro, G.; Martini, M. Evaluation of PD1 and PD-L1 expression in high-grade sarcomas of the limbs in the adults: Possible implications of immunotherapy. J. Biol. Regul. Homeost. Agents. 2020, 34, 289–294. [Google Scholar] [PubMed]
- Singh, H.K.; Kilpatrick, S.E.; Silverman, J.F. Fine needle aspiration biopsy of soft tissue sarcomas: Utility and diagnostic challenges. Adv. Anat. Pathol. 2004, 11, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Eslami-S, Z.; Cortés-Hernández, L.E.; Cayrefourcq, L.; Alix-Panabières, C. The Different Facets of Liquid Biopsy: A Kaleidoscopic View. Cold Spring Harb. Perspect. Med. 2020, 10, a037333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, U.J.; Alsulimani, A.; Ahmad, F.; Mathkor, D.M.; Alsaieedi, A.; Harakeh, S.; Nasiruddin, M.; Haque, S. Bioplatforms in liquid biopsy: Advances in the techniques for isolation, characterization and clinical applications. Biotechnol. Genet. Eng. Rev. 2022, 38, 339–383. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins, I.; Ribeiro, I.P.; Jorge, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Melo, J.B.; Carreira, I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomes, A.Q.; Nolasco, S.; Soares, H. Non-coding RNAs: Multi-tasking molecules in the cell. Int. J. Mol. Sci. 2013, 14, 16010–16039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, X.; Xiong, K.; Anthon, C.; Hyttel, P.; Freude, K.K.; Jensen, L.J.; Gorodkin, J. WebCircRNA: Classifying the Circular RNA Potential of Coding and Noncoding RNA. Genes 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kan, C.M.; Pei, X.M.; Yeung, M.H.Y.; Jin, N.; Ng, S.S.M.; Tsang, H.F.; Cho, W.C.S.; Yim, A.K.; Yu, A.C.; Wong, S.C.C. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 11026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botti, G.; Cantile, M. Circulating long non-coding RNAs: Could they be a useful tool for cancer therapy monitoring? Expert Rev. Anticancer Ther. 2018, 18, 1167–1168. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, J.; Ochiya, T. Circulating microRNAs: Next-generation Cancer Detection. Keio J. Med. 2020, 69, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.N.; Luo, S.; Liu, C.; Piao, Z.; Gou, W.; Wang, Y.; Guan, W.; Li, Q.; Zou, H.; Yang, Z.Z.; et al. miR-491 Inhibits Osteosarcoma Lung Metastasis and Chemoresistance by Targeting αB-crystallin. Mol. Ther. 2017, 25, 2140–2149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, E.G.; Pyo, S.J.; Cui, Y.; Yoon, S.H.; Nam, J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform. 2022, 23, bbab504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Ruan, Y.; Zhang, H.; Shen, Y.; Li, T.; Xiao, B. Tumor-suppressive circular RNAs: Mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci. 2019, 110, 3630–3638. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botti, G.; Giordano, A.; Feroce, F.; De Chiara, A.R.; Cantile, M. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J. Cell Physiol. 2019, 234, 19249–19255. [Google Scholar] [CrossRef] [PubMed]
- Chellini, L.; Palombo, R.; Riccioni, V.; Paronetto, M.P. Oncogenic Dysregulation of Circulating Noncoding RNAs: Novel Challenges and Opportunities in Sarcoma Diagnosis and Treatment. Cancers 2022, 14, 4677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, J.; Liu, X.; Li, T.; Xing, P.; Zhang, C.; Yang, J. The new horizon of liquid biopsy in sarcoma: The potential utility of circulating tumor nucleic acids. J. Cancer 2020, 11, 5293–5308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perakis, S.; Speicher, M.R. Emerging concepts in liquid biopsies. BMC Med. 2017, 15, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, T.; Berger, A.; Zinzindohoué, F.; Micard, S.; Landi, B.; Blons, H.; Beaune, P.; Cugnenc, P.-H.; Laurent-Puig, P. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int. J. Cancer 2002, 100, 542–548. [Google Scholar] [CrossRef]
- Garcia-Murillas, I.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 2015, 7, 302ra133. [Google Scholar] [CrossRef]
- Gray, E.S.; Schiavon, G.; Weigelt, B.; Ng, C.; Hrebien, S.; Cutts, R.J.; Cheang, M.; Osin, P.; Nerurkar, A.; Kozarewa, I.; et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015, 6, 42008. [Google Scholar] [CrossRef]
- Min, L.; Bu, F.; Meng, J.; Liu, X.; Guo, Q.; Zhao, L.; Li, Z.; Li, X.; Zhu, S.; Zhang, S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. Elife 2024, 12, RP88675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avsar, M.; Tambas, M.; Yalniz, Z.; Akdeniz, D.; Tuncer, S.B.; Kilic, S.; Sukruoglu Erdogan, O.; Ciftci, R.; Dagoglu, N.; Vatansever, S.; et al. The expression level of fibulin-2 in the circulating RNA (ctRNA) of epithelial tumor cells of peripheral blood and tumor tissue of patients with metastatic lung cancer. Mol. Biol. Rep. 2019, 46, 4001–4008. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for nonrandomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Bodlak, A.; Chang, K.; Channel, J.; Treece, A.L.; Donaldson, N.; Cost, C.R.; Garrington, T.P.; Greffe, B.; Luna-Fineman, S.; Sopfe, J.; et al. Circulating Plasma Tumor DNA Is Superior to Plasma Tumor RNA Detection in Ewing Sarcoma Patients: ptDNA and ptRNA in Ewing Sarcoma. J. Mol. Diagn. 2021, 23, 872–881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, X.Y.; Chen, X.M.; Shi, L.; Liu, J.W. Increased expression of microRNA-26a-5p predicted a poor survival outcome in osteosarcoma patients: An observational study. Medicine 2021, 100, e24765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morita, T.; Fujiwara, T.; Yoshida, A.; Uotani, K.; Kiyono, M.; Yokoo, S.; Hasei, J.; Kunisada, T.; Ozaki, T. Clinical relevance and functional significance of cell-free microRNA-1260b expression profiles in infiltrative myxofibrosarcoma. Sci. Rep. 2020, 10, 9414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, M.; Gao, H.; Lv, Z.; Liu, Y.; Zhao, S.; Gong, W.; Liu, W. Circular RNA PVT1 promotes metastasis via regulating miR-526b/FOXC2 signals in OS cells. J. Cell. Mol. Med. 2020, 24, 5593–5604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Liu, G.; Xiao, S.; Wang, L.; Liu, X.; Tan, Q.; Li, Z. Long Noncoding MT1JP Enhanced the Inhibitory Effects of miR-646 on FGF2 in Osteosarcoma. Cancer Biother. Radiopharm. 2020, 35, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xie, C.; Zhu, J.; Chen, X. Downregulation of serum miR-194 predicts poor prognosis in osteosarcoma patients. Ann. Diagn. Pathol. 2020, 46, 151488. [Google Scholar] [CrossRef] [PubMed]
- Kosela-Paterczyk, H.; Paziewska, A.; Kulecka, M.; Balabas, A.; Kluska, A.; Dabrowska, M.; Piatkowska, M.; Zeber-Lubecka, N.; Ambrozkiewicz, F.; Karczmarski, J.; et al. Signatures of circulating microRNA in four sarcoma subtypes. J. Cancer 2020, 11, 874–882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asano, N.; Matsuzaki, J.; Ichikawa, M.; Kawauchi, J.; Takizawa, S.; Aoki, Y.; Sakamoto, H.; Yoshida, A.; Kobayashi, E.; Tanzawa, Y.; et al. A serum microRNA classifier for the diagnosis of sarcomas of various histological subtypes. Nat. Commun. 2019, 10, 1299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piano, M.A.; Gianesello, L.; Grassi, A.; Del Bianco, P.; Mattiolo, A.; Cattelan, A.M.; Sasset, L.; Zanovello, P.; Calabrò, M.L. Circulating miRNA-375 as a potential novel biomarker for active Kaposi’s sarcoma in AIDS patients. J. Cell. Mol. Med. 2019, 23, 1486–1494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kun-Peng, Z.; Chun-Lin, Z.; Jian-Ping, H.; Lei, Z. A novel circulating hsa_circ_0081001 act as a potential biomarker for diagnosis and prognosis of osteosarcoma. Int. J. Biol. Sci. 2018, 14, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monterde-Cruz, L.; Ramírez-Salazar, E.G.; Rico-Martínez, G.; Linares-González, L.M.; Guzmán-González, R.; Delgado-Cedillo, E.; Estrada-Villaseñor, E.; Valdés-Flores, M.; Velázquez-Cruz, R.; Hidalgo-Bravo, A. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum. Cell 2018, 31, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Fricke, A.; Cimniak, A.F.V.; Ullrich, P.V.; Becherer, C.; Bickert, C.; Pfeifer, D.; Heinz, J.; Stark, G.B.; Bannasch, H.; Braig, D.; et al. Whole blood miRNA expression analysis reveals miR-3613-3p as a potential biomarker for dedifferentiated liposarcoma. Cancer Biomark. 2018, 22, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Uotani, K.; Fujiwara, T.; Yoshida, A.; Iwata, S.; Morita, T.; Kiyono, M.; Yokoo, S.; Kunisada, T.; Takeda, K.; Hasei, J.; et al. Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Sci. Rep. 2017, 7, 14634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujiwara, T.; Uotani, K.; Yoshida, A.; Morita, T.; Nezu, Y.; Kobayashi, E.; Yoshida, A.; Uehara, T.; Omori, T.; Sugiu, K.; et al. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2017, 8, 33375–33392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen-Rhoades, W.; Kurenbekova, L.; Satterfield, L.; Parikh, N.; Fuja, D.; Shuck, R.L.; Rainusso, N.; Trucco, M.; Barkauskas, D.A.; Jo, E.; et al. Cross-species identification of a plasma microRNA signature for detection, therapeutic monitoring, and prognosis in osteosarcoma. Cancer Med. 2015, 4, 977–988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallego, S.; Llort, A.; Roma, J.; Sabado, C.; Gros, L.; de Toledo, J.S. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J. Cancer Res. Clin. Oncol. 2006, 132, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, I.; Cohen, I.J.; Stein, J.; Zilberstein, J.; Liberzon, E.; Atlas, O.; Grunshpan, A.; Sverdlov, Y.; Ash, S.; Zaizov, R.; et al. Tumor cells are present in stem cell harvests of Ewings sarcoma patients and their persistence following transplantation is associated with relapse. Pediatr. Blood Cancer. 2004, 42, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Ascierto, P.A.; Satriano, S.M.; Strazzullo, M.; Apice, G.; Castello, G. Circulating melanoma-associated markers detected by RT-PCR in patients with classic Kaposi’s sarcoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2000, 11, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Wong, I.H.; Chan, A.T.; Johnson, P.J. Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific messenger RNA markers: A pilot study. Clin. Cancer Res. 2000, 6, 2183–2188. [Google Scholar] [PubMed]
- Thomson, B.; Hawkins, D.; Felgenhauer, J.; Radich, J. RT-PCR evaluation of peripheral blood, bone marrow and peripheral blood stem cells in children and adolescents undergoing VACIME chemotherapy for Ewing’s sarcoma and alveolar rhabdomyosarcoma. Bone Marrow Transplant. 1999, 24, 527–533. [Google Scholar] [CrossRef] [PubMed]
- de Alava, E.; Lozano, M.D.; Patiño, A.; Sierrasesúmaga, L.; Pardo-Mindán, F.J. Ewing family tumors: Potential prognostic value of reverse-transcriptase polymerase chain reaction detection of minimal residual disease in peripheral blood samples. Diagn. Mol. Pathol. 1998, 7, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Fagnou, C.; Michon, J.; Peter, M.; Bernoux, A.; Oberlin, O.; Zucker, J.M.; Magdelenat, H.; Delattre, O. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Société Française d’Oncologie Pédiatrique J. Clin. Oncol. 1998, 16, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- West, D.C.; Grier, H.E.; Swallow, M.M.; Demetri, G.D.; Granowetter, L.; Sklar, J. Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J. Clin. Oncol. 1997, 15, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.; Magdelenat, H.; Michon, J.; Melot, T.; Oberlin, O.; Zucker, J.M.; Thomas, G.; Delattre, O. Sensitive detection of occult Ewing’s cells by the reverse transcriptase-polymerase chain reaction. Br. J. Cancer 1995, 72, 96–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pfleiderer, C.; Zoubek, A.; Gruber, B.; Kronberger, M.; Ambros, P.F.; Lion, T.; Fink, F.M.; Gadner, H.; Kovar, H. Detection of tumour cells in peripheral blood and bone marrow from Ewing tumour patients by RT-PCR. Int. J. Cancer 1995, 64, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.F., Jr.; Vadhan-Raj, S.; Uthman, M.; Grey, M.; Holian, A. The in vivo effects of PIXY321 therapy on human monocyte activity. J. Leukoc. Biol. 1993, 53, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, S.; Babayan, A.; Pantel, K.; Calin, G.A. Clinical utility of circulating non-coding RNAs—An update. Nat. Rev. Clin. Oncol. 2018, 15, 541–563. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, S.; Alahari, S.K. miRNA control of tumor cell invasion and metastasis. Int. J. Cancer 2010, 126, 1283–1290. [Google Scholar] [CrossRef]
- Valihrach, L.; Androvic, P.; Kubista, M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol. Asp. Med. 2020, 72, 100825. [Google Scholar] [CrossRef]
- Zhou, G.; Lu, M.; Chen, J.; Li, C.; Zhang, J.; Shi, X.; Wu, S. Identification of miR-199a-5p in serum as noninvasive biomarkers for detecting and monitoring osteosarcoma. Tumor Biol. 2015, 36, 8845–8852. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Jin, Z.; Zhou, F.; Zhang, Y.Q.; Zhuang, Y. The expression significance of serum MiR-21 in patients with osteosarcoma and its relationship with chemosensitivity. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2989–2994. [Google Scholar] [PubMed]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Erbes, T.; Hirschfeld, M.; Rücker, G.; Jaeger, M.; Boas, J.; Iborra, S.; Mayer, S.; Gitsch, G.; Stickeler, E. Feasibility of Urinary MicroRNA Detection in Breast Cancer Patients and Its Potential as an Innovative Non-Invasive Biomarker. BMC Cancer 2015, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, G.M.S.; Silva, M.O.; Reis, R.M.; Leal, L.F. Liquid Biopsy for Lung Cancer: Up-to-Date and Perspectives for Screening Programs. Int. J. Mol. Sci. 2023, 24, 2505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med. 2019, 70, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
Authors | Year of Publication | Type of Article | MINORS | n° Patients | Mean Age (Years) | |
---|---|---|---|---|---|---|
Bodlalk, A. et al. [34] | 2021 | Retrospective Study | non-comparative | 12/16 | 5 | 13.6 * |
Xie, X.Y. et al. [35] | 2021 | Retrospective Study | comparative | 22/24 | 243 | - |
Morita, T. et al. [36] | 2020 | Retrospective Study | comparative | 19/24 | 15 | 78 |
Yan, M. et al. [37] | 2020 | Retrospective Study | non-comparative | 12/16 | 48 | - |
Yang, L. et al. [38] | 2020 | Retrospective Study | comparative | 20/24 | 42 | 30 |
Shi, L. et al [39] | 2020 | Retrospective Study | comparative | 20/24 | 124 | - |
Kosela-Paterczyk, H. et al. [40] | 2020 | Prospective Study | comparative | 19/24 | 86 | 30 |
Asano, N. et al. [41] | 2019 | Retrospective Study | comparative | 20/24 | 311 | - |
Piano Ma et al. [42] | 2019 | Retrospective Study | comparative | 17/24 | 22 | - |
Kung-Peng, Z. et al. [43] | 2018 | Retrospective Study | comparative | 16/24 | 50 | - |
Monterde-Cruz, L. et al. [44] | 2018 | Retrospective Study | comparative | 19/24 | 15 | 20 |
Uotani, K. et al. [46] | 2017 | Retrospective Study | non-comparative | 13/16 | 12 | 43.5 |
Wang, S.N. et al. [19] | 2017 | Prospective Study | non-comparative | 15/16 | 102 | - |
Fujiwara, T. et al. [47] | 2017 | Retrospective Study | non-comparative | 12/16 | 14 | 23 |
Allen-Rhoades, W. et al. [48] | 2015 | Retrospective Study | comparative | 18/24 | 40 | <18 * |
Gallego, S. et al. [49] | 2006 | Retrospective Study | non-comparative | 11/16 | 16 | 6 * |
Yaniv, I. et al. [50] | 2004 | Retrospective Study | non-comparative | 8/16 | 11 | 13 * |
Palmieri, G. et al. [51] | 2000 | Retrospective Study | non-comparative | 10/16 | 21 | 60 |
Wong, I.H. et al. [52] | 2000 | Prospective Study | comparative | 18/24 | 11 | 21 |
Thomson, B. et al. [53] | 1999 | Retrospective Study | non-comparative | 9/16 | 12 | 15 * |
de Alva, E. et al. [54] | 1998 | Prospective Study | non-comparative | 12/16 | 28 | 12 * |
Fagnou, C. et al. [55] | 1998 | Retrospective Study | non-comparative | 13/16 | 67 | 13 * |
West, D.C. et al. [56] | 1997 | Retrospective Study | non-comparative | 11/16 | 28 | - |
Peter, M. et al. [57] | 1995 | Retrospective Study | non-comparative | 11/16 | 36 | - |
Pfleiderer, C. et al. [58] | 1995 | Prospective Study | non-comparative | 12/16 | 16 | - |
Hamilton, R.F. et al. [59] | 1993 | Prospective Study | non-comparative | 12/16 | 6 | - |
26 | RS (20) PS (6) | c (11) n-c (15) | 19/24 12/16 | 1381 | <18–12 >18–39 |
Authors | BS | STS | STS Characterization | |
---|---|---|---|---|
OS | ES | |||
Bodlalk, A. et al. [34] | - | 5 | - | |
Xie, X.Y. et al. [35] | 243 | - | - | |
Morita, T. et al. [36] | - | - | 15 | Myxofibrosarcoma (15) |
Yan, M. et al. [37] | 48 | - | - | |
Yang, L. et al. [38] | 42 | - | - | |
Shi, L. et al. [39] | 124 | - | - | |
Kosela-Paterczyk, H. et al. [40] | 16 | 8 | 62 | Synovial sarcoma (26); GIST (36) |
Asano, N. et al. [41] | 78 | - | 233 | not specified |
Piano Ma et al. [42] | - | - | 22 | Kaposi sarcoma (22) |
Kung-Peng, Z. et al. [43] | 50 | - | - | |
Monterde-Cruz, L. et al. [44] | 15 | - | - | |
Uotani, K. et al. [46] | - | - | 12 | Synovial sarcoma (12) |
Wang, S.N., et al. [19] | 102 | - | - | |
Fujiwara, T. et al. [47] | 14 | - | - | |
Allen-Rhoades, W. et al. [48] | 40 | - | - | |
Gallego, S. et al. [49] | - | - | 16 | Rhabdomyosarcoma (16) |
Yaniv, I. et al. [50] | - | 11 | - | |
Palmieri, G. et al. [51] | - | - | 21 | Kaposi sarcoma (21) |
Wong, I.H. et al. [52] | 11 | - | - | |
Thomson, B. et al. [53] | - | 9 | 3 | Alveolar rhabdomyosarcoma (3) |
de Alva, E. et al. [54] | - | 28 | - | |
Fagnou, C. et al. [55] | - | 67 | - | |
West, D.C. et al. [56] | - | 28 | - | |
Peter, M. et al. [57] | - | 36 | - | |
Pfleiderer, C. et al. [58] | - | 16 | - | |
Hamilton, R.F. et al. [59] | - | - | 6 | not specified |
783 | 208 | 390 |
Authors | Primary Tumor | ctNAs | |
---|---|---|---|
Xie, X.Y. et al. [35] | OS | miRNA | miR-26a-5p/HOXA5 |
Yan, M. et al. [37] | OS | circRNA + miRNA | circPVT1/ miR526b/FOXC2 axis |
Yang, L. et al. [38] | OS | lncRNA | lncRNAMT1JP |
Shi, L. et al. [39] | OS | miRNA | miR-194/CDH2 |
Kung-Peng, Z. et al. [43] | OS | miRNA | hsa-circ-0081001 |
Monterde-Cruz, L. et al. [44] | OS | miRNA | miR-215-5p + miR642a-5p |
Wang, S.N. et al. [19] | OS | circRNA | miR-491 |
Fujiwara, T. et al. [47] | OS | miRNA | miR-25-3p |
Allen-Rhoades, W. et al. [48] | OS | miRNA | miR-214/LZTS1 |
Wong, I.H. et al. [52] | OS | ctRNA | COLL |
Yaniv, I. et al. [50] | ES | ctRNA | EWS–FLI1 |
de Alva, E. et al. [54] | ES | ctRNA | EWS–FLI1 + EWS–ERG |
Fagnou, C. et al. [55] | ES | ctRNA | EWS–FLI1 + EWS–ERG |
West, D.C. et al. [56] | ES | ctRNA | EWS–FLI1 |
Peter, M. et al. [57] | ES | ctRNA | EWS–FLI1 + EWS–ERG |
Pfleiderer, C. et al. [58] | ES | ctRNA | EWS–FLI1 + EWS–ERG |
Bodlalk, A. et al. [34] | ES | ctRNA | EWS–FLI1 + EWS–ERG |
Thomson, B. et al. [53] | ES+RMS | ctRNA | EWS–FLI1 + PAX3–FKHR |
Gallego, S. et al. [49] | RMS | ctRNA | PAX7–FKH + PAX3–FKHR + AchR + MyoD1 |
Piano Ma et al. [42] | KS | miRNA | miR-375 |
Palmieri, G. et al. [51] | KS | ctRNA | MelanA/MART1 + Tyrosinase + p97 |
Uotani, K. et al. [46] | SS | miRNA | miR-92b-3p/Dkk3 |
Morita, T. et al. [36] | MFS | miRNA | miR-1260b/PCDH9 |
Hamilton, R.F. et al. [59] | STS | ctRNA | PCKβII |
Kosela-Paterczyk, H. et al. [40] | OS + EW + SS + GIST | miRNA | miR-4772-5p + miR-582-5p + … |
Asano, N. et al. [41] | OS + STS | miRNA | * 83 miRNAs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielli, E.; Bocchi, M.B.; Giuli, C.; Farine, F.; Costa, D.D.; Maccauro, G.; Vitiello, R. Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 11715. https://doi.org/10.3390/ijms252111715
Gabrielli E, Bocchi MB, Giuli C, Farine F, Costa DD, Maccauro G, Vitiello R. Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(21):11715. https://doi.org/10.3390/ijms252111715
Chicago/Turabian StyleGabrielli, Elena, Maria Beatrice Bocchi, Cristina Giuli, Francesco Farine, Doriana Di Costa, Giulio Maccauro, and Raffaele Vitiello. 2024. "Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review" International Journal of Molecular Sciences 25, no. 21: 11715. https://doi.org/10.3390/ijms252111715
APA StyleGabrielli, E., Bocchi, M. B., Giuli, C., Farine, F., Costa, D. D., Maccauro, G., & Vitiello, R. (2024). Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review. International Journal of Molecular Sciences, 25(21), 11715. https://doi.org/10.3390/ijms252111715